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Synopsis of the course

General structural properties of a quantum
theory

Canonical quantization and all that

Bogoliubov transformation and construction
of the S-matrix

The Unruh effect
(The Hawking effect)



I) General Structural Properties
of a quantum theory and QFT



A reminder of classical mechanics

The physical state of a classical system having N degrees of freedom can be
completely specified by assigning the values of 2N quantities (the observables)
interpreted as the generalized coordinates and velocities of the system
1 2 N -1 -2 - IN
(@5 aq% - q,q7,4%,...4")

The dynamics of the system is then specified by the knowledge of its Lagrangian
function depending on the generalized coordinates and velocities

£(q17q27 ° ’qN7 q17q27 ° 'qN)

The Lagrangians equation of motion are a system of N second order equations:

d OL __ OL .



A reminder of classical mechanics

The mathematical structure of a classical mechanical system is unveiled in the
Hamiltonian formalism (here, an ultra simplified version of it).

Introduce the momenta canonically conjugate to the generalized coordinates:
__ 0L -
p]_a_qja ]_177N
The collection of all possible values of coordinates and momenta is the phase space of

the system; this is the cotangent bundle X=T*M of the manifold M of all possible
configurations

(q17q27 .. 'qNap]_aan . pN)

The physical state of the same classical system is now completely specified by
assigning the values of 2N quantities (the observables) interpreted as the generalized
coordinates and momenta of the system



A reminder of classical mechanics

There is a natural symplectic structure on T*M induced by the Liouville differential one-
form and the canonical symplectic (invertible) differential two-form:

9=ijdqj; w=—d9=2dqj/\dpj

The canonical 2-form gives the Poisson bracket stucture; for any two functions

defined on T*M:
Z of 0 dg O

0¢) Op;  O¢’ Op;

In particular the canonical variables satisfy
' _ 5J : __ _
{¢’,pt} = 63, {¢’,ak} =0, {pj,pr} =0
The equations of motion are the Poisson brackets of the canonical variables with the
Hamiltonian: -
H(q,p) =>p'q; — L

dqj _ OH __ dpj __  9H __
d—tj—@—{q,H} —]———-j—{pyH}



Algebra of the observables

Observables are more generally measurable complex functions on
the phase space Jlf(q7 p) c X — T*M ~ C

The observables associated to a classical system generate an abelian
algebra A of complex continuous function on the (compact) phase space.
The product is the pointwise composition of functions

(f9)(z) = f(z)9(z)

 The algebra has an identity element 1, the constant function equal to 1
* There is a natural involution or %-operation that is simply the complex

conjugation f* (x) _ f_(m)

* Technically the algebra of observables is an Abelian C-star algebra.




States and functionals

In principle a state determines the value of an observable sharply

(q,p) — f(q,p)

Measurements with infinite precision are not possible. The identification of
states with points of the phase space relies on such unrealistic idealization
The standard way to associate a value to an observable fin a state w
consists in performing averages of replicated measures of f in the given
state

< f>@=m& (f) + m$ (f) + m& (f))/n.

The limit n — oo (whose existence is part of the foundations of experimen-
tal physics) defines the expectation of f on the state w

w(f)= lim < f>W

n—00

as average of the results of measurements of f in the state w.



Classical systems: summary

* Aclassical system is defined by the Abelian C-star algebra A of its
observables

* A state of a classical system i.e. normalized positive linear functional
on the algebra of A of its observables:

WAf + pug) = Aw(f) + pwig)
w(ff*)=>0

The Riesz-Markov theorem then guarantees that there exists a uniaue
Borel probability measure such that

w(f) = / fduy, pu(X)=w(l)=1,
wQOap() /f q,p 5(qo,po) f(QO7pO)



Quantum observables

 The great Heisenberg’s discovery : there is an intrinsinc limitation in
the relative precision by which g and p can be measured
independently of the state w

(Bwa) Buwpy) 2h/Am=h/2.  (Buf? = w((f - ()

. Given a state and any two observables

A=A* B=B* (A—i\B)(A+i\B)>0, YA€ R
w (A%) + |A\°w (B?) + idw ([4, B]) > 0
4w (A% w(B%) 2 |w(il4, B))?
Auw (A) Aw (B) > 5 |w (4, B))




The quantum algebra is non abelian

(Aw g;) (Awp;) > h/dm = k)2

Auw (A) A (B) > 5 |w (4, B])

Heisenberg idea is that the uncertainty relations arise as direct
consequences of the following Heisenberg commutation relations

4j Pk — Pk ¢ = thoji1,

Thus observables (say the position and momentum variable) of
an atomic particle cannot be described by an abelian algebra.
The algebra of quantum observables must be non commutative.




Representing the CCR

» Consider a one-dim quantum system: QP — PQ —1h

» To find a quantization is to realize or “represent” these algebraic rules by concrete
operators in a Hilbert space H. This amount to “choose” a particular state

Q—Q:H—MH, P—P:H—H
QP — PQ =1ih

» Equivalently a NoEk a 72 [a,a] h1

a—a.H—"H, ol —al i H—H
aa' —a'a = nl
» Can Q and P, or a and a’ be matrices? Or bounded operators?

Answer: No they cannot (take the trace)



Representing the CCR
Abstract CCR’s: QP — PQ =1h
CCR'srepresented: QP — PQ = ih
Example |: x-space representation:
H = L?(Ry) = {¢(z) : [|¢(x)|2de < oo}
Q — Qi = x, P—>]5x=—ih%
Example Il: momentum-space representation
H=L?*(Rp) = {o(p) : [|op(p)|?dz < oo}
Q%szihip, Pp—>p=p



Representing the CCR ©
QP — PQ = ih
> Representation: L2(Rz) = {¥(x) : [|v(z)]|?dx < oo}
Q—Qr=x, P—DPp=-ihl

> Representationll: L2(Rp) = {¢(p) : [ |o(p)|?dx < oo}
Q—>Qp:ihd%> P,— P=p
» The two representations are unitarily equivalent
U:L?Rz) — L?(Rp)
UQ.U 1 =Q, UP,U~! =P,




Stone-Von Neumann Uniqueness

All the representations of the CCR’s by (essentially) self-adjoint
operators are unitarily equivalent.

This is true also for finite-dimensional systems: the CCR algebra
can be written in terms of position and momentum “operators”

(Q;, P =iRé;; 4,j=1,...N

Under suitable technical assumptions there exists only one Hilbert
space representation of the CCR’s,

Q%Q PP

i.e. all the representations are unitarily equivalent.



Representing the CCR

QP — PQ = ih
S e Y 2
> Representation lll: L (RCB ) = {@D(CI}) : |¢(CIZ)‘ dr < OO}
O
Q—QFf =z, P— B =—ind
» At variance with reps | and Il is that Paj‘ is not essentially self-adjoint

» It follows that rep lll cannot be unitarily equivalent to reps | and Il because it cannot
exist any unitary operator such that



Classical Relativistic Field Theory

» Aclassical field is a quantity defined at each point of the spacetime manifold,
necessary to describe interactions in a local way (vs action at a distance):

r=(t,x) eM* M4sz—-¢((x)eV

» The function (;5 (t, X) may take real values, complex values, or values in some
finite dimensional vector space.

» Magnetic field lines were introduced by Michael Faraday (1791-1867) who named
them "lines of force." Faraday understood the physical reality of fields: space containing

magnetic "lines of force" was no longer empty!

» Fields however may or may not be observable or physical (a spinor field is not, the
Electromagnetic four-potential potential is not.)

» A field encodes an infinite number of degrees of freedom: the “values” of the field
at each spacetime point.

» A relativistic field has suitable tensorial transformation properties under the
appropriate relativity group.



Classical Klein-Gordon Fields

Consider the Minkowski manifold
4 .
M ) nMV:dzag(la_]-)_l)_l)

The model is based on the quadratic Lagrangian
1
(el = [ £(o,0u9)d% = = [ d*a [ (9u9) (9v$) — m?¢?]
¢(t7X)7 7T (t7X) — 8(80¢) - ¢(t X)

Generalized coordinates and their canonically conjugated momenta are

¢(t07 X)7 ™ (t07 X)

« The assignment of a pair of functions ¢(tg, x), 7 (tg, X )at t = t, completely
determines the solution of the Klein-Gordon (classical) field equation

(04 m?)¢ =0
A1, 62) = = [, 1910621 (6, )62 ()] x



The Pauli Jordan function



The Pauli-Jordan function

(O+m*)D(z) =0
D(0,%) =0

0y D(x)|t=0 = (T)

(

D(z) = (27)3 /e—z’px(e(pO) — 9(_p0))5(p2 _ m2)d4p

a): Uniqueness.
D(x) is the unique solution of the above Cauchy problem

b): Antisymmetry: D(x) = -D(-x)

c): Locality. D(x) vanishes for :I;‘2 < ()



The retarded and advanced propagators

(O0+m?)G(z) = ()

Solve by Fourier transform  (—p* + mQ)CN?(p) =1

1 e—dpx A
Glx) = (2m)* ) p? — m2d b

Define two regularizations as follows

1 e—dpx
D’I“et _ d4
0 =~ | et

1 e PT
Dad’l) _ d4
=~y | G




The retarded and advanced propagators

1 e~ PT
D’I“et _ d4
@ =~ | Grrgr—

1 e P
Dadv _ d4
=~ | G

(p° £ie)® = (p°)? £ iep® = (p°)* £ iesgn(p?)

sgn(p’) = e(p®) = 0(p°) — 0(—p")
1 |

Since — — — = —2mid(x)
Tr+1€ T — 1€

/ e "*e(p”)o(p* — m?)d*p = D(x)

D?“et(aj) o Dadv (ZU) _

(2m)?



Support of the propagators

1 L
D?“et _ d4
() (27)’ / (09 + e + ) (0 +iec—w) ©

Poles are located at p' = —ie +w, w = /P2 + m?

For 2° < 0 the contour is closed in the upper half-plane
there are no poles and the integral vanishes

For 2z > 0 the contour can be closed in the lower half-plane and get

o i 0 e—iwazo+iﬁf _ plwz —1px 5 0
D™ (x) = 0(z") 20) d°p = 6(z°)D(x)



A formula of fundamental importance

Dret(x) o Dadv(x) _ D(ZE‘)

This formula proves the key property c)
the locality property (also called microcausality):
D(x) vanishes for z° < 0.



The Pauli-Jordan function and the
Cauchy problem

The Pauli- Jordan allows to solve the Cauchy problem
(O +m*)p(z) =0

¢(0,7) = g(Z)
0 d()|t=0 = h(T)

The solution is given by the formula:

/ D(t, & — Ph(i)d%y + / 9:D(t, % — )g()d%y



There is a second possibility to build a solution of the
KG equation using the Pauli Jordan commutator. One
such solution is

— [ D~ gy, g€ R
Consider now the inhomogeneous problem
(O+m?)o(z) = f() f € C(RY)
b1(2) = Bf = [ Do~ y)f()a'y
ba(a) = Af = | D~ y)f()a'y
¢ =d1— ¢, (O+m?)¢=0,

supp ¢ = suppf +V




A fundamental lemma

* i) € S the space of solutions of the KG eq. with compact
initial data. There exists f € C°(R*)

b(z) = Ef = Rf — Af = / D(x — y)f(y)d'y

Let x be a smoothed step function: y € C*
x(t) =0, t<0, x(t)=1, t>1.

f=(0+m*)xy, f has compact support
(O+m*Af =f=(0O+m’)xy, Af =x¢¥+h, (O+m?*)h=0

Af = xyv — 1 vanishes in the future shadow of f
Similarly Rf = xy. Thus (R— A)f =4



A fundamental lemma
* FE f vanishes if and only if

=
[ D)

m*)g(y), suppg compact

, +m?)g(y)d*y = 0 obvious

Conversely Ef=0 — Rf=Af¢cC’R?)
But (O+m*)Af=f ie g=Af




A fundamental lemma
» Forallvy € S and all f € C3°(R?Y)
/ b(@) f(2)d'z = (¢, Bf)
Chose [t1,t2]| such that supp f C [t1, 2] X R’

/ it [ e x_/ dt [ () (0 +m?)Af(z)d?
t1 R3 t1 R°

$OAS = 0" (b 9,Af) — (9") (9, Af)
= 0" (YO, Af) — 0, (0" Af) + 0w Af

[v@s@dta= [ "at | o wo.Ar- @) AN



A fundamental lemma
) flx)d*x = : H — Sx
[v@r@ita= [ "at [ o wauar- @) ana
_ /R (WOAS — (0) Af) iy
~ [ WOBS ~ QW) ) s

because Af = —FEf = —(Rf — Af) on the surface t = t;

/f(fE)D(a? —y)g(y)d'y = —QUES, Eg), [f.g9€CFRY)



Peierls symplectic form

QA1 62) = = [, 19106:)ma ()1 (6,062 (1, )] x

Stokes theorem: The Peierls symplectic form is conserved.
Given any two solutions the current is conserved

Ju = $1 gu ¢o = P10ud2 — (Oud1) P2, 0"ju =0

e (Covariant Poisson Brackets

{¢(x),9(y)} = —D(z,y) = —D(x — y)



Quantizing fields

» Replace the Peierls brackets by the canonical
commutation relation (here written covariantly)

{o(2), o(y)} = —D(z,y) = —D(z —y)
o(x), o(y)| = —thD(z —y)
» Construct a Hilbert space representation of the CCR
 0(2) = o)
O(x), o(y)| = —thD(z —y)

» Uniqueness fails!
» In guantum field theory the Lagrangian is not enough.




Infinitely many dof: uniqueness fails!

» Formal CCR algebra written in terms of fixed time fieds “operators”

P(to, T), ¢(to, ¥)] = [m(to, T), 7(to,¥y)] =0
P(to, ), m(to, ¥)] = 1hd (X — ¥)

» Orin terms of creation and annihilation operators (discrete normalization)
[a’iaa'j] =0, [a’jgaa;[‘] = 0,
[ai,a;[]ZTLcSij i,j=1,...oo
» Or in terms of creation and annihilation operators (continuous normalization)
[a(k),a(k)] =6k —K), [al(k),a’(K)] =0,
[a(k),a’ (k)] = Ré(k — k)

» All the above algebras have uncountably many Hilbert space representations



Curved spacetime: global hyperbolicity

» All the above construction can be extended literally to the class of globally hyperbolic
manifolds (this is of course a little tautological)

» A Lorentzian manifold is globally hyperbolic if it admits a Cauchy Surface: a 3-dim
closed achronal set whose domain of dependence is the manifold itself.

» A globally hyperbolic spacetime admits a global time coordinate and a foliation:

M:UZt
t

» Each surface of constant time is a smooth Cauchy surface: smooth spacelike 3-surface cut
exactly once by each inextendible causal curve

» As a consequence of global hyperbolicity there are global solution of the Cauchy problem
(Leray-Lichnerowicz-Choquet Bruhat)

( 4—’1712)]5’i =1
E* 0 (M) = C (M)
supp E*(f) = J*(supp f)




Curved spacetime: global hyperbolicity

» Define the analogous of the Pauli-Jordan function
_ ot —
E(Q?,y) =k (QZ‘,y)—E (x,y)

» And the Peierls brackets (Klein-Gordon inner product)

[ F@EB(@ - ygwitsd'y = ~Ef.Eg), f.9€CFMY
Q(p1,02) = — /Zt(cblﬂz — T1¢0)doT = — /Zt b1 %L ¢o dot

m(x) = _¢ = |h|} 21V ¢ = {(¢0,70)|¢0, 7m0 € C5~(X0)}

h;; — induced metric on >
n% — future-directed unit normal vector field on 3.



Quantizing free fields

» Replace the Peierls brackets by the canonical
commutation relation (here written covariantly)

{o(z),0(y)} = —E(z,y)
C(z,y) = [¢(x), d(y)] = —ihE(z,y)

» Construct a Hilbert space representation of the CCR

() = o)
O(x),o(y)| = —thE(z,y) = C(z,y)
» Uniqueness fails again! (this has nothing to do with

the fact that the spacetime is curved. It is the fact that
the system is infinite-dimensional)




Commutator: standard construction

Let (M,g) a globally hyperbolic manifold. Consider the KG equation on the
manifold M Oy + V(2)¢ = 0.

Introduce the invariant Peierls aka Klein-Gordon inner product in the space
of complex solution of the KG equation

(f,9) = —i/ f VY gdot
>4
Find a basis {Ui} so that (Ui, uj) = 529, (ﬂi, ”L_I,j) = _5ij7 (ui, ”L_I,j) =0
The unequal time commutator admits the following expansion
C(z,y) = Y [ui(@)ui(y) — ui(y)u;(a]

It is basis independent (uniqueness)



