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Normal cones

A manifold means a real C∞-manifold and a morphism of manifolds
f : M −→ N is a map of class C∞. For any subset A, we denote by
A its closure, by Int(A) its interior and we set ∂A = A \ Int(A).

Let A,B be two subsets of M. The Whitney cone C (A,B) is a
closed conic subset of TM. In a chart, it is described as follows.

v ∈ Cx0(A,B) ⊂ Tx0M
if and only if
there exists a sequence {(xn, yn, λn)}n ⊂ A×B×R>0
such that
xn

n−→ x0, yn
n−→ x0, λn(xn − yn)

n−→ v .

For N a smooth submanifold of M, one denotes by CN(A) the
image of N ×M C (A,N) in TNM = (N ×M TM)/TN.
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Let A be a subset of M. The strict normal cone of A is is an open
convex cone of TM defined by

N(A) = TM \ C (M \ A,A).

In a local chart of M,

(x , v) ∈ N(A)⇔


there exists an open cone γ0 with v ∈ γ0
and an open neighborhood U of x such that
U ∩ (U ∩ A + γ0) ⊂ A.
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Preorders

We denote by ∆M , or simply ∆, the diagonal of M ×M.
Let Mi (i = 1, 2, 3) be manifolds. For short, we write
Mij := Mi ×Mj (1 ≤ i , j ≤ 3) and M123 = M1 ×M2 ×M3. We
denote by qi the projection Mij −→ Mi or the projection M123 −→ Mi
and by qij the projection M123 −→ Mij . For A1 ⊂ M12 and
A2 ⊂ M23, one sets

A1 ◦
2
A2 = q13(q−1

12 A1 ∩ q−1
23 A2).

Consider a preorder � on a manifold M and its graph
∆� ⊂ M ×M. Then

∆ ⊂ ∆� ,

∆� ◦∆� = ∆� .

6 / 45



References Causal manifolds Causal preorders G-causal manifolds Sheaves Propagation D-modules Examples

For a subset A ⊂ M, one sets{
J−� (A) = q1(q−1

2 (A) ∩∆�) = {x ∈ M;∃y ∈ A with x � y},
J+
� (A) = q2(q−1

1 (A) ∩∆�) = {x ∈ M;∃y ∈ A with y � x}.

For x ∈ M, we write J+
� (x) and J−� (x) instead of J+

� ({x}) and
J−� ({x}) respectively. One calls J−� (A) (resp. J+

� (A)) the past
(resp. future) of A for the preorder �.
Let � be a preorder on M. The next results are obvious:
• J−� (A) =

⋃
x∈A J−� (x), and similarly with J+

� (A),

• A ⊂ J−� (A), J−� (J−� (A)) = J−� (A) and similarly with J+
� (A),

• A = J+
� (A)⇔ M \ A = J−� (M \ A).
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Definition

(a) The preorder is closed if ∆� is closed in M ×M.
(b) The preorder is proper if q13 is proper on ∆� ×M ∆�.

Equivalently, for any two compact subsets A and B of M, the
so-called causal diamond J+

� (A) ∩ J−� (B) is compact.

• If � is closed and A is a compact subset of M, then J−� (A)

and J+
� (A) are closed.

• If � is proper, then it is closed.
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Definition

(a) A causal manifold (M, γ) is a manifold M equipped with an
open convex cone γ ⊂ TM such that γx 6= ∅ for all x ∈ M.

(b) A morphism of causal manifolds f : (M, γM) −→ (N, γN) is a
morphism of manifolds such that Tf (γM) ⊂ γN .

(c) A morphism of causal manifolds f is strict if Tf (γM) ⊂ γN .

Causal manifolds and their causal (resp. strictly causal) morphisms
form a category.
For U a open subset of M, (U, γ|U) is a causal manifold and the
embedding U ↪→ M induces a morphism of causal manifolds.

Notation
For an open interval I of R (which we will implicitly assume to
contain [0, 1]) we simply denote by (I ,+) the causal manifold
(I , I × R>0).

9 / 45



References Causal manifolds Causal preorders G-causal manifolds Sheaves Propagation D-modules Examples

Example: Lorentzian manifolds
A Lorentzian manifold (M, g) is a connected C∞-manifold M with
a C∞ nondegenerate bilinear form g on M of signature
(+,−, . . . ,−). Let

g>0 = {(x ; v) ∈ TM; gx(v , v) > 0}.

Then g>0 has at most two connected components. The Lorentzian
manifold (M, g) is time-orientable if the cone g>0 has two
connected components. It is time-oriented if furthermore one
connected component has been chosen. In this case, it defines a
causal manifold denoted by (M, γg ), or simply (M, γ).

Definition
A Lorentzian spacetime is a connected time-oriented Lorentzian
manifold.
In our study, we shall simply ask that γ is an open convex cone,
non empty at each x ∈ M. We don’t ask any regularity on γ.
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γ-sets and γ-topology

Let (M, γ) be a causal manifold.
(i) A constant cone in γ is a triple (ϕ,U, θ) where ϕ : U −→ Rd is a
chart and θ ⊂ Rd is an open convex cone, such that in this chart,
U × θ ⊂ γ (that is, ϕ(U)× θ ⊂ Tϕ(γ|U)). A constant cone
(ϕ,U, θ) will often be denoted simply by U × θ.
(ii) A basis of constant cones contained in γ is a family of constant
cones whose union is γ.
(iii) A subset A ⊂ M is a γ-set if γ ⊂ N(A). Equivalently, there
exists a basis of constant cones U × θ contained in γ such that
U ∩ (U ∩ A + θ) ⊂ A.
• The family of γ-sets is closed under arbitrary unions and
intersections and under taking closure and interior.

• If A is a γ-set, then IntA = A and IntA = IntA.
• If A is a γ-set and IntA ⊂ B ⊂ A, then B is a γ-set.
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The preceding results allows us to generalize the notion of
γ-topology of [KS90] in which M was affine and the cone was
constant.

Definition
Let (M, γ) be a causal manifold. The γ-topology on M is the
topology for which the open sets are the open sets of M which are
γ-sets.
A subset A ⊂ M is called γ-open if it is open for the γ-topology. In
other words, if it is open in the usual topology and is a γ-set.
Remark
A set which is closed for the γ-topology is not in general a γ-set,
but is a γa-set.
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The chronological preorder

Definition
For A ⊂ M, we denote by I+

γ (A) the intersection of all the γ-sets
which contain A and call it the chronological future of A.
Note that a set A is a γ-set if and only if I+

γ (A) = A.
One easily checks that

The relation y ∈ I+
γ ({x}) is a preorder.

Definition
We denote by �γ the preorder given by x �γ y if y ∈ I+

γ (x) and we
denote by ∆γ its graph. Hence, I+

γ (x) = J+
�γ

(x) and ∆γ = ∆�γ .
We call �γ the chronological preorder.
On (I ,+) the chronological preorder �γ is the usual order ≤.
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Causal paths

Definition
A path c : I −→ M is a piecewise smooth map. A path c is causal if
c ′l (t), c ′r (t) ∈ (γ)c(t) for any t ∈ I and it is strictly causal if
c ′l (t), c ′r (t) ∈ γc(t) for any t ∈ I .

• if c1 and c2 are two (strictly) causal paths with c1(1) = c2(0),
the concatenation c = c1 ∪ c2 is (strictly) causal.

• Let f : (M, γM) −→ (N, γN) be a morphism of causal manifolds
and let c : I −→ M be a causal path. Then f ◦ c : I −→ N is a
causal path and similarly with strictly causal.

• The piecewise smooth preorder, ps-preorder for short, is
defined by x �ps y if there is a causal path c with c(0) = x ,
c(1) = y .
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Causal preorders

Let (M, γ) be a causal manifold and let � be a preorder on M.
The following assertions are equivalent:

(i) One has ∆γ ⊂ ∆�.
(ii) ∆� is a (γa × γ)-set,
(iii) For any x ∈ M, J+

� (x) is a γ-set.

(iv) For any y ∈ M, J−� (y) is a γa-set.

(v) For any x ∈ M, I+
γ (x) ⊂ J+

� (x).

Definition
A preorder � is causal if the equivalent conditions above are
satisfied.
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The cc and the ps preorders

Graphs of transitive relations, closed sets, and γ-sets in a causal
manifold, are all closed under intersections.

Definition
(i) The canonical closed causal preorder, the cc-preorder for short,
is defined as follows. Its graph ∆cc is the intersection of all graphs
of closed causal preorders. One denotes by J+

cc(A) and J−cc(A) the
future and past sets of A for the cc-preorder.
(ii) The piecewise smooth preorder, the ps-preorder for short, is
given by x �ps y if there exists a causal path c with c(0) = x and
c(1) = y . One denotes by ∆ps its graph and one denotes by J+

ps(A)
and J−ps(A) the future and past sets of A for the ps-preorder.
The cc-preorder and the ps-prorder are causal:

∆γ ⊂ ∆cc and ∆γ ⊂ ∆ps.
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Globally hyperbolic spacetimes
Let (M, g) be a Lorentzian spacetime and let (M, γ) be the
associated causal manifold.
(a) One has

∆γ ⊂ ∆ps ⊂ ∆γ ⊂ ∆cc.

(b) The preoreder ∆ps is a proper order if and only if the preorder
∆cc is a proper order and in this case, one has
∆γ = ∆ps = ∆cc.

One shall be aware that the inclusion ∆γ ⊂ ∆cc may be strict since
∆γ is not necessarily transitive, even in Lorentzian spacetimes.
We now extend the classical definition of global hyperbolicity of
Lorentzian spacetimes to general causal manifolds as follows:

Definition
A causal manifold (M, γ) is globally hyperbolic if ∆cc is a proper
order.
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Example

Let M = R2 \ {(1, 0)} and γ = M × (R>0)2. Then (M, γ) is a
causal manifold. One easily checks that

I+
γ ((0, 0)) = {(0, 0)} ∪ (R>0)2,

J+
ps((0, 0)) = (R≥0)2 \

(
[1,+∞)× {0}

)
,

J+
cc((0, 0)) = I+

γ ((0, 0)) = (R≥0)2 \ {(1, 0)}.

In particular, J+
ps((0, 0)) is neither closed nor open.
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Cauchy time functions and G-causal manifolds

The terminology G-causal below is not inspired by gravitation but
by the name of Geroch.

Definition
(a) A Cauchy time function on a causal manifold (M, γ) is a
submersive causal morphism q : (M, γ) −→ (R,+) which is proper
on the sets J+

cc(K ) and J−cc(K ) for any compact set K ⊂ M. (One
proves that is is enough to assume that q is proper on the sets
J+
cc(x) and J−cc(x) for any x ∈ M.)
(b) A G-causal manifold (M, γ, q) is the data of a causal manifold
(M, γ) together with a Cauchy time function q.
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• A Cauchy time function on a causal manifold (M, γ) is strictly
causal and is increasing as a function from (M,�cc) to (R,≤).
In particular, it has no strictly causal loops.

• A Cauchy time function is strictly increasing on strictly causal
paths.

• If a causal manifold admits a Cauchy time function, then its
cc-preorder is proper.

• Let q be a Cauchy time function on (M, γ) and let x ∈ M.
Then q(I+

γ (x)) = q(J+
cc(x)) = [q(x),+∞). In particular,

G-causal manifolds cannot be compact and Cauchy time
functions are surjective.
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Example
Let M = S1 × R and γ = TS1 × {(t; v) ∈ TR; v > 0}. The map
q : M −→ R, (x , t) 7→ t, is a Cauchy time function on (M, γ).
Denote by x a coordinate on S1 (hence, x + 2π = x). The path
[0, 2π] 3 s 7→ (s, 0) ∈ M is a causal loop.

Theorem
If a Lorentzian spacetime is globally hyperbolic, then it admits a
Cauchy time function.
This follows from the results of R. Geroch (1970) and
Minguzzi-Sánchez (2008). See also Fathi-Siconolfi (2011) for a
more general version.
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We denote by k a field and let X be a topological space.
A presheaf F on X associates to each open subset U ⊂ X a
k-module F (U), and to an open inclusion V ⊂ U, a linear map,
called the restriction map, ρVU : F (U) −→ F (V ), such that for each
open inclusions W ⊂ V ⊂ U, one has:

ρUU = idU , ρWU = ρWV ◦ ρVU .

A morphism of presheaves ϕ : F −→ G is the data for any open set
U of a linear map ϕ(U) : F (U) −→ G (U) such that for any open
inclusion V ⊂ U, the diagram below commutes:

F (U)
ϕ(U) //

��

G (U)

��
F (V )

ϕ(V ) // G (V )

For s ∈ F (U) one writes s|V instead of ρVU(s).
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A presheaf is a sheaf if it satisfies the condition

for any open subset U ⊂ X , any open covering U =
⋃

i Ui , any
family {si ∈ F (Ui ), i ∈ I} satisfying si |Uij = sj |Uij for all i , j ,
there exists a unique s ∈ F (U) with s|Ui = si for all i .

Example
(i) The presheaf C 0

X is a sheaf.
(ii) The presheaf kX of locally constant k-valued functions on X is
a sheaf, called the constant sheaf, and denoted kX .
(iii) Let M be a real manifold. We have the classical sheaves C∞X ,
DbX and on a complex manifold X , the sheaf OX of holomorphic
functions.
(iv) On a topological space X , the presheaf U 7→ C 0,b

X (U) of
continuous bounded functions is not a sheaf in general. To be
bounded is not a local property.
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(v) For a locally closed subset Z of M, we denote by kZ the
constant sheaf with stalk k on Z , extended by 0 on M \ Z .

The category of sheaves Mod(kX ) is an abelian categories and
admits a bounded derived category Db(kM). Essentialy, an object
of Db(kM) is a bounded complex of sheaves and a complex
quasi-isomorphic to zero (that is, an exact complex) is 0.

Example
The de Rham complex

0 −→ CM −→ Ω0
M

d−→ · · · −→ Ωn
M −→ 0

is exact. It is isomorphic to 0 in Db(kM). Equivalently, in Db(kM).
the sheaf CM is isomorphic to the complex

0 −→ Ω0
M

d−→ · · · −→ Ωn
M −→ 0.
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Microlocal theory

We shall recall some notions and results of [KS90].
Let M be a real manifold, πM : T ∗M −→ M its cotangent bundle.

Definition
Let F ∈ Db(kM). The singular support, or micro-support, SS(F ) is
the closed conic subset of T ∗M defined as follows. An open subset
W of T ∗M does not intersect SS(F ) if for any C 1-function
ϕ : M −→ R and any x0 ∈ M such that (x0; dϕ(x0)) ∈W , setting
U = {x ;ϕ(x) < ϕ(x0)}, one has for all j ∈ Z

lim−→
V3x0

H j(U ∪ V ;F ) ' H j(U;F ).

Therefore, if (x0; dϕ(x0)) /∈ SS(F ), then any cohomology class
defined on an open subset U as above extends through the
boundary in a neighborhood of x0.
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• The microsupport is closed and is R+-conic,
• SS(F ) ∩ T ∗MM = πM(SS(F )) = Supp(F ),

• if F1 −→ F2 −→ F3
+1−−→ is a distinguished triangle in Db(kM),

then SS(Fi ) ⊂ SS(Fj) ∪ SS(Fk) for all i , j , k ∈ {1, 2, 3} with
j 6= k .

• The microsupport is involutive (one also says, co-isotropic).
(No precise definition here.)
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Examples
(i) If F is a non-zero local system on M and M is connected, then
SS(F ) = T ∗MM, the zero-section.
(ii) If N is a closed submanifold of M and F = kN , then
SS(F ) = T ∗NM, the conormal bundle to N in M.
(iii) Let ϕ be a C 1-function with dϕ(x) 6= 0 for ϕ(x) = 0. Let
U = {x ∈ M;ϕ(x) > 0}, Z = {x ∈ M;ϕ(x) ≥ 0}. Then

SS(kU) = U ×M T ∗MM ∪ {(x ;λdϕ(x));ϕ(x) = 0, λ ≤ 0},
SS(kZ ) = Z ×M T ∗MM ∪ {(x ;λdϕ(x));ϕ(x) = 0, λ ≥ 0}.
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(iv) Assume M = V is a vector space and let γ be a cone with
vertex at 0. The dual cone γ◦ is a convex closed cone.

γ◦ = {(x ; ξ) ∈ E ∗; 〈ξ, v〉 ≥ 0 for all v ∈ γx}.

If γ is a closed convex cone, then

SS(kγ) ∩ π−1(0) = γ◦.

Note that, the smallest γ is, the biggest γ◦ is. (A variant of the
uncertaintly principle.)
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(v) Let (X ,OX ) be a complex manifold and let M be a coherent
module over the ring DX of holomorphic differential operators.
(Hence, M represents a system of linear partial differential
equations on X .) Denote by F = RHomDX

(M ,OX ) the complex
of holomorphic solutions of M . Then SS(F ) = char(M ), the
characteristic variety of M .

Theorem
Let Z ,U ⊂ M. Assume that Z is closed and U is open. Then
SS(kZ ) ⊂ N(Z )◦ and SS(kU) ⊂ N(U)◦a.
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Operations
Let f : M −→ N be a morphism of real manifolds. Denote by p1 and
p2 the projections from T ∗(M × N) to T ∗M and T ∗N and set
Λf = T ∗Γf

(M × N). Then Λf
∼−→ M ×N T ∗N by the map p1 × pa

2.

T ∗Γf
(M × N) = Λf

p1

ww

pa
2

''
∼
��

T ∗M M ×N T ∗N
fdoo fπ // T ∗N.

Theorem
Let F ∈ Db(kM) and let G ∈ Db(kN).

(i) Assume that f is proper on Supp(F ). Then
SS(Rf∗F ) ⊂ fπf −1

d SS(F ) = SS(F )
a◦Λf .

(ii) Assume that fd is proper on f −1
π SS(G ). Then

SS(f −1G ) ⊂ fd f −1
π SS(G ) = Λf

a◦ SS(G ).
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Theorem
Let F1,F2 ∈ Db(kM).

(i) Assume that SS(F1) ∩ SS(F2)a ⊂ T ∗MM. Then
SS(F1 ⊗F2) ⊂ SS(F1) + SS(F2).

(ii) Assume that SS(F1) ∩ SS(F2) ⊂ T ∗MM. Then
SS(RHom (F1,F2)) ⊂ SS(F1)a + SS(F2).
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Hyperbolicity for sheaves

Consider a vector bundle τ : E −→ M. It gives rise to the maps
T ∗E ←− E ×M T ∗M −→ T ∗M. By restricting to the zero-section of
E , we get the map T ∗M ↪→ T ∗E . Now assume that M is a closed
submanifold of a manifold X . Applying this construction to the
bundle T ∗MX above M, and using the Hamiltonian isomorphism we
get the maps

T ∗M ↪→ T ∗T ∗MX ' TT∗
MXT ∗X .

Theorem
Let F ∈ Db(kX ). Then

SS(RΓMF ) ⊂ T ∗M ∩ CT∗
MX (SS(F )),

SS(F |M) ⊂ T ∗M ∩ CT∗
MX (SS(F )).
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Direct images for Causal manifolds

Notation
Here, for a causal manifold (M, γ) we set

λ := γ◦.

Note that λ is a closed convex proper cone of T ∗M, λ ⊃ T ∗MM and
γ = Int(λ◦).

Let (M, γ) be a causal manifold and � a closed causal preorder on
M. Let Z ,U ⊂ M with U open and Z closed.
• Assume U = J+

� (U). Then SS(kU) ⊂ λa.

• Assume that Z = J−� (Z ). Then SS(kZ ) ⊂ λa.
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By using the theorem on the microsupport for proper direct images,
one proves:

Theorem
Let f : (M, γM) −→ (N, γN) be a morphism of causal manifolds, let
� be a closed causal preorder on M and let F ∈ Db(kM). Assume
that
(a) f : M −→ N is submersive,
(b) for any compact K ⊂ M, the map f is proper on the closed set

J−� (K ),
(c) SS(F ) ∩ λM ⊂ T ∗MM.
Then SS(Rf∗F ) ∩ Int(λN) = ∅.
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Theorem
Let (M, γ, q) be a G-causal manifold and let F ∈ Db(kM).

(i) Assume that SS(F ) ∩ λa ⊂ T ∗MM and let B be a closed
subset satisfying B = J−� (B) and B ⊂ q−1((−∞, a]) for some
a ∈ R. Then

RΓB(M;F ) ' 0.

(ii) Assume that SS(F ) ∩ (λ ∪ λa) ⊂ T ∗MM. Then, setting
M0 = q−1(0), the natural restriction morphism below is an
isomorphism:

RΓ(M;F ) ∼−→ RΓ(M0;F |M0).
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Characteristic variety
Let (X ,OX ) be a complex manifold and let DX be the sheaf of
rings of holomorphic (finite order) differential operators.
A left coherent DX -module M may be locally represented as the
cokernel of a matrix ·P0 of differential operators acting on the right:

M ' DN0
X /DN1

X · P0.

By classical arguments, M is locally isomorphic to the cohomology
of a bounded complex

M
•

:= 0 −→ DNr
X −→ · · · −→ DN1

X
·P0−−→ DN0

X −→ 0.

For a coherent DX -module M , one sets for short

Sol(M ) := RHomDX
(M ,OX ) 'HomDX

(M
•
,OX )

' 0 −→ ON0
X

P0·−−→ ON1
X −→ · · ·ONr

X −→ 0.
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One denotes by char(M ) the characteristic variety of M . If
M = DX/I for a locally finitely generated left ideal of DX , then

char(M ) = {(z ; ζ) ∈ T ∗X ;σ(P)(z ; ζ) = 0 for all P ∈ I },

where σ(P) denotes the principal symbol of P .

Theorem
Let M be a coherent DX -module. Then char(M ) is a closed conic
complex analytic involutive (i.e., co-isotropic) subset of T ∗X.
Moreover,

char(M ) = SS(Sol(M )).

The involutivity result was first proved by Sato-Kashiwara-Kawai in
1973 using differential operators of infinite order. Then Gabber
(1981) gave a purely algebraic proof. The last formula due
to [KS90] gives another totally different proof of the involutivity.
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Cauchy problem

Let Y be a complex submanifold of the complex manifold X . One
says that Y is non-characteristic for M if

char(M ) ∩ T ∗YX ⊂ T ∗XX .

With this hypothesis, the induced system MY by M on Y is a
coherent DY -module and one has the
Cauchy–Kowalesky–Kashiwara theorem(1970):

Theorem
Assume Y is non-characteristic for M . Then MY is a coherent
DY -module and the morphism

RHomDX
(M ,OX )|Y −→ RHomDY

(MY ,OY ).

is an isomorphism.

38 / 45



References Causal manifolds Causal preorders G-causal manifolds Sheaves Propagation D-modules Examples

Hyperbolic systems

Let M be a real analytic manifold and let X be a complexification
of M. Recall the natural maps

T ∗M ↪→ T ∗T ∗MX ' TT∗
MXT ∗X .

For a coherent left DX -module M , we set

hypcharM(M ) = T ∗M ∩ CT∗
MX (char(M )).

A vector θ ∈ T ∗M \ hypcharM(M ) is called hyperbolic for M .
A submanifold N of M is called hyperbolic for M if
T ∗NM ∩ hypcharM(M ) ⊂ T ∗MM.
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Assume we have the local coordinate system (x +
√
−1y) on X ,

(x +
√
−1y ; ξ +

√
−1η) on T ∗X and let M = {y = 0} so that

T ∗MX = {y = ξ = 0}.
Let (x0; θ0) ∈ T ∗M with θ0 6= 0. Let P ∈ DX . We find that
(x0; θ0) is hyperbolic for P (that is, for DX/DX · P) if and only if

there exist an open neighborhood U of x0 in M and
an open conic neighborhood γ of θ0 ∈ Rn such that
σ(P)(x ; θ+

√
−1η) 6= 0 for all η ∈ Rn, x ∈ U, θ ∈ γ.

By he local Bochner’s tube theorem that this is equivalent to{there exist an open neighborhood U of x0 in M such
that σ(P)(x ; θ0 +

√
−1η) 6= 0 for all η ∈ Rn, and

x ∈ U.

One recovers the classical notion of a (weakly) hyperbolic operator.
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Now, consider the sheaves

AM = OX |M , BM = Hn
M(OX )⊗ orM ' RΓM(OX )⊗ orM [n].

Here, orM is the orientation sheaf on M and n = dimM. The sheaf
AM is the sheaf of (complex valued) real analytic functions on M
and the sheaf BM is the sheaf of Sato’s hyperfunctions on M.
Applying the theorem which gives a bound to the microsupport of
RΓMF and F |M , we get:

Theorem (see KS90)
Let M be a coherent DX -module. Then

SS(RHomDX
(M ,BM)) ⊂ hypcharM(M ),

SS(RHomDX
(M ,AM)) ⊂ hypcharM(M ).

In other words, hyperfunction (as well as real analytic) solutions of
the system M propagate in the hyperbolic directions.
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The following result is easily deduced from the preceding one.

Theorem
Let M be a real analytic manifold, X a complexification of M, M a
coherent DX -module. Let N ↪→ M be a real analytic smooth closed
submanifold of M and Y ↪→ X is a complexification of N in X . We
assume

T ∗NM ∩ hypcharM(M ) ⊂ T ∗MM,

that is, N is hyperbolic for M . Then Y is non-characteristic for M
in a neighborhood of N and we have the isomorphism

RHomDX
(M ,BM)|N ∼−→ RHomDY

(MY ,BN).

In other words, the Cauchy problem in a neighborhood of N for
hyperfunctions on M is well-posed for hyperbolic systems.
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Theorem
Let (M, γ, q) be a G-causal manifold and assume that M is real
analytic. Let M be a coherent DX -module satisfying
hypchar(M ) ∩ λ ⊂ T ∗MM.
(a) Let A be a closed subset satisfying either A = J+

cc(A) and
A ⊂ q−1([a,+∞)) or A = J−cc(A) and A ⊂ q−1((−∞, a]) for
some a ∈ R. Then RHomDX

(M , ΓABM) ' 0. In particular,
hyperfunction solutions of the system M defined on M \ A
extend uniquely to the whole of M as hyperfunction solutions
of the system.

(b) Let N = q−1(0) and assume that N is real analytic. Let Y be
a complexification of N in X . Then we have the isomorphism

RHomDX
(M ,BM) −→ RHomDY

(MY ,BN).

In other words, the Cauchy problem for hyperfunctions with
initial data on N is globally well-posed.
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Examples

Let N be a real analytic manifold, M = N×R. We denote by (t;w)
the coordinates on TR and by (t; τ) the coordinates on T ∗R.
Let P = ∂2

t − R be a differential operator of order 2 such that R
does not depend on ∂t and σ2(R)|T∗

MX ≤ 0. We assume

there exist a smooth function f : R −→ R>0 and a smooth com-
plete Riemannian metric g on N such that σ2(R)(x , t; ξ) ≤
f (t)|ξ|2gx .

Note that this condition is automatically satisfied if N is compact.
We set

γ = {(x , t; v ,w) ∈ TM;w > 1/(2f (t))|v |g},
γ◦ = {(x , t; ξ, τ) ∈ T ∗M; τ ≥ 2f (t)|ξ|g}.
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Then
• hypchar(P) ∩ γ◦ ⊂ T ∗MM,
• γ is the future cone of the Lorentzian spacetime

(M, dt2 − (1/2f (t))g), which is globally hyperbolic.
• (M, γ, q) is a G-causal manifold,
• the Cauchy problem for hyperfunctions (and for real analytic
functions) is globally well-posed.

As a particular case, if (gt)t∈R is an analytic family of complete
Riemannian metrics on N and (∆t)t∈R are the associated
Laplace–Beltrami operators, then the operator P = ∂2

t −∆t is such
an example.
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