Sheaves and D-modules on Lorentzian manifolds

Pierre Schapira joint work with Benoit Jubin

Université Pierre et Marie Curie Paris, France

UBU, February 2016

イロト イロト イヨト イヨト

э

1/45

1rst course. Causal manifolds.

- 1.1 Basic geometrical notions
- 1.2 Causal manifolds
- 1.3 $\gamma\text{-sets}$ and $\gamma\text{-topology}$
- 1.4 Causal paths
- 1.5 Causal preorders
- 1.6 Cauchy time functions and G-causal manifolds

2nd course. Sheaves on causal manifolds.

- 2.1 Sheaves
- 2.2 Micro-support
- 2.3 Propagation and Cauchy problem
- 2.4 Sheaves on G-causal manifolds

3rd course. Hyperbolic systems on causal manifolds.

- 3.1 The Cauchy problem for D-modules
- 3.2 Review on hyperbolic systems
- 3.3 Hyperbolic systems on causal manifolds
- 3.4 Examples

- [BGP07] Christian Bär, Nicolas Ginoux, and Frank Pfäffle, *Wave equations on Lorentzian manifolds and quantization*, ESI Lectures in Mathematics and Physics, EMS, 2007.
 - [BS05] Antonio N. Bernal and Miguel Sánchez, Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes, Comm. Math. Phys. 257 (2005), no. 1, 43–50.
 - [FS11] Albert Fathi and Antonio Siconolfi, On smooth time functions, Mathematical Proceedings, CUP (2011), available at hal-00660452.
 - [Ger70] Robert Geroch, *Domain of dependence*, J. Mathematical Phys. **11** (1970), 437–449.
 - [HE73] Stephen W. Hawking and George F. R. Ellis, *The large scale structure of space-time*, Cambridge University Press, London-New York, 1973. Cambridge Monographs on Mathematical Physics, No. 1.
 - [JS15] Benoit Jubin and Pierre Schapira, Sheaves and D-modules on Lorentzian manifolds (2015), available at arXiv:1510.0149.
 - [KS90] Masaki Kashiwara and Pierre Schapira, *Sheaves on manifolds*, Grundlehren, Springer, vol. 292, 1990.
 - [MS08] Ettore Minguzzi and Miguel Sánchez, The causal hierarchy of spacetimes, Recent developments in pseudo-Riemannian geometry, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2008, pp. 299–358.

Normal cones

A manifold means a real C^{∞} -manifold and a morphism of manifolds $f: M \to N$ is a map of class C^{∞} . For any subset A, we denote by \overline{A} its closure, by Int(A) its interior and we set $\partial A = \overline{A} \setminus Int(A)$.

Let A, B be two subsets of M. The Whitney cone C(A, B) is a closed conic subset of TM. In a chart, it is described as follows.

$$\begin{cases} v \in C_{x_0}(A, B) \subset T_{x_0}M \\ \text{if and only if} \\ \text{there exists a sequence } \{(x_n, y_n, \lambda_n)\}_n \subset A \times B \times \mathbb{R}_{>0} \\ \text{such that} \\ x_n \xrightarrow{n} x_0, y_n \xrightarrow{n} x_0, \lambda_n(x_n - y_n) \xrightarrow{n} v. \end{cases}$$

For N a smooth submanifold of M, one denotes by $C_N(A)$ the image of $N \times_M C(A, N)$ in $T_N M = (N \times_M TM)/TN$.

Let A be a subset of M. The strict normal cone of A is is an open convex cone of TM defined by

$$N(A) = TM \setminus C(M \setminus A, A).$$

In a local chart of M,

 $(x, v) \in N(A) \Leftrightarrow \begin{cases} \text{there exists an open cone } \gamma_0 \text{ with } v \in \gamma_0 \\ \text{and an open neighborhood } U \text{ of } x \text{ such that} \\ U \cap (U \cap A + \gamma_0) \subset A. \end{cases}$

Preorders

We denote by Δ_M , or simply Δ , the diagonal of $M \times M$. Let M_i (i = 1, 2, 3) be manifolds. For short, we write $M_{ij} := M_i \times M_j$ $(1 \le i, j \le 3)$ and $M_{123} = M_1 \times M_2 \times M_3$. We denote by q_i the projection $M_{ij} \rightarrow M_i$ or the projection $M_{123} \rightarrow M_i$ and by q_{ij} the projection $M_{123} \rightarrow M_{ij}$. For $A_1 \subset M_{12}$ and $A_2 \subset M_{23}$, one sets

$$A_1 \mathop{\circ}_2 A_2 = q_{13}(q_{12}^{-1}A_1 \cap q_{23}^{-1}A_2).$$

Consider a preorder \leq on a manifold *M* and its graph $\Delta_{\prec} \subset M \times M$. Then

$$\begin{split} &\Delta\subset\Delta_{\preceq}\,,\\ &\Delta_{\preceq}\circ\Delta_{\preceq}=\Delta_{\preceq}\,. \end{split}$$

For a subset $A \subset M$, one sets

$$\begin{cases} J_{\preceq}^{-}(A) = q_1(q_2^{-1}(A) \cap \Delta_{\preceq}) = \{ x \in M; \exists y \in A \text{ with } x \preceq y \}, \\ J_{\preceq}^{+}(A) = q_2(q_1^{-1}(A) \cap \Delta_{\preceq}) = \{ x \in M; \exists y \in A \text{ with } y \preceq x \}. \end{cases}$$

For $x \in M$, we write $J^+_{\leq}(x)$ and $J^-_{\leq}(x)$ instead of $J^+_{\leq}(\{x\})$ and $J^-_{\leq}(\{x\})$ respectively. One calls $J^-_{\leq}(A)$ (resp. $J^+_{\leq}(A)$) the past (resp. future) of A for the preorder \leq .

Let \leq be a preorder on *M*. The next results are obvious:

- $J_{\leq}^{-}(A) = \bigcup_{x \in A} J_{\leq}^{-}(x)$, and similarly with $J_{\leq}^{+}(A)$,
- $A \subset J_{\preceq}^{-}(A)$, $J_{\preceq}^{-}(J_{\preceq}^{-}(A)) = J_{\preceq}^{-}(A)$ and similarly with $J_{\preceq}^{+}(A)$,
- $A = J_{\preceq}^+(A) \Leftrightarrow M \setminus A = J_{\preceq}^-(M \setminus A).$

Definition

- (a) The preorder is *closed* if Δ_{\preceq} is closed in $M \times M$.
- (b) The preorder is *proper* if q_{13} is proper on $\Delta_{\preceq} \times_M \Delta_{\preceq}$. Equivalently, for any two compact subsets A and B of M, the so-called *causal diamond* $J^+_{\prec}(A) \cap J^-_{\prec}(B)$ is compact.
 - If ≤ is closed and A is a compact subset of M, then J⁻_≤(A) and J⁺_≤(A) are closed.
 - If \leq is proper, then it is closed.

Definition

- (a) A causal manifold (M, γ) is a manifold M equipped with an open convex cone $\gamma \subset TM$ such that $\gamma_x \neq \emptyset$ for all $x \in M$.
- (b) A morphism of causal manifolds $f: (M, \gamma_M) \to (N, \gamma_N)$ is a morphism of manifolds such that $Tf(\overline{\gamma_M}) \subset \overline{\gamma_N}$.
- (c) A morphism of causal manifolds f is *strict* if $Tf(\gamma_M) \subset \gamma_N$.

Causal manifolds and their causal (resp. strictly causal) morphisms form a category.

For U a open subset of M, $(U, \gamma|_U)$ is a causal manifold and the embedding $U \hookrightarrow M$ induces a morphism of causal manifolds.

Notation

For an open interval I of \mathbb{R} (which we will implicitly assume to contain [0, 1]) we simply denote by (I, +) the causal manifold $(I, I \times \mathbb{R}_{>0})$.

Example: Lorentzian manifolds

A Lorentzian manifold (M, g) is a connected C^{∞} -manifold M with a C^{∞} nondegenerate bilinear form g on M of signature $(+, -, \ldots, -)$. Let

$$g_{>0} = \{(x; v) \in TM; g_x(v, v) > 0\}.$$

Then $g_{>0}$ has at most two connected components. The Lorentzian manifold (M, g) is *time-orientable* if the cone $g_{>0}$ has two connected components. It is *time-oriented* if furthermore one connected component has been chosen. In this case, it defines a causal manifold denoted by (M, γ_g) , or simply (M, γ) .

Definition

A *Lorentzian spacetime* is a connected time-oriented Lorentzian manifold.

In our study, we shall simply ask that γ is an open convex cone, non empty at each $x \in M$. We don't ask any regularity on γ .

$\gamma\text{-sets}$ and $\gamma\text{-topology}$

Let (M, γ) be a causal manifold.

(i) A constant cone in γ is a triple (φ, U, θ) where $\varphi: U \to \mathbb{R}^d$ is a chart and $\theta \subset \mathbb{R}^d$ is an open convex cone, such that in this chart, $U \times \theta \subset \gamma$ (that is, $\varphi(U) \times \theta \subset T\varphi(\gamma|_U)$). A constant cone (φ, U, θ) will often be denoted simply by $U \times \theta$.

(ii) A *basis of constant cones* contained in γ is a family of constant cones whose union is γ .

(iii) A subset $A \subset M$ is a γ -set if $\gamma \subset N(A)$. Equivalently, there exists a basis of constant cones $U \times \theta$ contained in γ such that $U \cap (U \cap A + \theta) \subset A$.

- The family of γ -sets is closed under arbitrary unions and intersections and under taking closure and interior.
- If A is a γ -set, then $\overline{\text{Int}A} = \overline{A}$ and $\text{Int}\overline{A} = \text{Int}A$.
- If A is a γ -set and $\operatorname{Int} A \subset B \subset \overline{A}$, then B is a γ -set.

The preceding results allows us to generalize the notion of γ -topology of [KS90] in which M was affine and the cone was constant.

Definition

Let (M, γ) be a causal manifold. The γ -topology on M is the topology for which the open sets are the open sets of M which are γ -sets.

A subset $A \subset M$ is called γ -open if it is open for the γ -topology. In other words, if it is open in the usual topology and is a γ -set. **Remark**

A set which is closed for the $\gamma\text{-topology}$ is not in general a $\gamma\text{-set,}$ but is a $\gamma^a\text{-set.}$

The chronological preorder

Definition

For $A \subset M$, we denote by $I_{\gamma}^+(A)$ the intersection of all the γ -sets which contain A and call it the *chronological future* of A.

Note that a set A is a γ -set if and only if $I_{\gamma}^+(A) = A$. One easily checks that

The relation $y \in I_{\gamma}^+(\{x\})$ is a preorder.

Definition

We denote by \leq_{γ} the preorder given by $x \leq_{\gamma} y$ if $y \in I_{\gamma}^{+}(x)$ and we denote by Δ_{γ} its graph. Hence, $I_{\gamma}^{+}(x) = J_{\leq_{\gamma}}^{+}(x)$ and $\Delta_{\gamma} = \Delta_{\leq_{\gamma}}$. We call \leq_{γ} the *chronological preorder*.

On (*I*, +) the chronological preorder \leq_{γ} is the usual order \leq .

Causal paths

Definition

A path $c: I \to M$ is a piecewise smooth map. A path c is *causal* if $c'_{l}(t), c'_{r}(t) \in (\overline{\gamma})_{c(t)}$ for any $t \in I$ and it is *strictly causal* if $c'_{l}(t), c'_{r}(t) \in \gamma_{c(t)}$ for any $t \in I$.

- if c_1 and c_2 are two (strictly) causal paths with $c_1(1) = c_2(0)$, the concatenation $c = c_1 \cup c_2$ is (strictly) causal.
- Let f: (M, γ_M) → (N, γ_N) be a morphism of causal manifolds and let c: I → M be a causal path. Then f ∘ c: I → N is a causal path and similarly with strictly causal.
- The piecewise smooth preorder, ps-preorder for short, is defined by $x \leq_{ps} y$ if there is a causal path c with c(0) = x, c(1) = y.

Causal preorders

Let (M, γ) be a causal manifold and let \leq be a preorder on M. The following assertions are equivalent:

(i) One has
$$\Delta_{\gamma} \subset \Delta_{\preceq}$$
.
(ii) Δ_{\preceq} is a $(\gamma^a \times \gamma)$ -set,
(iii) For any $x \in M$, $J_{\preceq}^+(x)$ is a γ -set.
(iv) For any $y \in M$, $J_{\preceq}^-(y)$ is a γ^a -set.
(v) For any $x \in M$, $I_{\gamma}^+(x) \subset J_{\preceq}^+(x)$.

Definition

A preorder \leq is *causal* if the equivalent conditions above are satisfied.

The cc and the ps preorders

Graphs of transitive relations, closed sets, and γ -sets in a causal manifold, are all closed under intersections.

Definition

(i) The canonical closed causal preorder, the cc-preorder for short, is defined as follows. Its graph Δ_{cc} is the intersection of all graphs of closed causal preorders. One denotes by $J_{cc}^+(A)$ and $J_{cc}^-(A)$ the future and past sets of A for the cc-preorder.

(ii) The piecewise smooth preorder, the ps-preorder for short, is given by $x \leq_{ps} y$ if there exists a causal path c with c(0) = x and c(1) = y. One denotes by Δ_{ps} its graph and one denotes by $J_{ps}^+(A)$ and $J_{ps}^-(A)$ the future and past sets of A for the ps-preorder.

The cc-preorder and the ps-prorder are causal:

$$\Delta_{\gamma} \subset \Delta_{cc} \text{ and } \Delta_{\gamma} \subset \Delta_{ps}.$$

Globally hyperbolic spacetimes

Let (M, g) be a Lorentzian spacetime and let (M, γ) be the associated causal manifold.

(a) One has

$$\Delta_\gamma \subset \Delta_{\mathrm{ps}} \subset \overline{\Delta_\gamma} \subset \Delta_{\mathrm{cc}}.$$

(b) The preoreder $\Delta_{\rm ps}$ is a proper order if and only if the preorder $\frac{\Delta_{\rm cc}}{\Delta_{\gamma}}$ is a proper order and in this case, one has $\overline{\Delta_{\gamma}} = \Delta_{\rm ps} = \Delta_{\rm cc}.$

One shall be aware that the inclusion $\overline{\Delta_{\gamma}} \subset \Delta_{cc}$ may be strict since $\overline{\Delta_{\gamma}}$ is not necessarily transitive, even in Lorentzian spacetimes. We now extend the classical definition of global hyperbolicity of Lorentzian spacetimes to general causal manifolds as follows:

Definition

A causal manifold (M, γ) is globally hyperbolic if Δ_{cc} is a proper order.

Example

Let $M = \mathbb{R}^2 \setminus \{(1,0)\}$ and $\gamma = M \times (\mathbb{R}_{>0})^2$. Then (M,γ) is a causal manifold. One easily checks that

$$egin{aligned} & I_\gamma^+((0,0)) = \{(0,0)\} \cup (\mathbb{R}_{>0})^2, \ & J_{
m ps}^+((0,0)) = (\mathbb{R}_{\geq 0})^2 \setminus ig([1,+\infty) imes \{0\}ig), \ & J_{
m cc}^+((0,0)) = \overline{I_\gamma^+((0,0))} = (\mathbb{R}_{\geq 0})^2 \setminus \{(1,0)\}. \end{aligned}$$

In particular, $J_{ps}^+((0,0))$ is neither closed nor open.

Cauchy time functions and G-causal manifolds

The terminology G-causal below is not inspired by gravitation but by the name of Geroch.

Definition

(a) A Cauchy time function on a causal manifold (M, γ) is a submersive causal morphism $q: (M, \gamma) \to (\mathbb{R}, +)$ which is proper on the sets $J_{cc}^+(K)$ and $J_{cc}^-(K)$ for any compact set $K \subset M$. (One proves that is is enough to assume that q is proper on the sets $J_{cc}^+(x)$ and $J_{cc}^-(x)$ for any $x \in M$.)

(b) A *G*-causal manifold (M, γ, q) is the data of a causal manifold (M, γ) together with a Cauchy time function q.

- A Cauchy time function on a causal manifold (M, γ) is strictly causal and is increasing as a function from (M, ≤_{cc}) to (ℝ, ≤). In particular, it has no strictly causal loops.
- A Cauchy time function is strictly increasing on strictly causal paths.
- If a causal manifold admits a Cauchy time function, then its cc-preorder is proper.
- Let q be a Cauchy time function on (M, γ) and let x ∈ M. Then q(l⁺_γ(x)) = q(J⁺_{cc}(x)) = [q(x), +∞). In particular, G-causal manifolds cannot be compact and Cauchy time functions are surjective.

Example

Let $M = \mathbb{S}^1 \times \mathbb{R}$ and $\gamma = T\mathbb{S}^1 \times \{(t; v) \in T\mathbb{R}; v > 0\}$. The map $q: M \to \mathbb{R}, (x, t) \mapsto t$, is a Cauchy time function on (M, γ) . Denote by x a coordinate on \mathbb{S}^1 (hence, $x + 2\pi = x$). The path $[0, 2\pi] \ni s \mapsto (s, 0) \in M$ is a causal loop.

Theorem

If a Lorentzian spacetime is globally hyperbolic, then it admits a Cauchy time function.

This follows from the results of R. Geroch (1970) and Minguzzi-Sánchez (2008). See also Fathi-Siconolfi (2011) for a more general version.

We denote by **k** a field and let X be a topological space. A presheaf F on X associates to each open subset $U \subset X$ a **k**-module F(U), and to an open inclusion $V \subset U$, a linear map, called the restriction map, ρ_{VU} : $F(U) \rightarrow F(V)$, such that for each open inclusions $W \subset V \subset U$, one has:

$$\rho_{UU} = \operatorname{id}_U, \qquad \rho_{WU} = \rho_{WV} \circ \rho_{VU}.$$

A morphism of presheaves $\varphi \colon F \to G$ is the data for any open set U of a linear map $\varphi(U) \colon F(U) \to G(U)$ such that for any open inclusion $V \subset U$, the diagram below commutes:

For $s \in F(U)$ one writes $s|_V$ instead of $\rho_{VU}(s)$.

22 / 45

A presheaf is a sheaf if it satisfies the condition

for any open subset $U \subset X$, any open covering $U = \bigcup_i U_i$, any family $\{s_i \in F(U_i), i \in I\}$ satisfying $s_i|_{U_{ij}} = s_j|_{U_{ij}}$ for all i, j, there exists a unique $s \in F(U)$ with $s|_{U_i} = s_i$ for all i.

Example

(i) The presheaf \mathscr{C}^0_X is a sheaf.

(ii) The presheaf \mathbf{k}_X of locally constant k-valued functions on X is a sheaf, called the constant sheaf, and denoted \mathbf{k}_X .

(iii) Let M be a real manifold. We have the classical sheaves \mathscr{C}_X^{∞} , $\mathscr{D}b_X$ and on a complex manifold X, the sheaf \mathscr{O}_X of holomorphic functions.

(iv) On a topological space X, the presheaf $U \mapsto \mathscr{C}^{0,b}_X(U)$ of continuous bounded functions is not a sheaf in general. To be bounded is not a local property.

(v) For a locally closed subset Z of M, we denote by \mathbf{k}_Z the constant sheaf with stalk \mathbf{k} on Z, extended by 0 on $M \setminus Z$.

The category of sheaves $Mod(\mathbf{k}_X)$ is an abelian categories and admits a bounded derived category $D^b(\mathbf{k}_M)$. Essentialy, an object of $D^b(\mathbf{k}_M)$ is a bounded complex of sheaves and a complex quasi-isomorphic to zero (that is, an exact complex) is 0.

Example

The de Rham complex

$$0 \to \mathbb{C}_M \to \Omega^0_M \xrightarrow{d} \cdots \to \Omega^n_M \to 0$$

is exact. It is isomorphic to 0 in $D^{b}(\mathbf{k}_{M})$. Equivalently, in $D^{b}(\mathbf{k}_{M})$. the sheaf \mathbb{C}_{M} is isomorphic to the complex

$$0\to \Omega^0_M\xrightarrow{d}\cdots\to \Omega^n_M\to 0.$$

Microlocal theory

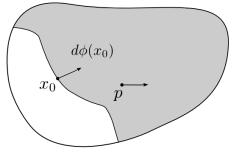
We shall recall some notions and results of [KS90]. Let M be a real manifold, $\pi_M \colon T^*M \to M$ its cotangent bundle.

Definition

Let $F \in D^{b}(\mathbf{k}_{M})$. The singular support, or micro-support, SS(F) is the closed conic subset of $T^{*}M$ defined as follows. An open subset W of $T^{*}M$ does not intersect SS(F) if for any C^{1} -function $\varphi \colon M \to \mathbb{R}$ and any $x_{0} \in M$ such that $(x_{0}; d\varphi(x_{0})) \in W$, setting $U = \{x; \varphi(x) < \varphi(x_{0})\}$, one has for all $j \in \mathbb{Z}$

$$\lim_{V\ni x_0} H^j(U\cup V;F)\simeq H^j(U;F).$$

Therefore, if $(x_0; d\varphi(x_0)) \notin SS(F)$, then any cohomology class defined on an open subset U as above extends through the boundary in a neighborhood of x_0 .



- The microsupport is closed and is \mathbb{R}^+ -conic,
- $SS(F) \cap T^*_M M = \pi_M(SS(F)) = Supp(F)$,
- if $F_1 \to F_2 \to F_3 \xrightarrow{+1}$ is a distinguished triangle in $D^{b}(\mathbf{k}_M)$, then $SS(F_i) \subset SS(F_j) \cup SS(F_k)$ for all $i, j, k \in \{1, 2, 3\}$ with $j \neq k$.
- The microsupport is involutive (one also says, co-isotropic). (No precise definition here.)

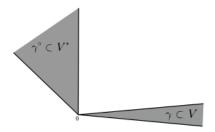
Examples

(i) If F is a non-zero local system on M and M is connected, then $SS(F) = T_M^* M$, the zero-section. (ii) If N is a closed submanifold of M and $F = \mathbf{k}_N$, then $SS(F) = T_N^*M$, the conormal bundle to N in M. (iii) Let φ be a C^1 -function with $d\varphi(x) \neq 0$ for $\varphi(x) = 0$. Let $U = \{x \in M; \varphi(x) > 0\}, Z = \{x \in M; \varphi(x) > 0\}.$ Then $SS(\mathbf{k}_{U}) = U \times_{M} T_{M}^{*} M \cup \{(x; \lambda d\varphi(x)); \varphi(x) = 0, \lambda \leq 0\},\$ $SS(\mathbf{k}_Z) = Z \times_M T^*_M M \cup \{(x; \lambda d\varphi(x)); \varphi(x) = 0, \lambda \ge 0\}.$ $k_{[0,1]}$ 0 1 0

> ≣ ৩৭.ে 27 / 45

(iv) Assume M = V is a vector space and let γ be a cone with vertex at 0. The dual cone γ° is a convex closed cone.

$$\gamma^{\circ} = \{ (x; \xi) \in E^*; \langle \xi, \nu \rangle \ge 0 \text{ for all } \nu \in \gamma_x \}.$$



If γ is a closed convex cone, then

$$\mathsf{SS}(\mathsf{k}_{\gamma}) \cap \pi^{-1}(0) = \gamma^{\circ}.$$

Note that, the smallest γ is, the biggest γ° is. (A variant of the uncertaintly principle.)

28 / 45

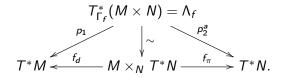
(v) Let (X, \mathcal{O}_X) be a complex manifold and let \mathscr{M} be a coherent module over the ring \mathscr{D}_X of holomorphic differential operators. (Hence, \mathscr{M} represents a system of linear partial differential equations on X.) Denote by $F = \operatorname{R}\mathscr{H}om_{\mathscr{D}_X}(\mathscr{M}, \mathscr{O}_X)$ the complex of holomorphic solutions of \mathscr{M} . Then $\operatorname{SS}(F) = \operatorname{char}(\mathscr{M})$, the characteristic variety of \mathscr{M} .

Theorem

Let $Z, U \subset M$. Assume that Z is closed and U is open. Then $SS(k_Z) \subset N(Z)^{\circ}$ and $SS(k_U) \subset N(U)^{\circ a}$.

Operations

Let $f: M \to N$ be a morphism of real manifolds. Denote by p_1 and p_2 the projections from $T^*(M \times N)$ to T^*M and T^*N and set $\Lambda_f = T^*_{\Gamma_f}(M \times N)$. Then $\Lambda_f \xrightarrow{\sim} M \times_N T^*N$ by the map $p_1 \times p_2^a$.



Theorem

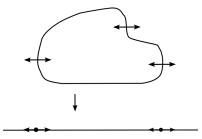
Let $F \in D^{\mathrm{b}}(\mathsf{k}_M)$ and let $G \in D^{\mathrm{b}}(\mathsf{k}_N)$.

(i) Assume that f is proper on Supp(F). Then SS(Rf_*F) $\subset f_{\pi}f_d^{-1}$ SS(F) = SS(F) $\stackrel{a}{\circ} \Lambda_f$.

(ii) Assume that
$$f_d$$
 is proper on $f_{\pi}^{-1}SS(G)$. Then
 $SS(f^{-1}G) \subset f_d f_{\pi}^{-1}SS(G) = \Lambda_f \overset{a}{\circ}SS(G)$.

イロト 不得 とくき とくき とうき

References Causal manifolds Causal preorders G-causal manifolds Sheaves Propagation D-modules Examples



Theorem

Let $F_1, F_2 \in D^{\mathrm{b}}(\mathbf{k}_M)$.

- (i) Assume that $SS(F_1) \cap SS(F_2)^a \subset T^*_M M$. Then $SS(F_1 \otimes F_2) \subset SS(F_1) + SS(F_2)$.
- (ii) Assume that $SS(F_1) \cap SS(F_2) \subset T^*_M M$. Then $SS(\mathbb{R}\mathscr{H}om(F_1, F_2)) \subset SS(F_1)^a + SS(F_2)$.

Hyperbolicity for sheaves

Consider a vector bundle $\tau: E \to M$. It gives rise to the maps $T^*E \leftarrow E \times_M T^*M \to T^*M$. By restricting to the zero-section of E, we get the map $T^*M \hookrightarrow T^*E$. Now assume that M is a closed submanifold of a manifold X. Applying this construction to the bundle $T^*_M X$ above M, and using the Hamiltonian isomorphism we get the maps

$$T^*M \hookrightarrow T^*T^*_MX \simeq T_{T^*_MX}T^*X.$$

Theorem Let $F \in D^{b}(\mathbf{k}_{X})$. Then

$$SS(R\Gamma_M F) \subset T^*M \cap C_{T^*_M X}(SS(F)),$$

$$SS(F|_M) \subset T^*M \cap C_{T^*_M X}(SS(F)).$$

Direct images for Causal manifolds

Notation

Here, for a causal manifold (M, γ) we set

$$\lambda := \gamma^{\circ}.$$

Note that λ is a closed convex proper cone of T^*M , $\lambda \supset T^*_MM$ and $\gamma = \text{Int}(\lambda^\circ)$.

Let (M, γ) be a causal manifold and \leq a closed causal preorder on M. Let $Z, U \subset M$ with U open and Z closed.

- Assume $U = J_{\prec}^+(U)$. Then $SS(\mathbf{k}_U) \subset \lambda^a$.
- Assume that $Z = J_{\preceq}^{-}(Z)$. Then $SS(\mathbf{k}_{Z}) \subset \lambda^{a}$.

By using the theorem on the microsupport for proper direct images, one proves:

Theorem

Let $f: (M, \gamma_M) \to (N, \gamma_N)$ be a morphism of causal manifolds, let \leq be a closed causal preorder on M and let $F \in D^{\mathrm{b}}(\mathbf{k}_M)$. Assume that

(a) $f: M \rightarrow N$ is submersive,

(b) for any compact $K \subset M$, the map f is proper on the closed set $J_{\prec}^{-}(K)$,

(c) $SS(F) \cap \lambda_M \subset T^*_M M$.

Then $SS(Rf_*F) \cap Int(\lambda_N) = \emptyset$.

Theorem

Let (M, γ, q) be a G-causal manifold and let $F \in D^{\mathrm{b}}(\mathbf{k}_M)$.

(i) Assume that SS(F) ∩ λ^a ⊂ T^{*}_MM and let B be a closed subset satisfying B = J⁻_≤(B) and B ⊂ q⁻¹((-∞, a]) for some a ∈ ℝ. Then

$$\mathrm{R}\Gamma_B(M;F)\simeq 0.$$

(ii) Assume that $SS(F) \cap (\lambda \cup \lambda^a) \subset T^*_M M$. Then, setting $M_0 = q^{-1}(0)$, the natural restriction morphism below is an isomorphism:

$$\operatorname{R}\Gamma(M; F) \xrightarrow{\sim} \operatorname{R}\Gamma(M_0; F|_{M_0}).$$

Characteristic variety

Let (X, \mathcal{O}_X) be a complex manifold and let \mathcal{D}_X be the sheaf of rings of holomorphic (finite order) differential operators. A left coherent \mathcal{D}_X -module \mathcal{M} may be locally represented as the cokernel of a matrix $\cdot P_0$ of differential operators acting on the right:

$$\mathscr{M}\simeq \mathscr{D}_X^{N_0}/\mathscr{D}_X^{N_1}\cdot P_0.$$

By classical arguments, ${\mathscr M}$ is locally isomorphic to the cohomology of a bounded complex

$$\mathscr{M}^{\bullet} := 0 \to \mathscr{D}_{X}^{N_{r}} \to \cdots \to \mathscr{D}_{X}^{N_{1}} \xrightarrow{\cdot P_{0}} \mathscr{D}_{X}^{N_{0}} \to 0.$$

For a coherent \mathscr{D}_X -module \mathscr{M} , one sets for short

$$\begin{aligned} \operatorname{Sol}(\mathscr{M}) &:= & \operatorname{R}\mathscr{H}om_{\mathscr{D}_{X}}(\mathscr{M}, \mathscr{O}_{X}) \simeq \mathscr{H}om_{\mathscr{D}_{X}}(\mathscr{M}^{\bullet}, \mathscr{O}_{X}) \\ &\simeq & 0 \to \mathscr{O}_{X}^{N_{0}} \xrightarrow{P_{0}} \mathscr{O}_{X}^{N_{1}} \to \cdots \mathscr{O}_{X}^{N_{r}} \to 0. \end{aligned}$$

36 / 45

One denotes by char(\mathscr{M}) the characteristic variety of \mathscr{M} . If $\mathscr{M} = \mathscr{D}_X/\mathscr{I}$ for a locally finitely generated left ideal of \mathscr{D}_X , then

$$\mathsf{char}(\mathscr{M}) = \{(z;\zeta) \in T^*X; \sigma(P)(z;\zeta) = 0 \text{ for all } P \in \mathscr{I}\},\$$

where $\sigma(P)$ denotes the principal symbol of P.

Theorem

Let \mathscr{M} be a coherent \mathscr{D}_X -module. Then $char(\mathscr{M})$ is a closed conic complex analytic involutive (i.e., co-isotropic) subset of T^*X . Moreover,

$$\operatorname{char}(\mathscr{M}) = \operatorname{SS}(\operatorname{Sol}(\mathscr{M})).$$

The involutivity result was first proved by Sato-Kashiwara-Kawai in 1973 using differential operators of infinite order. Then Gabber (1981) gave a purely algebraic proof. The last formula due to [KS90] gives another totally different proof of the involutivity.

・ロト (四) (日) (日) (日) (日) (日)

Cauchy problem

Let Y be a complex submanifold of the complex manifold X. One says that Y is non-characteristic for \mathcal{M} if

 $\operatorname{char}(\mathscr{M}) \cap T_Y^*X \subset T_X^*X.$

With this hypothesis, the induced system \mathcal{M}_Y by \mathcal{M} on Y is a coherent \mathcal{D}_Y -module and one has the Cauchy–Kowalesky–Kashiwara theorem(1970):

Theorem

Assume Y is non-characteristic for \mathscr{M} . Then \mathscr{M}_Y is a coherent $\mathscr{D}_Y\text{-module}$ and the morphism

$$\mathrm{R}\mathscr{H}om_{\mathscr{D}_{\mathbf{X}}}(\mathscr{M},\mathscr{O}_{\mathbf{X}})|_{\mathbf{Y}}\to\mathrm{R}\mathscr{H}om_{\mathscr{D}_{\mathbf{Y}}}(\mathscr{M}_{\mathbf{Y}},\mathscr{O}_{\mathbf{Y}}).$$

is an isomorphism.

Hyperbolic systems

Let M be a real analytic manifold and let X be a complexification of M. Recall the natural maps

$$T^*M \hookrightarrow T^*T^*_MX \simeq T_{T^*_MX}T^*X.$$

For a coherent left \mathscr{D}_X -module \mathscr{M} , we set

$$\operatorname{hypchar}_{M}(\mathscr{M}) = T^{*}M \cap C_{\mathcal{T}_{M}^{*}X}(\operatorname{char}(\mathscr{M})).$$

A vector $\theta \in T^*M \setminus \text{hypchar}_M(\mathscr{M})$ is called hyperbolic for \mathscr{M} . A submanifold N of M is called *hyperbolic* for \mathscr{M} if $T^*_N M \cap \text{hypchar}_M(\mathscr{M}) \subset T^*_M M$. Assume we have the local coordinate system $(x + \sqrt{-1}y)$ on X, $(x + \sqrt{-1}y; \xi + \sqrt{-1}\eta)$ on T^*X and let $M = \{y = 0\}$ so that $T^*_M X = \{y = \xi = 0\}$. Let $(x_0; \theta_0) \in T^*M$ with $\theta_0 \neq 0$. Let $P \in \mathscr{D}_X$. We find that $(x_0; \theta_0)$ is hyperbolic for P (that is, for $\mathscr{D}_X/\mathscr{D}_X \cdot P$) if and only if

 $\begin{cases} \text{there exist an open neighborhood } U \text{ of } x_0 \text{ in } M \text{ and} \\ \text{an open conic neighborhood } \gamma \text{ of } \theta_0 \in \mathbb{R}^n \text{ such that} \\ \sigma(P)(x; \theta + \sqrt{-1}\eta) \neq 0 \text{ for all } \eta \in \mathbb{R}^n, x \in U, \theta \in \gamma. \end{cases}$

By he local Bochner's tube theorem that this is equivalent to

 $\begin{cases} \text{there exist an open neighborhood } U \text{ of } x_0 \text{ in } M \text{ such} \\ \text{that } \sigma(P)(x; \theta_0 + \sqrt{-1}\eta) \neq 0 \text{ for all } \eta \in \mathbb{R}^n, \text{ and} \\ x \in U. \end{cases}$

One recovers the classical notion of a (weakly) hyperbolic operator.

Now, consider the sheaves

Here, or_M is the orientation sheaf on M and $n = \dim M$. The sheaf \mathscr{A}_M is the sheaf of (complex valued) real analytic functions on M and the sheaf \mathscr{B}_M is the sheaf of Sato's hyperfunctions on M. Applying the theorem which gives a bound to the microsupport of $\mathrm{R}\Gamma_M F$ and $F|_M$, we get:

Theorem (see KS90)

Let \mathcal{M} be a coherent \mathcal{D}_X -module. Then

$$\begin{aligned} & \mathsf{SS}(\mathrm{R}\mathscr{H}om_{\mathscr{D}_{\boldsymbol{X}}}(\mathscr{M},\mathscr{B}_M))\subset\mathsf{hypchar}_M(\mathscr{M}),\\ & \mathsf{SS}(\mathrm{R}\mathscr{H}om_{\mathscr{D}_{\boldsymbol{X}}}(\mathscr{M},\mathscr{A}_M))\subset\mathsf{hypchar}_M(\mathscr{M}). \end{aligned}$$

In other words, hyperfunction (as well as real analytic) solutions of the system \mathscr{M} propagate in the hyperbolic directions.

The following result is easily deduced from the preceding one.

Theorem

Let M be a real analytic manifold, X a complexification of M, \mathscr{M} a coherent \mathscr{D}_X -module. Let $N \hookrightarrow M$ be a real analytic smooth closed submanifold of M and $Y \hookrightarrow X$ is a complexification of N in X. We assume

 $T_N^*M \cap \operatorname{hypchar}_M(\mathscr{M}) \subset T_M^*M,$

that is, N is hyperbolic for \mathcal{M} . Then Y is non-characteristic for \mathcal{M} in a neighborhood of N and we have the isomorphism

$$\mathrm{R}\mathscr{H}om_{\mathscr{D}_{\mathbf{X}}}(\mathscr{M},\mathscr{B}_{M})|_{N} \xrightarrow{\sim} \mathrm{R}\mathscr{H}om_{\mathscr{D}_{\mathbf{Y}}}(\mathscr{M}_{\mathbf{Y}},\mathscr{B}_{N}).$$

In other words, the Cauchy problem in a neighborhood of N for hyperfunctions on M is well-posed for hyperbolic systems.

Theorem

Let (M, γ, q) be a G-causal manifold and assume that M is real analytic. Let \mathscr{M} be a coherent \mathscr{D}_X -module satisfying hypchar $(\mathscr{M}) \cap \lambda \subset T^*_M M$.

- (a) Let A be a closed subset satisfying either $A = J_{cc}^+(A)$ and $A \subset q^{-1}([a, +\infty))$ or $A = J_{cc}^-(A)$ and $A \subset q^{-1}((-\infty, a])$ for some $a \in \mathbb{R}$. Then $\operatorname{RHom}_{\mathscr{D}_X}(\mathscr{M}, \Gamma_A \mathscr{B}_M) \simeq 0$. In particular, hyperfunction solutions of the system \mathscr{M} defined on $M \setminus A$ extend uniquely to the whole of M as hyperfunction solutions of the system.
- (b) Let $N = q^{-1}(0)$ and assume that N is real analytic. Let Y be a complexification of N in X. Then we have the isomorphism

$$\operatorname{RHom}_{\mathscr{D}_{X}}(\mathscr{M},\mathscr{B}_{M})\to\operatorname{RHom}_{\mathscr{D}_{Y}}(\mathscr{M}_{Y},\mathscr{B}_{N}).$$

In other words, the Cauchy problem for hyperfunctions with initial data on N is globally well-posed.

Examples

Let N be a real analytic manifold, $M = N \times \mathbb{R}$. We denote by (t; w) the coordinates on $T\mathbb{R}$ and by $(t; \tau)$ the coordinates on $T^*\mathbb{R}$. Let $P = \partial_t^2 - R$ be a differential operator of order 2 such that R does not depend on ∂_t and $\sigma_2(R)|_{T^*_M X} \leq 0$. We assume

there exist a smooth function $f: \mathbb{R} \to \mathbb{R}_{>0}$ and a smooth complete Riemannian metric g on N such that $\sigma_2(R)(x,t;\xi) \leq f(t)|\xi|^2_{g_x}$.

Note that this condition is automatically satisfied if N is compact. We set

$$\begin{split} \gamma &= \{(x,t;v,w) \in TM; w > 1/(2f(t))|v|_g\}, \\ \gamma^\circ &= \{(x,t;\xi,\tau) \in T^*M; \tau \geq 2f(t)|\xi|_g\}. \end{split}$$

Then

- hypchar(P) $\cap \gamma^{\circ} \subset T^*_M M$,
- γ is the future cone of the Lorentzian spacetime $(M, dt^2 (1/2f(t))g)$, which is globally hyperbolic.
- (M, γ, q) is a G-causal manifold,
- the Cauchy problem for hyperfunctions (and for real analytic functions) is globally well-posed.

As a particular case, if $(g_t)_{t\in\mathbb{R}}$ is an analytic family of *complete* Riemannian metrics on N and $(\Delta_t)_{t\in\mathbb{R}}$ are the associated Laplace–Beltrami operators, then the operator $P = \partial_t^2 - \Delta_t$ is such an example.