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Normal cones

A manifold means a real C°°-manifold and a morphism of manifolds
f: M — Nis a map of class C*. For any subset A, we denote by
A its closure, by Int(A) its interior and we set 0A = A\ Int(A).

Let A, B be two subsets of M. The Whitney cone C(A, B) is a
closed conic subset of TM. In a chart, it is described as follows.

v € Co(A,B) C TyM
if and only if
there exists a sequence {(Xn, ¥n, An)}n C AX B xRsg
such that
n n n
Xn = X0, Yn — X0, An(Xn — yn) = V.

For N a smooth submanifold of M, one denotes by Cy(A) the
image of N xp C(A,N) in TyM = (N xp TM)/TN.
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Let A be a subset of M. The strict normal cone of A is is an open
convex cone of TM defined by

N(A) = TM\ C(M\ A, A).
In a local chart of M,

there exists an open cone g with v € g
(x,v) € N(A) < ¢ and an open neighborhood U of x such that
Un(UNA+v)CA
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Preorders

We denote by Ay, or simply A, the diagonal of M x M.

Let M; (i = 1,2,3) be manifolds. For short, we write

M,'J'ZZM,'X Mj (1§i,j§3) and M123:M1 XMQX M3. We
denote by g; the projection Mj; — M; or the projection Mi23 — M;
and by gj; the projection My23 — Mj;. For Ay C M5 and

Ay C Mb3, one sets

A1 <2>A2 = q13(q12 A1 N g3t A2).

Consider a preorder < on a manifold M and its graph
A< C M x M. Then

ACAj,
AjOAj:Aj.
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For a subset A C M, one sets

For x € M, we write J%(x) and JZ(x) instead of J%({x}) and
JZ({x}) respectively. One calls J (A) (resp. J%(A)) the past
(resp. future) of A for the preorder <. N

Let < be a preorder on M. The next results are obvious:

o JZ(A) = Uyea J2(x), and similarly with J_‘_:(A),
o AC JZ(A), JZ(JZ(A)) = JZ(A) and similarly with J3(A),
e A=JL(A) & M\ A=JI(M\A).
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Definition
(a) The preorder is closed if A< is closed in M x M.

(b) The preorder is proper if gi3 is proper on A< xp Ax.
Equivalently, for any two compact subsets A and B of M, the
so-called causal diamond J;(A) N JZ(B) is compact.

o If X'is closed and A is a compact subset of M, then J_ (A)

and J;F(A) are closed.

e If < is proper, then it is closed.
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Causal manifolds

Definition

(a) A causal manifold (M, ) is a manifold M equipped with an
open convex cone v C TM such that v, # @ for all x € M.

(b) A morphism of causal manifolds f: (M,~yp) — (N,~vyp) is a
morphism of manifolds such that Tf () C n.

(¢) A morphism of causal manifolds f is strict if Tf(ym) C Yn-

Causal manifolds and their causal (resp. strictly causal) morphisms
form a category.

For U a open subset of M, (U, ~|y) is a causal manifold and the
embedding U < M induces a morphism of causal manifolds.

Notation

For an open interval | of R (which we will implicitly assume to
contain [0, 1]) we simply denote by (/,+) the causal manifold
(1,1 x Rsp).
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Causal manifolds

Example: Lorentzian manifolds

A Lorentzian manifold (M, g) is a connected C*°-manifold M with
a C* nondegenerate bilinear form g on M of signature
(+,—,...,—). Let

g-0 = {(x;v) € TM; gx(v,v) > 0}.

Then g-¢ has at most two connected components. The Lorentzian
manifold (M, g) is time-orientable if the cone g~o has two
connected components. It is time-oriented if furthermore one
connected component has been chosen. In this case, it defines a
causal manifold denoted by (M, ~,), or simply (M, ~).

Definition
A Lorentzian spacetime is a connected time-oriented Lorentzian
manifold.

In our study, we shall simply ask that ~y is an open convex cone,
non empty at each x € M. We don't ask any regularity on ~.
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Causal manifolds

~-sets and ~-topology

Let (M,~) be a causal manifold.

(i) A constant cone in 7 is a triple (¢, U, 0) where ¢: U — R% is a
chart and 6 ¢ R is an open convex cone, such that in this chart,
Ux 6 C~ (thatis, o(U) x 8 C Te(v|y)). A constant cone

(¢, U, 8) will often be denoted simply by U x 6.

(ii) A basis of constant cones contained in ~y is a family of constant
cones whose union is 7.

(iii) A subset A C M is a y-set if v C N(A). Equivalently, there
exists a basis of constant cones U x # contained in ~ such that
UNn(UNA+6)CA

e The family of y-sets is closed under arbitrary unions and
intersections and under taking closure and interior.

e If Ais a y-set, then IntA = A and IntA = IntA.
e If Ais ay-set and IntA C B C A, then B is a v-set.
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Causal manifolds

The preceding results allows us to generalize the notion of
~-topology of [KS90] in which M was affine and the cone was
constant.

Definition

Let (M,~y) be a causal manifold. The ~-topology on M is the
topology for which the open sets are the open sets of M which are
~-sets.

A subset A C M is called ~-open if it is open for the y-topology. In

other words, if it is open in the usual topology and is a y-set.
Remark

A set which is closed for the ~-topology is not in general a ~-set,
but is a y?-set.
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Causal manifolds

The chronological preorder

Definition

For A C M, we denote by /7 (A) the intersection of all the y-sets
which contain A and call it the chronological future of A.

Note that a set A is a y-set if and only if [F(A) = A.

One easily checks that

The relation y € L ({x}) is a preorder.

Definition

We denote by < the preorder given by x <,y if y € Ij(x) and we
denote by A, its graph. Hence, [f(x) = J;(x) and A, =A< .
We call < the chronological preorder.

On (/,+) the chronological preorder <. is the usual order <.
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Causal manifolds

Causal paths

Definition

A path c: | — M is a piecewise smooth map. A path c is causal if
, , _ . ) .

c/(t), c/(t) € (F)c(e) for any t € I and it is strictly causal if

c;/(t), c/(t) € yeqr) forany t € /.

e if c; and ¢, are two (strictly) causal paths with ¢1(1) = ¢(0),
the concatenation ¢ = ¢; U ¢ is (strictly) causal.

o Let f: (M,vypm) — (N,vyn) be a morphism of causal manifolds
and let ¢: | — M be a causal path. Then foc: | — Nis a
causal path and similarly with strictly causal.

e The piecewise smooth preorder, ps-preorder for short, is
defined by x <5 y if there is a causal path ¢ with ¢(0) = x,

c(l)=y.
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Causal preorders

Let (M, ) be a causal manifold and let < be a preorder on M.
The following assertions are equivalent:

(i) One has A, C Ax.
(i) A< isa (72 x y)-set,

)
(iii) For any x € M, JZ(x) is a 7-set.
(iv) Forany y € M, JJ(y) is a y7-set.
)

(v) Forany x € M, If(x) C JX(x).

Definition
A preorder < is causal if the equivalent conditions above are
satisfied.
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Causal preorders

The cc and the ps preorders

Graphs of transitive relations, closed sets, and ~-sets in a causal
manifold, are all closed under intersections.

Definition

(i) The canonical closed causal preorder, the cc-preorder for short,
is defined as follows. lts graph A.. is the intersection of all graphs
of closed causal preorders. One denotes by J(A) and J.(A) the
future and past sets of A for the cc-preorder.

(ii) The piecewise smooth preorder, the ps-preorder for short, is
given by x <, y if there exists a causal path ¢ with ¢(0) = x and
c(1) = y. One denotes by A its graph and one denotes by J1(A)
and J; (A) the future and past sets of A for the ps-preorder.

The cc-preorder and the ps-prorder are causal:

Ay C A and A, C Aps.
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Causal preorders

Globally hyperbolic spacetimes

Let (M, g) be a Lorentzian spacetime and let (M, ) be the
associated causal manifold.

(a) One has
A, CAps CA,C A

(b) The preoreder Ay is a proper order if and only if the preorder
A is a proper order and in this case, one has
A, = Dps = Ac.
One shall be aware that the inclusion AiﬁY C Acc may be strict since
A, is not necessarily transitive, even in Lorentzian spacetimes.
We now extend the classical definition of global hyperbolicity of

Lorentzian spacetimes to general causal manifolds as follows:

Definition
A causal manifold (M, ) is globally hyperbolic if A is a proper

order.
17 /45



Causal preorders

Example

Let M =R2\ {(1,0)} and v = M x (R>0)?. Then (M,7) is a
causal manifold. One easily checks that

LF((0,0)) = {(0,0)} U (R>0)?,
J%((0,0)) :%([1, +o00) x {0}),
J&((0,0)) = K((0,0)) = (Rz0)*\ {(1,0)}.

In particular, J£((0,0)) is neither closed nor open.
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G-causal manifolds

Cauchy time functions and G-causal manifolds

The terminology G-causal below is not inspired by gravitation but
by the name of Geroch.

Definition

(a) A Cauchy time function on a causal manifold (M, ~) is a
submersive causal morphism g: (M,~) — (R, +) which is proper
on the sets J£(K) and J_ (K) for any compact set K C M. (One
proves that is is enough to assume that g is proper on the sets
JE(x) and J(x) for any x € M.)

(b) A G-causal manifold (M,~, q) is the data of a causal manifold
(M, ~) together with a Cauchy time function q.
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G-causal manifolds

A Cauchy time function on a causal manifold (M, ) is strictly

causal and is increasing as a function from (M, <..) to (R, <).

In particular, it has no strictly causal loops.

A Cauchy time function is strictly increasing on strictly causal
paths.

If a causal manifold admits a Cauchy time function, then its
cc-preorder is proper.

Let g be a Cauchy time function on (M, ) and let x € M.
Then q(15f(x)) = q(J(x)) = [q(x), +00). In particular,
G-causal manifolds cannot be compact and Cauchy time
functions are surjective.
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G-causal manifolds

Example

Let M=S!xRand vy= TS! x {(t;v) € TR;v > 0}. The map
qg: M — R, (x,t) > t, is a Cauchy time function on (M, ~).
Denote by x a coordinate on S! (hence, x + 27 = x). The path
[0,27] 5 s+ (5,0) € M is a causal loop.

Theorem
If a Lorentzian spacetime is globally hyperbolic, then it admits a
Cauchy time function.

This follows from the results of R. Geroch (1970) and
Minguzzi-Sanchez (2008). See also Fathi-Siconolfi (2011) for a
more general version.
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Sheaves

We denote by k a field and let X be a topological space.

A presheaf F on X associates to each open subset U C X a
k-module F(U), and to an open inclusion V C U, a linear map,
called the restriction map, pyy: F(U) — F(V), such that for each
open inclusions W C V C U, one has:

puu = idy, PWU = PWV © PVU-

A morphism of presheaves ¢: F — G is the data for any open set
U of a linear map ¢(U): F(U) — G(U) such that for any open
inclusion V C U, the diagram below commutes:

For s € F(U) one writes s|y instead of pyy(s).
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Sheaves

A presheaf is a sheaf if it satisfies the condition

for any open subset U C X, any open covering U = |J; U;, any
family {s; € F(U;),i € I} satisfying si|y; = sj|u; for all i,j,
there exists a unique s € F(U) with s|y, = s; for all /.

Example

(i) The presheaf €73 is a sheaf.

(ii) The presheaf kx of locally constant k-valued functions on X is
a sheaf, called the constant sheaf, and denoted kx.

(iii) Let M be a real manifold. We have the classical sheaves €y°,
Pbx and on a complex manifold X, the sheaf &x of holomorphic
functions.

(iv) On a topological space X, the presheaf U C5)(3’13(U) of
continuous bounded functions is not a sheaf in general. To be
bounded is not a local property.
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Sheaves

(v) For a locally closed subset Z of M, we denote by k7 the
constant sheaf with stalk k on Z, extended by 0 on M\ Z.

The category of sheaves Mod(kx) is an abelian categories and
admits a bounded derived category DP(ky,). Essentialy, an object
of DP(ky) is a bounded complex of sheaves and a complex
quasi-isomorphic to zero (that is, an exact complex) is 0.

Example
The de Rham complex

05Cy—9% % - 5Q7 -0

is exact. It is isomorphic to 0 in DP(ky,). Equivalently, in D" (k).
the sheaf Cy, is isomorphic to the complex

0-0% % ... qn —o.
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Sheaves

Microlocal theory

We shall recall some notions and results of [KS90].

Let M be a real manifold, my: T*M — M its cotangent bundle.
Definition

Let F € DP(kp). The singular support, or micro-support, SS(F) is
the closed conic subset of T*M defined as follows. An open subset
W of T*M does not intersect SS(F) if for any C!-function

¢: M — R and any xo € M such that (xo; d¢(x0)) € W, setting
U = {x; p(x) < ¢(x0)}, one has for all j € Z

lim H((UUV;F)~H(U;F).
V'3xp

Therefore, if (xo; dp(x0)) ¢ SS(F), then any cohomology class
defined on an open subset U as above extends through the
boundary in a neighborhood of xg.
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Sheaves

de (o)

e The microsupport is closed and is R™-conic,

e SS(F)N TyM = mpm(SS(F)) = Supp(F),

e if [ = FH—F s a distinguished triangle in DP(kyy),
then SS(F;) C SS(F;) USS(Fk) for all i,j, k € {1,2,3} with
j# k.

e The microsupport is involutive (one also says, co-isotropic).
(No precise definition here.)
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Sheaves

Examples
i) If F is a non-zero local system on M and M is connected, then
S(F) = TyM, the zero-section.
ii) If N is a closed submanifold of M and F = ky, then
S(F) TxM, the conormal bundle to N in M.
iii) Let ¢ be a Cl-function with dp(x) # 0 for ¢(x) = 0. Let
U={xe M;p(x) >0}, Z={xe M,p(x)>0}. Then

SS(ky) = U xp TyyM U {(x; Addp(x)); p(x) = 0, A < 0},
SS(kz) = Z xp TyyM U {(x; Addp(x)); ¢(x) =0, A > 0}.
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(iv) Assume M = V is a vector space and let v be a cone with
vertex at 0. The dual cone ~° is a convex closed cone.

7 ={(x:§) € EX (6, v) > 0 for all v € 7).

If v is a closed convex cone, then
SS(k,) N771(0) = 4°.

Note that, the smallest ~ is, the biggest v° is. (A variant of the
uncertaintly principle.)
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Sheaves

(v) Let (X, Ox) be a complex manifold and let .# be a coherent
module over the ring Zx of holomorphic differential operators.
(Hence, .# represents a system of linear partial differential
equations on X.) Denote by F = R#om , (.#,Ox) the complex
of holomorphic solutions of .#. Then SS(F) = char(.#), the
characteristic variety of .Z.

Theorem
Let Z,U C M. Assume that Z is closed and U is open. Then

SS(kz) € N(Z)° and SS(ky) € N(U)°2.
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Sheaves

Operations

Let f: M — N be a morphism of real manifolds. Denote by p; and
p2 the projections from T*(M x N) to T*M and T*N and set
A= TF{(M x N). Then Af == M x T*N by the map p1 x p3.

TE (M x N) = Ag
/ \L \;\\
f f,

T*M<—2— M xy T*N — =~ T*N.

Theorem
Let F € DP(kpy) and let G € DP(ky).

(i) Assume that f is proper on Supp(F). Then
SS(REF) C frf; 1 SS(F) = SS(F) 5 As.

(ii) Assume that fy is proper on £~ SS(G). Then
SS(F1G) C f4f1SS(G) = Ar 3SS(G).
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Sheaves

Theorem
Let F1,F € Db(k/\/]).

(i) Assume that SS(F1) N SS(F2)? C TyyM. Then
SS(F1 ® F2) C SS(F1) + SS(F).

(ii) Assume that SS(F1) NSS(F2) C TyyM. Then
SS(R%OITI(FL F2)) C SS(Fl)a + SS(F2)
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Hyperbolicity for sheaves

Consider a vector bundle 7: E — M. It gives rise to the maps
T*E <+ E xpy T*M — T*M. By restricting to the zero-section of
E, we get the map T*M — T*E. Now assume that M is a closed
submanifold of a manifold X. Applying this construction to the
bundle Ty,X above M, and using the Hamiltonian isomorphism we
get the maps

Theorem
Let F € DP(kx). Then

SS(RFmF) C T*M N Crz x(SS(F)),
SS(Flm) € T*M N Crz x(SS(F)).-
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Direct images for Causal manifolds

Notation
Here, for a causal manifold (M, ) we set

Ai=A°.

Note that A is a closed convex proper cone of T*M, A O T;,M and
v = Int(A°).

Let (M, ) be a causal manifold and =< a closed causal preorder on
M. Let Z,U C M with U open and Z closed.
e Assume U = JZ(U). Then SS(ky) C A°.

o Assume that Z = JZ(Z). Then SS(kz) C A%
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Propagation

By using the theorem on the microsupport for proper direct images,
one proves:

Theorem

Let f: (M,ym) — (N,yn) be a morphism of causal manifolds, let
< be a closed causal preorder on M and let F € DP(kp). Assume
that

(a) f: M — N is submersive,

(b) for any compact K C M, the map f is proper on the closed set
JZ(K),

(c) SS(F)NAm C TiM.

Then SS(Rf.F) NInt(Ay) = 2.
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Propagation

Theorem
Let (M,~,q) be a G-causal manifold and let F € D" (k).

(i) Assume that SS(F)NA? C TyM and let B be a closed
subset satisfying B = JZ(B) and B C q~((—oc, a]) for some
a€R. Then -

RIg(M; F) ~ 0.

(ii) Assume that SS(F) N (AU A?) C Ty,M. Then, setting
Mo = q~1(0), the natural restriction morphism below is an
isomorphism:

RI(M; F) == RI'(Mo; Flm,)-
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D-modules

Characteristic variety
Let (X, Ox) be a complex manifold and let Zx be the sheaf of
rings of holomorphic (finite order) differential operators.

A left coherent Px-module .# may be locally represented as the
cokernel of a matrix - Py of differential operators acting on the right:

M= DRJDR - Py,

By classical arguments, .# is locally isomorphic to the cohomology
of a bounded complex

. P,
M ::O—>9)’<V’—>~-—>@)'<Vl—°>@)'}l°—>0.
For a coherent Z2x-module .#, one sets for short

Sol(.#) = Rstom,, (///,ﬁ’x):u%ﬂomgx(///',ﬁx)
~ 0o o B ol ol 0.
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One denotes by char(.#) the characteristic variety of .Z. If
M = Dx /I for a locally finitely generated left ideal of Zx, then

char(#) ={(z;¢) € T*"X;0(P)(z;¢) =0 forall P € .7},

where o(P) denotes the principal symbol of P.

Theorem

Let .# be a coherent Zx-module. Then char(.#) is a closed conic
complex analytic involutive (i.e., co-isotropic) subset of T*X.
Moreover,

char(.#') = SS(Sol(A4)).

The involutivity result was first proved by Sato-Kashiwara-Kawai in
1973 using differential operators of infinite order. Then Gabber
(1981) gave a purely algebraic proof. The last formula due

to [KS90] gives another totally different proof of the involutivity.
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D-modules

Cauchy problem

Let Y be a complex submanifold of the complex manifold X. One
says that Y is non-characteristic for .# if

char(Z)N Ty X C TxX.

With this hypothesis, the induced system .#y by .# on Y is a
coherent Yy-module and one has the
Cauchy—Kowalesky—Kashiwara theorem(1970):

Theorem
Assume Y is non-characteristic for # . Then .#'y is a coherent
Py -module and the morphism

R%”omgx(j/, ﬁx)|y — R%”omgy(///y, ﬁy).

is an isomorphism.
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D-modules

Hyperbolic systems

Let M be a real analytic manifold and let X be a complexification
of M. Recall the natural maps

T*M — T*T,T/,X ~ TT/TAXT*X'
For a coherent left Zx-module .Z, we set
hypchar, (.#) = T*M N Cr; x(char(4)).

A vector 6 € T*M \ hypchar,,(.#) is called hyperbolic for .# .
A submanifold N of M is called hyperbolic for .# if
TxyM vhypchary, (#) C TyM.
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D-modules

Assume we have the local coordinate system (x + 1/—1y) on X,
(x+v=1y;€++/~1n) on T*X and let M = {y = 0} so that
TiX = {y =€ =0}

Let (x0;6p) € T*M with 6y # 0. Let P € Px. We find that

(x0; 6o) is hyperbolic for P (that is, for Zx/%x - P) if and only if

there exist an open neighborhood U of xp in M and
an open conic neighborhood ~ of Ay € R" such that
o(P)(x;0++—1n) #0foralln e R", x € U, 6 € ~.

By he local Bochner's tube theorem that this is equivalent to

that o(P)(x;600 + v—1n) # 0 for all n € R", and

{there exist an open neighborhood U of xg in M such
x e U.

One recovers the classical notion of a (weakly) hyperbolic operator.
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D-modules

Now, consider the sheaves
= ﬁx’/\/], By = le\’/l(ﬁx)(g)ormﬁer(ﬁx)@OfM [n]

Here, ory is the orientation sheaf on M and n = dim M. The sheaf
2 is the sheaf of (complex valued) real analytic functions on M
and the sheaf %), is the sheaf of Sato's hyperfunctions on M.
Applying the theorem which gives a bound to the microsupport of
RImF and Flp, we get:

Theorem (see KS90)

Let .# be a coherent Dx-module. Then

SS(RA#om ,, (A, %m)) C hypchary, (A#),
SS(RA#om ,, (A, ) C hypchary (A4).

In other words, hyperfunction (as well as real analytic) solutions of
the system .# propagate in the hyperbolic directions.
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D-modules

The following result is easily deduced from the preceding one.

Theorem

Let M be a real analytic manifold, X a complexification of M, .# a
coherent 9x-module. Let N — M be a real analytic smooth closed
submanifold of M and Y — X is a complexification of N in X. We
assume

TyM N hypchary, (#) C TyM,

that is, N is hyperbolic for .#. Then Y is non-characteristic for .#
in a neighborhood of N and we have the isomorphism

Rotom , (M, PBm)In = RHom,, (My,PBN).

In other words, the Cauchy problem in a neighborhood of N for
hyperfunctions on M is well-posed for hyperbolic systems.
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D-modules

Theorem

Let (M,~, q) be a G-causal manifold and assume that M is real

analytic. Let .# be a coherent Zx-module satisfying

hypchar(.Z) N A C TM.

(a) Let A be a closed subset satisfying either A = JI.(A) and
AC g }([a,+0)) or A= J(A) and A C g ((—o0, a]) for
some a € R. Then RHom ,, (4 ,Ta%m) ~ 0. In particular,
hyperfunction solutions of the system .# defined on M\ A
extend uniquely to the whole of M as hyperfunction solutions
of the system.

(b) Let N = q~1(0) and assume that N is real analytic. Let Y be
a complexification of N in X. Then we have the isomorphism

RHom-@x (E//, %M) — RHOIH_%/(.//A/, %N)-

In other words, the Cauchy problem for hyperfunctions with
initial data on N is globally well-posed.
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Examples

Let N be a real analytic manifold, M = N x R. We denote by (t; w)
the coordinates on TR and by (t;7) the coordinates on T*R.

Let P = 02 — R be a differential operator of order 2 such that R
does not depend on 9; and o2(R)|7;,x < 0. We assume

there exist a smooth function f: R — R+g and a smooth com-
plete Riemannian metric g on N such that o2(R)(x,t;§) <

F(t)I¢3.

Note that this condition is automatically satisfied if N is compact.
We set

= {(x,t;v,w) e TM;w > 1/(2f(t))|v|g},
7" = A€ 1) € T"M;7 > 2£(t)[¢|g }-

44 /45



Examples

Then
e hypchar(P)Nn~° C THM,

e ~ is the future cone of the Lorentzian spacetime
(M, dt? — (1/2f(t))g), which is globally hyperbolic.

e (M,~,q) is a G-causal manifold,

e the Cauchy problem for hyperfunctions (and for real analytic
functions) is globally well-posed.

As a particular case, if (g¢)ter is an analytic family of complete
Riemannian metrics on N and (A¢):cr are the associated
Laplace-Beltrami operators, then the operator P = 92 — A, is such
an example.
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