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AS EVERYONE HERE KNOWS...

Historical Level: QFT has its origin by ~ 1930 incorporating both Quan-
tum Mechanics 4+ Special Relativity.

Employed in the Formulation of Physics Models of Particles and T heir
Interactions (Electrons, Protons, Photons, Pions, Neutrinos, ...)

QUITE SUCCESSFUL! In QED: PERTURBATION Leads to Precision
of One Part in 10%: Lambshift, ... Theoretical Precision is WORSE
THAN the EXPERIMENTAL ONE!

FROM a MATHEMATICAL VIEWPOINT: DIFFICULT CHALLENGE!
(UNCOUNTABLE) INFINITE NUMBER OF DEGREES OF FREEDOM.
HARD MATHEMATICAL ANALYSIS!

MY GOAL: In the MATHPHYS, Constructive QFT Context
REVIEW SOME of the MAIN STRUCTURAL PROBLEMS FOUND

If We TRY TO GO BEYOND the Beginning of PERTURBATION!
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CLASSIFICATION of the ANALYTICAL PROBLEMS

TWO TYPES:
CONSTRUCTION OF MEASURES and DETERMINATION OF
THE PARTICLE CONTENTS of MODELS

Determination of the PARTICLES and BOUND STATES: Subject
of My Second Talk (Seminar 5, Later), in the Special Case of LQCD

TODAY: CONCENTRATE on the First Problem

TWO EXAMPLE CASES: the SCALAR >\¢§ and the GROSS-NEVEU
MODELS in d SPACETIME EUCLIDEAN DIMENSIONS.

In EUCLIDEAN SPACETIME: the SCALAR )\q5§ Model is a CLASSICAL
STATISTICAL MECHANICS Model of CONTINUOUS SPINS.

Osterwalder-Schrader: O-S Axioms (Euclidean Invariance, Reflection
Positivity, Ergodicity, Analyticity, Regularity) WAY to GO BACK to
MINKOWSKI with PHYSICAL WIGHTMAN-HAAG-RUELLE AXIOMS
(Lorentz Covariance, Observables,...). See Glimm-Jaffe's book.



I will try to give a relatively complete scenario, but avoiding technicalities
as much as I can ...

ORGANIZATION

1. Introduction: Quick REVIEW of QUANTUM MECHANICS, SEMI-
GROUPS & Feynman FUNCTIONAL INTEGRALS.

2. Definition of a QFT (Constructive Context)

3. MAIN PROBLEMS Related to the Construction of Physical Measures:
Existence of a Functional Integral



1) QUANTUM Mechanics (in unities where i = 1)

t € R denotes TIME
7= (21,20,...,25) € RY denotes POSITION. HERE, d = 3 is the SPA-
TIAL Dimension

PHYSICS: Described by Complex Vectors WV = W(¢,7) in a HILBERT
Space ‘H (Complete Normed Space with Inner Product (., . )y)

PHYSICAL OBSERVABLES: Associated with SELF-ADJOINT (Hermi-
tian) OPERATORS in H.

EXPECTED VALUE of Observable © on STATE WV is

, (O*w, w’)H = (w, Ow’),H

SPECTRUM (Eigenvalues,...): specO C R, MEASURABLE in EXPERI-
MENTS |



OBS: IF [01,05] = 0105, — O>0O1 = 0 there exists a basis B of H in
which O e O5 are Simultaneously Diagonal.

Particle Moving UNDER the ACTION of a POTENTIAL V (h=1):

ENERGY OPERATOR: H = — 5= A + V(7) , m > 0 iS mass
_A is minus the Laplacian: —22 — . _ 922 > ¢
p . 8:8% e o o axg -

Ho = —A/2m describes the KINETIC ENERGY p?/2m
V() Multiplication Operator by the Physical Potential

TIME EVOLUTION (Schrodinger’'s Egn): DETERMINISTIC!

ig\lf = HWV
ot



PROBABILISTIC: is the COPENHAGEN Interpretation
Basic Physical Choice: Square Integrable Function Space H = £2(ddf, Rd)

Heisenberg Uncertainty: Cauchy-Schwarz Inequality in H

W measures Probability Amplitude to find the particle in (¢,7)

W2 = (W, W) = [ W, A)W(t7) dZ gives the PROBABILITY to Find
the Particle in (¢,7).

UNDERLYING UNITARY TIME EVOLUTION SEMI-GROUP:

W(t,7) = e HU) w(ty,7) | (Norm Preserving)

H is the Generator ! (modulo multiplicative constant)

OBS: By the SPECTRAL THM, SPECTRUM of H Determines the
Time Evolution!



COMPLICATIONS: dim# may be oo; V(7) may be SINGULAR!

Convenient for Analysis: IMAGINARY TIME (Euclidean) it — ¢
W(t,7) = e TE0) w(tg, )
H = Hpog+V > 0, fora CONTRACTION

|W|| Does NOT Increase! (Guarantees PROBABILISTIC Interpretation)

For This: V Bounded from Below. Physics OK! In TIME EVOLUTION
SEMI-GROUP, APPLY:

Lie-Trotter Product Formula: (May have [A, B] # 0)

e~ (AtB) — |im <€—A/ne—B/n)n

n—oo

HERE: A= Hpg e B=V, Both Bounded from Below in H.




BESIDES: REQUIRE H = Hp+V to be ESSENTIALLY SELF-ADJOINT
in Hy & V DOMAIN INTERSECTION.

ESSENTIALLY SELF-ADJOINT: O = O**

[V € £2(R?, d%) + £°(R?) such that H is self-adjoint in D(Hp)]

OBS: Under These CONDITIONS: Strongly Continuous SEMI-GROUP
+ CONVERGENCE of LIMIT n — oo in Lie-Trotter (in Strong Topology).



FEYNMAN-KAC FORMULA

d € L2(RY, d%), 2m =1

2

(Jpa = IMp_oo [iz|<g With limit in £2 norm)

dn
—(Ho+V)t 0 n 7/ / —t Sp(2,y1,-5Yn) d d
(e CD) ()= lim (47rt> i e P (yn) dy1...d"yn,

n—oo

n

Sn(xEyanla"'ﬂyn) — Z
=1

S|

t/n

1 |y —vio1l\°
& ( ) .




UNCERTAINTY Principle: The y s are in the WHOLE SPACE. Given
INITIAL/FINAL Point, SUM Over ALL TRAJECTORIES With Cor-
responding Statistical Weight!

FEYNMAN: Sum Over ALL HISTORIES!

For 2, being the SET of ALL PATHS w with w(0) = z,

("ot 0) (2) = /Q e 1) & (w(1)) dw .

T

OBS: the WIENER Measure of all these RANDOM PROCESSES can be
CONSTRUCTED.

S i1s the System ACTION !
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2) QFT: INCORPORATING SPECIAL RELATIVITY to QM

EUCLIDEAN QFT: EQUIVALENT to Classical Statistical Mechanics.

Similarly to QM: DEFINED by FUNCTIONAL Integral

HERE: INTEGRAL is OVER the & FIELD SPACE &’

e = € R? denotes a d-dimensional SPACETIME Point.

e ®(x) Field Variable defined at «

e /c{0,1,2,3,...}
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Normalized Correlations or Schwinger Functions with ¢-points are formally
given by:

1
Sﬁnorm(xla"'axf) — E Sﬁ(xla"'axf)a

Partition Function: Normalization Z = Sg

UNNORMALIZED CORRELATIONS: Are the Moments

Sewr,oyw) = [ @er) - Da) du(®),

of the measure dv(d) = exp {/ [ AV (P(2))] ddz} duc(P).
Gaussian Measure: duc(P) - Normalized, Zero Mean & Covariance C.

OBS: S/ (x1,...,xy) is the £ € N order moment of the
Gibbs Probability Measure dv(®P)/Z.
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EXPLANATIONS

e dv(®P) the formal product ° e~ A(P) b ", where the Action A(®) in
the Exponential has a FREE Part (quadratic form)

1 _
exp — [/CD(Zl)C 1(21722)¢(22)dd21dd22] ,

defined with the Covariance C, Times the Exponential of the Interac-
tion Among the Fields &

exp | [[= AV (®(@))] dal |

where A € R is the COUPLING Constant measuring the Intensity of
the Interaction Potential V(®).

e Usually, V() is Local, combination of monomials in ®(x), and even-
tually some derivatives of &.

e For unbounded @®: V(d) must be physically stable, Bound From Be-
low, such that exp [f—/\V(cb(x))ddaz} DECAYS at INFINITY, for a
fixed SIGN of \.
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Quantization is IMPLICIT in Wiener INTEGRATION. FIELDS Scan ALL
the SPACE S’.

® are random processes in S’ and are Defined Over SPACETIME RY.

AGAIN, the Math Complexity: INFINITE, UNCOUNTABLE Number of
Degrees of Freedom @ (z), = € RY.

Convenient: UNDERSTAND the INFINITE NUMBER of Degrees of Fre-
edom LIMIT in TWO STEPS.

Example: RY is APPROXIMATED by a Compact Domain A in a LAT-
TICE (aZ)?, of FINITE VOLUME |A| and SPACING a > 0.
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AFTERWARDS: REMOVE the CUTOFFES! Take, in Some Order, the
INFINITE-VOLUME Limit (Thermodynamic Limit) |A|] 7 oo and the
CONTINUUM Limit a \,O.

By FOURIER
CONTINUUM Limit is the Ultraviolet Limit (UV).

INFINITE VOLUME Limit is the INFRARED Limit (IR).

CUTOFF Parameters: IR (A) and UV (a), May be Implemented Both
in CONFIGURATION SPACE Space x or in the Fourier Dual Space of
MOMENTA.

Minlos-Bochner Thm: Gaussian Measure dug(®) can be Realized in
Schwartz Space 8’ of TEMPERED DISTRIBUTIONS, ensuring the EXIS-
TENCE of Fourier Transforms, for C' > 0, almost everywhere.
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OBSERVATION: Interest for Distributions is Already Manifested in the
FREE CASE )\ = 0.

See e.g CLASSICAL PDE in Relativistic Minkowski space for Klein-Gordon
fields.

Notational ABUSE! Misleading but SIMPLIFIED ®(x)

UNDERSTOOD: Canonical Pairing, (test function f smearing)

O(f) =/d>(:c) f@)dle © z=D) =08 =0t 2L,

f eS8 in DUAL SPACE of SMOOTH Fcts with FAST DECAY at oo.

In FINITE LATTICE A C oZ% Fields are Sufficiently Smoothed. ®(z) is
a Realistic Notation. Gaussian Measure duc(P) is Given by EXP Qua-
dratic Part (with Covariance C) times Product Measure of Lebesgue
Measures dd(x).
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MAY USE a Larger or Matrix Valued TENSORED SPACE S’ @ W to
Include Interesting Features as MANY FIELD COMPONENTS, SPIN,
ISOSPIN, COLOR, etc.

CONCRETE EXAMPLE: d > 2 & Four-Body Potentials s.t. Scalar
Bosonic Model \¢* and the Purely FERMIONIC Gross-Neveu Model.

Modelo ¢* Modelo GN
D=9 D = o, Yo ; o« € {spin}
c == (6atm?) [o=cp=[igpem)] ]
SAV(@(2) = — AN, A> 0] —AV(9(2) = A[B(2)(2)]”

¢ describes a Bosonic neutral particle of Spin 0. ) (inverse of Klein-
Gordon) Operator defined in Sobolev Space H1~ L5 ((p2 + m?2) d¢ ,7\) ‘where
A is the Fourier dual space for A.

Yo, 1o associated with Fermionic charged particles Spin % (electron, posi-

1 ~
tron, etc). C; : inverse of Dirac Operator in Hi~L5 ((p2 + m?2)2 g4 ,/\).
2
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Vo(x), Yao(x) , Yz € A, obey Pauli Exclusion, and are generators of a
(anticommutative) Grassmann Algebra Ax, a =1,...,s (s= Dimension of
Spinorial Degrees of Freedom).

Defining: on the Lattice, Vx € A\, associate a Complex Vector Space V,,
Ve=Vieve |, dim(V}E,V2) =s

For V! take the basis Yn(z), a = 1,...,s, and for V2 a basis (),
a=1,..,s.

In general, V! = (V) spin @ (V)int, Wwhere (V))int is an INTERNAL Index
Space e N = dim(VY)int.

Ap is the Grassmann Algebra over VA = @&,ca Va.

Berezin (Fermionic) INTEGRALS: are used for the integral in Ax. Expli-
citly, (/\ denotes the Exterior Product.)

/ /\ (TZa,a(:E) A Ya,a(T)) /\ dia,a(w)dwaa(w) —1
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The integral

/(monomials in Ya,q(x) and ¥qq(x) with degree less than the maximum)
X Naa dlza,a(fﬁ)dwa,a(fﬂ) =0,

Integral is Extended for ALL A using Linearity.
A will be OMITTED in Notation.

SPECIAL ROLE Played by Gaussian Integralsin dv(®$) since we can com-
pute them!

[ é@)duc(@) = o,
[ @)d(@)duc(®) = [ d@2)é(@1)duc(s) = Cyler,a0),

19



[ Fal@dnc(B, ) = [va)duc@v) = o,
[ Fala1)Bs(@)dnc(B4) = — [ Fa@)balz)duc(F,4) = 0.
[ $al)vs)dno(B ) = — [ bsu)va(yr)duc(v) = 0,
[ Fa@s@duc(@,v) = — [$s)Pa@duc(B,v) = [, @,y).

for the one-component case.

For Higher Degree Monomials, we have Wick's Thm for even /,
[ é@1).. o(e)duc(s) = > [1 Culpain),
pairings {(z;,z;),...} pairs

where the (pairing) set exhaust the set of Points {xz1,..., 2}, each xz; is
taken only ONCE and Cj(pair) = Cy(x;, z;) if the pair (z;,x;) is taken.
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Thereare (/- 1)1 ={/—-1) A —3) (/—5)...1 possible pairings , since
the first field has (/- 1) possible contractions (pairing), There are ({ —3)
for the second field, etc.

The integral VANISHES if ¢ is ODD.

FERMIONIC CASE:

[ Bay(@1) - Bay(we) s, (1) b5, (w) Ao (D)
= > [[ sign Cy(pair),

pairings {(z;,o; ; ¥;,6;5),...} Pairs

sign. determined by the Number of Anticommutations to Perform a Per-
mutation such that g, (z2) is Placed on the Right of the Contracting
Yai(z1) Leading to a PROPAGATOR [Cyl,, 3, (x1,22).

The Integral VANISHES if the NUMBER of ¢ and ¢ are DIFFERENT.
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In Cayley’s Notation (up to a global multiplicative factor (—1))

[ Bar(@1) - Ba@)bs, (1) - - s, () A (5, )

— 1,1 2,2 ... Ty, 0y
vy1,81 vy2,B82 ... yp By
 Coy8(x1,y1) oo Copp,(m1,90)
= det : . 5
 Coy8(xpsy1) oo Coup,(Te,y0) |

and we let C = Cf.

IMPORTANT OBSERVATION: The ABOVE det is a GRAM Determi-
nant

det(f;,9;), of a Matrix with Elements Given by a SCALAR PRO-
DUCT in Lo(d%,R%).
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MATH DIFFICULTY: Control the PERTUBATIONS ABOUT
GAUSSIAN MEASURES

3) PROBLEMS: PRESENCE of SINGULARITIES

For Example, in the Continuum Infinite Volume BOSONIC Case:
(—A +m?)Cy(z,y) = 5(z — y)

x -yl <1:

x—y|[>1:

Cp(z,y) =~ «

"

\

1

o In(mlz—yl) , d=2
r(%3%) -
TdQ/Q e —y|7 T d>3

Cp(z,y) = \Jm/2 (2m) =42 m(d=3)/2 |z —y|=(@=1)/2 o=mlz—y|

IR (Large-Distance) SINGULARITIES: m = 0 (Critical Phenomena, Phase
transitions). NOT INTEGRABLE when |z —y| oo OR |[A| & .

UV (Short-Distance) SINGULARITIES: LOOSE INTEGRABILITY When
lx —y| \y0 OR a (0.
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NATURAL to TRY: PERTURBATION Series for the CUTOFF Model

Taylor Expansion in A for e~ V(®),

Sg(wl,...,aﬁg) — Z A)

n=0

x |J v<q><Z1>>ddzl ] V(@ (20))ddzn] duc(®) .

= [ @) ()

HERE THEY COME: Feynman Diagrams, Amplitudes & Integrals!

SIMILAR PROBLEM: We CAN COMPUTE the GAUSSIAN Integral

00 2
/ e= % gy = |8 : a >0,

—0o0 «

BUT NOT (0 <e< 1)

00 >
I(a,e)E/ e—ar® gmer’ g . a,e>0.

— 00
Even Though we KNOW IT EXISTS and IS FINITE!
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OBS: Note the ¢ Expansion DIVERGES, Otherwise There Would Be a
Convergence Domain Around ¢ = 0. But we know the Integral DIVER-
GES for € < 0!

HERE: The Series is BOREL SUMMABLE!

Meaning: 1) Perturbation Series With an EXTRA (1/n!) FACTOR Con-
verges, which comes from

1 /OO g’ [—eaf:ﬂn dx

< const™ n!
n! J—co

where we used uwe % < e~ 1w >0, and Stirling’s Formula in

2 212" 408\ 2n An 21
pine—or?/2 [ozx e_o‘4_n] (_n) < (_n) = [const]” (n!)?

4n Q ae

and the fact the integral of the remaining e *°/2 factor is finite.

2) Use the Borel Series SUM to Define the "ORIGINAL FUNCTION'
I(a,e) VIA @ BOREL TRANSFORM (Type of Laplace Transform with
e~t/$ Weight)
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SCALAR MODEL: C), = (—CbA-I-mQ)_l and —AV(®(2)) = — A [¢(2)]*

nth Order Perturbation: THERE ARE: (4n — 1)!l ~ const™ (n!)2 Contri-
butions (Feynman Diagrams): Instanton Problem!

NOTE: EACH TERM is MULTIPLIED by \".

A MAY BE AS SMALL AS YOU WANT!

TOO MANY CONTRIBUTIONS TIMES A\ MAY STILL BE VERY
BIG! The SERIES MAY DIVERGE! (Proved for ¢4 and ¢3)

THIS MAY BE THE CASE OF QED !
Perturbation may be ONLY an ASYMPTOTIC SERIES!

Pure FERMIONS ), : BETTER Situation. By the Pauli Principle,
FERMIONS Are BOUNDED Operators.

Gram Determinant admits the Estimate

H ||f7;||2] {H ||9j||2] ,

‘det (fz',gj)‘ <

which SAVES an n! FACTOR.
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After the UV Treatment that follows, BOREL SUMMABILITY Works
Sometimes. OK e.g. for A¢j_; 5 5.

More General Solution: NON-PERTURBATIVE ANALY TICAL
METHODS

POLYMER or CLUSTER + MAYER EXPANSIONS: Truncated, Finite
Order Expansions in A, KEEPING the e~ *Y Factor. Need Control of
Remainders.

Use Extensively the FAST DECAY of COVARIANCE (Free Propagator)
CURE: Infinite Volume Limit [A| /oo EXISTS WHENEVER m # 0.

Gives, for the NORMALIZED CORRELATIONS

1
S (@, ., p) = ~ Sp(x1,...,2p)

a Convergent Expansion UNIFORMLY in VOLUME |A|, if 0 < A K 1.
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OBS: Both Numerator & Denominator Diverge for |A| /" co by Translation
Invariance in z.

C(z,y) = C(x —y) DECAY: (Spectral Mass Gap) Follows from Payley-
Wiener Thm

—1
Scalar Case: Fourier Transform of Cy(x —y) = (—CbA + m2) (x —y) is

~ —1

Cy(p) = (—Gp?>+m2) "~ p € C, which is ANALYTIC in a Poly-STRIP
Zm pHt < m, u=0,1,...,d—1, so that Cy(z,y) ~ exp(—m|z — y|), for
lx —y| >> 1.

SOME WORDS in the END Regarding the MASSLESS CASE m = 0.
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TASTE OF CLUSTER EXPANSION: In VOLUME A, we can take (as-
sume there is no UV problem):

1

SPR(w, .. wp) = Zn en(Z1, ) . ZA=Son

Unnormalized Correlations:

d
SE,/\(xla' .. ’;UE) — /Cb(xl) .. CD(:UE) ef/\ [-AV(P(2))]d Zd,uc/\(d))

Ch = ANCAN is interpolated as follows: Consider a covering of lambda
with disjoint cubic cells A; of size &~ 1/m (m is the mass appearing in C):
N = U; A

Associate a real variable s;; € [0, 1] to each pair of distinct cells A; # A;
and write

Ca({sij}) = > Sij [A¢0Aj +i < j} + ) A, CA;,
{ij}—pairs € P i
such that Cy = Ca({s;;} = 1).
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d
dSij
explicit propagator [AiCAj + 1 & j].

By

Ca({sij}) we generate a link between A; and A; given by the

For f € CL(R), we define Zf(s) = f(s=0) and Jf(s) = /01 dfd—(s)ds such
S

that by the Fundamental Theorem of Calculus, we have:

fQ1) =[Z+T1f(s).

CLUSTER EXPANSION:

11 7

qeQ

11 Z

pEQ

11 (Zi; + Tisl = >

{ij}—pairs e P QCP
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For the ACTION of J: INTEGRATION by PARTS FORMULA:

/f(qb) dpc(s)($) = ——/da;dydc(s 79 / [(sqs( e )f((b) dpci(s)(¢)

)
Each % may generate new ¢ fields in the integrand.

By Wick's Thm, for boson fields, this leads to bad factorials!

However, the NUMBER of GENERATED Fields per PAIR of CELLS is

d

FINITE and the propagators produced by o with ROOT in Cell A,
S

MUST GO FURTHER AND FURTHER.

This Gives SMALL WEIGHTS Accompanying the bad factorials due to a
Large Number of Produced Fields
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NET RESULT: EXP DECAY FACTORS CAN BEAT ANY FACTO-
RIAL Coming from Wickl!.

THE EXPANSION CONVERGES FOR SMALL |\ both in Nume-
rator and Denominator of Normalized Correlations.

USING A MAYER EXPANSION: The BAD Dependence on |A| cancels
out leading to the EXISTENCE of THERMODYNAMIC LIMIT.

OBS: NEED TO USE A BETTER (INDUCTIVE, TREE) Expansion
Instead of the above PAIRWISE, to Preserve POSITIVITY of Covariance!
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PHYSICS: GOING BACK TO PERTURBATION in X...
Now Consider the CONTINUUM LIMIT a ™\, O:

Depending on d: INDIVIDUAL CONTRIBUTIONS MAY DIVERGE Due
to UV Singularities of C(z,vy)

To Have the UV Limit: RENORMALIZATION

SUBTRACTION of UV SINGULARITIES By REDEFINING the PHYSI-
CAL PARAMETERS ¢, m and A.
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HEPP’s Thm (Perturbative Renormalization, 1965): For a Class of MO-
DELS called PERTURBATIVELY RENORMALIZABLE, Very Dependent
on d, we can RENDER FINITE CORRELATIONS IN EACH FIXED
PERTURBATION ORDER.

How: Consider a CUTOFF MODEL

For Example: USE a SPACETIME Lattice of Spacing a or Replace e.g.

: : - S — 1
in Bosonic Case the Fourier Transform C(p) = 22 by
Culp) = " 0
p — Y a > 9
' Ca p? + m%

so that C is obtained from Cg, in the a \, 0 Limit.

Replace the Covariance C(x,y) of Gaussian Measure by Cy(z,y), and
Define UV Cutoff Correlations S,2""(z1,...,xy) = Zia Se.a(T1,. -, p).

Fix the PHYSICAL (Renormalized) Model Parameters Aren, > 0, myen > 0
and real (ren.
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Perturbative Renormalization: It is POSSIBLE to Define VIA PERTUR-
BATION SERIES in A\.en the BARE (cutoff dependent) PARAMETERS:

Aa = A (a, Aren, Mren, Cfren> — Z An(aa Mren, C?“en) A?en )

n>0
Mg = MM (CL, Aren, Mren, C’r*en) — Z mn(&, Mren, CT@TL) A?en 3
n>0
Ca = C (CL, )\ren, Mren, Cren) — Z Cn(a, Mren, C:ren) )‘Z“Len :
n>0
such that the limit a \, 0 exists for S/ (x1,...,20) = 7 Sp(21,...,2¢)

Order by Order in Perturbation.

ABOVE SERIES: Obtained Using the Zimmermann's FOREST FOR-
MULA (see e.g. Collin's Book).

Renormalization (Subtraction Procedure) GOES FROM SMALLER DI-
VERGENT SUBGRAPHS of a Feynman Graph TO THE BIGGER SUB-
GRAPHS (Including Eventually the Graph Itself)
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FOREST: Sets of EITHER DISJOINT (no common line) or CHAINED
GRAPHS (with Strict Inclusion, G1 C Go C ... C G)

The OVERLAPPING DIVERGENCE PROBLEM Has Been Cured LONG
AGO! But Even Books Published After 1965 May Still Talk About This
While Forgetting Forests...

BUT The Perturbation Convergence PROBLEM CONTINUES: BAD
DEPENDENCE in Pertubation order n.

INDIVIDUAL Renormalized Contributions at Order n MAY HAVE A (n!)
BEHAVIOR.

This is the RENORMALON Problem!
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Example: THE BUBBLE CHAIN CASE in the A\¢7 Model

BUBBLEs FIGURE

B(p) ~ | C(k)C(k+p) d*k DIVERGES LOGARITHMICALLY

Ba(p) ~ | Ca(k)Ca(k + p) d*k ~ —loga
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Graph with RENORMALIZED BUBBLE CHAIN With n—1 Bubbles as a
Subgraph:

[ CERP [Bren@)]" ™ dp = [ 5

g (log [p|)"™ d*p ~ n!
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CURE: Consider the Gross-Neveu, Model (With More than One-Component
Fermions)

The Scenario is the SAME. Re-Introduce the (RUNNING) Coupling Cons-
tant in the Story

~ ~ ~ n—1
[ ) IC@IP [Ba(p) — Balp = 0)]" d*p
—1
A'(p) is Dimensionless and Behaves as — (Iog Ip| ~ log a_1> |, for large
p| (a ™\ 0).
This KILLS the n! Behavior of the Bubble Chain

GN> MODEL IS UV ASYMPTOTICALLY FREE!
NOT the Case for ¢ !
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HOW CAN THIS BE RIGOROUSLY IMPLEMENTED?

MULTISCALE NON-PERTURBATIVE Polymer or Cluster 4+ Mayer:
Expansions.

CURE: Simultaneously Both Limits a \, O and |A| 7 oo, resulting in
Convergent Expansions, UNIFORMLY Both in a, |A|, for COMPLETELY
CUTOFF Correlations

1

SETR @1,y wg) =
a,/\

Sean(Ti,. .., xp),

IMPLEMENTATION: Use p to play the role of UV Cutoff Parameter
—1
a - >0
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REPLACE Cy e Cf by C , € Oy , such that in Fourier Space

~ 1 ~ —iy +m
C — C p—
Become
Cy.,(p) = 1no(p) , Ct,(p) = B no(p)
b,p Cb,pPQ i mg P 5P C]%pPQ + m% P

where n,(p) is a UV Cutoff Function of p. For example, as before

2 -2
np(p) = e P M g MeN, M>2.

Y

np(p) has support concentrated on P = {p € Rd/pQ < M2p}_

UV Limit is Given by p oo, in which n,(p) — 1.
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Generically: CUTOFF FIELDS &, (¢,, 1p and 1)

(Forgetting A Dependence) the UV Cutoff Correlations
Stp(@1, o sw) = [ (@r) - d(ag) dp(®y),

with dv,(P,) = exp {/ —Xp V(P,(2)) ddz} ducp(cbp), where ducp(CDp) Has
Covariance C), and

[Co(z —y)| > exp[-M |z —yl] , [z—y[>1.

MULTISCALE ANALYSIS (Renormalization Group):

Decompose 7,(p) = >F_5 n'(p) with

: L 2a—2i o 2ar—2(i—-1) .
n'(p) = e P M7 _ 7P M L i=1,....,p ; n%p)=1,

n'(p) is Supported on |p| ~ M*!
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This Decomposition Induces a Field, a Covariance and a Gaussian Mea-
sure Decomposition. Namely,

ép(P) — Zf:o éi(P)

such that

Stp(@1 ) = [ Ba1) - D) dup(®p = DYy )

with du,(d,) = exp {/—Apv(@le i(2)) ddz} ﬁ dp (DY),
1=0

dpi(PY) has Covariance C*.

C' Has the SCALED DECAY Ci(z —y) ~ e~ M'l==ul  for |z — y| > 1.
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Starting with p Dependent Parameters A,, m, and ¢, no cutoff UV p,
NON-PERTURBATIVE Renormalization Aims at FINDING FUNCTI-
ONS
= A(p, Aren, Mren, Cren),

mp = m(p, Aren, Mren, Cren),

Cp = C(p, Aren, Mren, Cren)
of p, and the Renormalized Parameters (Aven, mren, Cren), With Apen > 0O,
such that the limit p —+ oo of Correlations EXISTS.

RG MAP: Dynamical System Generated by the EACH INTEGRATION
over the SCALED FIELDS &, oP—1 . ot .. 0 RESPECTING THIS
ORDER.

Equivalently: SMALL DISTANCES — LARGE DISTANCES.
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In PARAMETER SPACE: Before Integrating Over &

Ap = A(p, Aren, Mren, Cren), Ai = A4, Aren, Mren, Cren),
mp = m(Pa Aren, Mren, C’ren), — ... — m; = m(i, Aren, Mren, C’ren),
Cp = ((p, Aren; Mren, Cren) ¢i = C(4, AMren, Mren, Cren)

POSSIBLE to Formulate in HAMILTONIAN or ACTION SPACE!

TAUTOLOGY: UV LIMIT EXISTS if THERE IS A STABLE FIXED
POINT of this MAP!

OBSERVATION: ZERO MASS CASE (m = 0) the IR Limit Can Be
Similarly Treated.

IMPORTANT: STABLE FIXED POINT Defines the CONCEPT of ASYMP-
TOTIC SAFETY

SUCCESS: MANY MODELS (QFT, Statistical Mech., Condensed Mat-
ter)

QFT: GNj, YMy, Infrared ¢Z (with A < 0), Fermi Liquids in d = 3,...
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IN ALL THIS: Still Perturbation Series Gives the INSPIRATION!
MANY NAMES ARE INVOLVED IN DEVELOPING THIS MAT TER!
PERSONAL CONTRIBUTION: UV Renormalizability of the PERTUR-
BATIVELY NON-RENORMALIZABLE GN3 with a Large Number N of
Components. BUBBLE CHAIN SUMMATION with Cutoff Leads to

a Perturbatively Renomrmalizable Model in a NEW PARAMETER
and then to a NONTRIVIAL UV FIXED POINT.

BUT, for GN3: NO O-5S AXIOMS YET!
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While an Undergraduate Student, I profited from long conversations with

Prof. Patricio Letelier during my several visits to the UNICAMP. After
this, unfortunately, I never met him...

BUT HERE IS MY CONTACT POINT, TODAY, With PROF. LETE-
LIER!

WHAT ABOUT GRAVITY?

Quantum Gravity is NOT Perturbatively Renormalizable. Any Way to
See It is UV Asymptotically SAFE?

THANKS FOR YOUR AT TENTION!
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