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AS EVERYONE HERE KNOWS...

Historical Level: QFT has its origin by ≈ 1930 incorporating both Quan-

tum Mechanics + Special Relativity.

Employed in the Formulation of Physics Models of Particles and Their

Interactions (Electrons, Protons, Photons, Pions, Neutrinos, ...)

QUITE SUCCESSFUL! In QED: PERTURBATION Leads to Precision

of One Part in 108: Lambshift, ... Theoretical Precision is WORSE

THAN the EXPERIMENTAL ONE!

FROM a MATHEMATICAL VIEWPOINT: DIFFICULT CHALLENGE!

(UNCOUNTABLE) INFINITE NUMBER OF DEGREES OF FREEDOM.

HARD MATHEMATICAL ANALYSIS!

MY GOAL: In the MATHPHYS, Constructive QFT Context

REVIEW SOME of the MAIN STRUCTURAL PROBLEMS FOUND

If We TRY TO GO BEYOND the Beginning of PERTURBATION!
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CLASSIFICATION of the ANALYTICAL PROBLEMS

TWO TYPES:
CONSTRUCTION OF MEASURES and DETERMINATION OF
THE PARTICLE CONTENTS of MODELS

Determination of the PARTICLES and BOUND STATES: Subject
of My Second Talk (Seminar 5, Later), in the Special Case of LQCD

TODAY: CONCENTRATE on the First Problem

TWO EXAMPLE CASES: the SCALAR λϕ4d and the GROSS-NEVEU
MODELS in d SPACETIME EUCLIDEAN DIMENSIONS.

In EUCLIDEAN SPACETIME: the SCALAR λϕ4d Model is a CLASSICAL
STATISTICAL MECHANICS Model of CONTINUOUS SPINS.

Osterwalder-Schrader: O-S Axioms (Euclidean Invariance, Reflection
Positivity, Ergodicity, Analyticity, Regularity) WAY to GO BACK to
MINKOWSKI with PHYSICAL WIGHTMAN-HAAG-RUELLE AXIOMS
(Lorentz Covariance, Observables,...). See Glimm-Jaffe’s book.

2



I will try to give a relatively complete scenario, but avoiding technicalities

as much as I can ...

ORGANIZATION

1. Introduction: Quick REVIEW of QUANTUM MECHANICS, SEMI-

GROUPS & Feynman FUNCTIONAL INTEGRALS.

2. Definition of a QFT (Constructive Context)

3. MAIN PROBLEMS Related to the Construction of Physical Measures:

Existence of a Functional Integral
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1) QUANTUM Mechanics (in unities where ~ = 1)

t ∈ R denotes TIME

r⃗ ≡ (x1, x2, . . . , xd) ∈ Rd denotes POSITION. HERE, d = 3 is the SPA-

TIAL Dimension

PHYSICS: Described by Complex Vectors Ψ ≡ Ψ(t, r⃗) in a HILBERT

Space H (Complete Normed Space with Inner Product ( . , . )H)

PHYSICAL OBSERVABLES: Associated with SELF-ADJOINT (Hermi-

tian) OPERATORS in H.

EXPECTED VALUE of Observable O on STATE Ψ is

EΨ(O) =
(Ψ,OΨ)H
(Ψ,Ψ)H

,
(
O∗Ψ , Ψ′

)
H

=
(
Ψ , OΨ′

)
H

SPECTRUM (Eigenvalues,...): specO ⊂ R, MEASURABLE in EXPERI-

MENTS !
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OBS: IF [O1,O2] ≡ O1O2 − O2O1 = 0 there exists a basis B of H in

which O1 e O2 are Simultaneously Diagonal.

Particle Moving UNDER the ACTION of a POTENTIAL V (~ = 1):

ENERGY OPERATOR: H = − 1
2m∆ + V (r⃗) , m > 0 is mass

−∆ is minus the Laplacian: − ∂2

∂x21
− . . .− ∂2

∂x2d
≥ 0

H0 ≡ −∆/2m describes the KINETIC ENERGY p2/2m

V (r⃗) Multiplication Operator by the Physical Potential

TIME EVOLUTION (Schrödinger’s Eqn): DETERMINISTIC!

i
∂

∂t
Ψ = HΨ
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PROBABILISTIC: is the COPENHAGEN Interpretation

Basic Physical Choice: Square Integrable Function Space H = L2(ddx⃗,Rd)

Heisenberg Uncertainty: Cauchy-Schwarz Inequality in H

Ψ measures Probability Amplitude to find the particle in (t, r⃗)

∥Ψ∥2 ≡ ⟨Ψ , Ψ⟩ ≡
∫

Ψ̄(t, r⃗)Ψ(t, r⃗) ddx⃗ gives the PROBABILITY to Find

the Particle in (t, r⃗).

UNDERLYING UNITARY TIME EVOLUTION SEMI-GROUP:

Ψ(t, r⃗) = e−iH(t−t0) Ψ(t0, r⃗) , (Norm Preserving)

H is the Generator ! (modulo multiplicative constant)

OBS: By the SPECTRAL THM, SPECTRUM of H Determines the

Time Evolution !
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COMPLICATIONS: dimH may be ∞; V (r⃗) may be SINGULAR!

Convenient for Analysis: IMAGINARY TIME (Euclidean) it → t

Ψ(t, r⃗) = e−H(t−t0) Ψ(t0, r⃗)

H = H0 + V > 0, for a CONTRACTION

∥Ψ∥ Does NOT Increase! (Guarantees PROBABILISTIC Interpretation)

For This: V Bounded from Below. Physics OK! In TIME EVOLUTION

SEMI-GROUP, APPLY:

Lie-Trotter Product Formula: (May have [A,B] ̸= 0)

e−(A+B) = lim
n→∞

(
e−A/n e−B/n

)n

HERE: A = H0 e B = V , Both Bounded from Below in H.
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BESIDES: REQUIRE H = H0+V to be ESSENTIALLY SELF-ADJOINT

in H0 & V DOMAIN INTERSECTION.

ESSENTIALLY SELF-ADJOINT: O = O∗∗

[V ∈ L2(Rd, ddx) + L∞(Rd) such that H is self-adjoint in D(H0)]

OBS: Under These CONDITIONS: Strongly Continuous SEMI-GROUP

+ CONVERGENCE of LIMIT n→ ∞ in Lie-Trotter (in Strong Topology).
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FEYNMAN-KAC FORMULA

Φ ∈ L2(Rd, ddx), 2m = 1

(
e−H0 tΦ

)
(x) =

(
1

4πt

)d/2 ∫
Rd

e−
|x−y|2

4t Φ(y) ddy ,

(
∫
Rd ≡ limR→∞

∫
|x|≤R with limit in L2 norm)

(
e−(H0+V )tΦ

)
(x)= lim

n→∞

(
n

4πt

)dn
2
∫
Rd
. . .

∫
Rd
e−t Sn(x,y1,...,yn)Φ(yn) d

dy1. . .d
dyn ,

Sn(x ≡ y0, y1, . . . , yn) =
n∑
i=1

1

n

1
4

(
|yi − yi−1|

t/n

)2
− V (yi)


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UNCERTAINTY Principle: The y´s are in the WHOLE SPACE. Given

INITIAL/FINAL Point, SUM Over ALL TRAJECTORIES With Cor-

responding Statistical Weight!

FEYNMAN: Sum Over ALL HISTORIES!

For Ωx being the SET of ALL PATHS ω with ω(0) = x,(
e−(H0+V ) tΦ

)
(x) =

∫
Ωx

e−tS(ω)Φ(ω(t)) dω .

OBS: the WIENER Measure of all these RANDOM PROCESSES can be

CONSTRUCTED.

S is the System ACTION !
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2) QFT: INCORPORATING SPECIAL RELATIVITY to QM

EUCLIDEAN QFT: EQUIVALENT to Classical Statistical Mechanics.

Similarly to QM: DEFINED by FUNCTIONAL Integral

HERE: INTEGRAL is OVER the Φ FIELD SPACE S ′

• x ∈ Rd denotes a d-dimensional SPACETIME Point.

• Φ(x) Field Variable defined at x

• ℓ ∈ {0,1,2,3, . . .}
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Normalized Correlations or Schwinger Functions with ℓ-points are formally

given by:

S norm
ℓ (x1, . . . , xℓ) =

1

Z
Sℓ(x1, . . . , xℓ) ,

Partition Function: Normalization Z ≡ S0

UNNORMALIZED CORRELATIONS: Are the Moments

Sℓ(x1, . . . , xℓ) =
∫

Φ(x1) · · ·Φ(xℓ) dν(Φ) ,

of the measure dν(Φ) = exp
{∫

[−λ V (Φ(z))] ddz
}
dµC(Φ).

Gaussian Measure: dµC(Φ) - Normalized, Zero Mean & Covariance C.

OBS: S norm
ℓ (x1, . . . , xℓ) is the ℓ ∈ N order moment of the

Gibbs Probability Measure dν(Φ)/Z.
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EXPLANATIONS

• dν(Φ) the formal product ‘ e−A(Φ)dΦ ’, where the Action A(Φ) in
the Exponential has a FREE Part (quadratic form)

exp −
1

2

[∫
Φ(z1)C

−1(z1, z2)Φ(z2)d
dz1d

dz2

]
,

defined with the Covariance C, Times the Exponential of the Interac-
tion Among the Fields Φ

exp
[∫

[− λV (Φ(x))] ddx
]
,

where λ ∈ R is the COUPLING Constant measuring the Intensity of
the Interaction Potential V (Φ).

• Usually, V (Φ) is Local, combination of monomials in Φ(x), and even-
tually some derivatives of Φ.

• For unbounded Φ: V (Φ) must be physically stable, Bound From Be-
low, such that exp

[∫
− λV (Φ(x))ddx

]
DECAYS at INFINITY, for a

fixed SIGN of λ.
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Quantization is IMPLICIT in Wiener INTEGRATION. FIELDS Scan ALL

the SPACE S ′.

Φ are random processes in S ′ and are Defined Over SPACETIME Rd.

AGAIN, the Math Complexity: INFINITE, UNCOUNTABLE Number of

Degrees of Freedom Φ(x), x ∈ Rd.

Convenient: UNDERSTAND the INFINITE NUMBER of Degrees of Fre-

edom LIMIT in TWO STEPS.

Example: Rd is APPROXIMATED by a Compact Domain Λ in a LAT-

TICE (aZ)d, of FINITE VOLUME |Λ| and SPACING a > 0.
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AFTERWARDS: REMOVE the CUTOFFS! Take, in Some Order, the

INFINITE-VOLUME Limit (Thermodynamic Limit) |Λ| ↗ ∞ and the

CONTINUUM Limit a↘ 0.

By FOURIER

CONTINUUM Limit is the Ultraviolet Limit (UV).

INFINITE VOLUME Limit is the INFRARED Limit (IR).

CUTOFF Parameters: IR (Λ) and UV (a), May be Implemented Both

in CONFIGURATION SPACE Space x or in the Fourier Dual Space of

MOMENTA.

Minlos-Bochner Thm: Gaussian Measure dµC(Φ) can be Realized in

Schwartz Space S ′ of TEMPERED DISTRIBUTIONS, ensuring the EXIS-

TENCE of Fourier Transforms, for C > 0, almost everywhere.
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OBSERVATION: Interest for Distributions is Already Manifested in the

FREE CASE λ = 0.

See e.g CLASSICAL PDE in Relativistic Minkowski space for Klein-Gordon

fields.

Notational ABUSE! Misleading but SIMPLIFIED Φ(x)

UNDERSTOOD: Canonical Pairing, (test function f smearing)

Φ(f) =
∫

Φ(x) f(x) ddx ; x ≡ (t, x⃗) ≡ (x0, x⃗) = (x0, x1, . . . , xd−1) ,

f ∈ S in DUAL SPACE of SMOOTH Fcts with FAST DECAY at ∞.

In FINITE LATTICE Λ ⊂ aZd: Fields are Sufficiently Smoothed. Φ(x) is

a Realistic Notation. Gaussian Measure dµC(Φ) is Given by EXP Qua-

dratic Part (with Covariance C) times Product Measure of Lebesgue

Measures dΦ(x).
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MAY USE a Larger or Matrix Valued TENSORED SPACE S ′ ⊗ W to
Include Interesting Features as MANY FIELD COMPONENTS, SPIN,
ISOSPIN, COLOR, etc.

CONCRETE EXAMPLE: d ≥ 2 & Four-Body Potentials s.t. Scalar

Bosonic Model λϕ4 and the Purely FERMIONIC Gross-Neveu Model.

Modelo ϕ4 Modelo GN

Φ = ϕ Φ = ψ̄α, ψα ; α ∈ {spin}

C ≡ Cb =
(
−ζb∆+m2

)−1
C ≡ Cf =

[(
iζf∂/+mI

)]−1

− λV (Φ(z)) = − λ [ϕ(z)]4 , λ > 0 − λV (Φ(z)) = λ
[
ψ̄(z)ψ(z)

]2
,

ϕ describes a Bosonic neutral particle of Spin 0. Cb (inverse of Klein-
Gordon) Operator defined in Sobolev Space H1∼L2

(
(p2 +m2) ddp, Λ̃

)
,where

Λ̃ is the Fourier dual space for Λ.

ψα, ψ̄α associated with Fermionic charged particles Spin 1
2 (electron, posi-

tron, etc). Cf : inverse of Dirac Operator in H1
2
∼L2

(
(p2 +m2)

1
2 ddp, Λ̃

)
.
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ψ̄α(x), ψα(x) , ∀x ∈ Λ, obey Pauli Exclusion, and are generators of a
(anticommutative) Grassmann Algebra AΛ, α = 1, ..., s (s= Dimension of
Spinorial Degrees of Freedom).

Defining: on the Lattice, ∀x ∈ Λ, associate a Complex Vector Space Vx,

Vx = V 1
x ⊕ V 2

x , dim(V 1
x , V

2
x ) = s

For V 1
x take the basis ψ̄α(x), α = 1, ..., s, and for V 2

x a basis ψα(x),
α = 1, ..., s.

In general, V ix = (V ix)spin ⊗ (V ix)int, where (V ix)int is an INTERNAL Index
Space e N = dim(V ix)int.

AΛ is the Grassmann Algebra over VΛ = ⊕x∈Λ Vx.

Berezin (Fermionic) INTEGRALS: are used for the integral in AΛ. Expli-
citly, (

∧
denotes the Exterior Product.)∫ ∧

α,a
(ψ̄α,a(x) ∧ ψα,a(x))

∧
α,a

dψ̄α,a(x)dψαa(x) = 1
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The integral∫
(monomials in ψ̄α,a(x) and ψα,a(x) with degree less than the maximum)

×
∧
α,a dψ̄α,a(x)dψα,a(x) = 0 ,

Integral is Extended for ALL AΛ using Linearity.

∧
will be OMITTED in Notation.

SPECIAL ROLE Played by Gaussian Integrals in dν(Φ) since we can com-

pute them! ∫
ϕ(x)dµC(ϕ) = 0 ,∫

ϕ(x1)ϕ(x2)dµC(ϕ) =
∫
ϕ(x2)ϕ(x1)dµC(ϕ) = Cb(x1, x2) ,
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∫
ψ̄α(x)dµC(ψ̄, ψ) =

∫
ψα(y)dµC(ψ̄, ψ) = 0 ,∫

ψ̄α(x1)ψ̄β(x2)dµC(ψ̄, ψ) = −
∫
ψ̄β(x2)ψ̄α(x1)dµC(ψ̄, ψ) = 0 ,∫

ψα(y1)ψβ(y2)dµC(ψ̄, ψ) = −
∫
ψβ(y2)ψα(y1)dµC(ψ̄, ψ) = 0 ,∫

ψ̄α(x)ψβ(y)dµC(ψ̄, ψ) = −
∫
ψβ(y)ψ̄α(x)dµC(ψ̄, ψ) =

[
Cf
]
αβ

(x, y) .

for the one-component case.

For Higher Degree Monomials, we have Wick’s Thm for even ℓ,∫
ϕ(x1) . . . ϕ(xℓ)dµC(ϕ) =

∑
pairings {(xi,xj),...}

∏
pairs

Cb(pair) ,

where the (pairing) set exhaust the set of Points {x1, . . . , xℓ}, each xi is

taken only ONCE and Cb(pair) = Cb(xi, xj) if the pair (xi, xj) is taken.
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There are (ℓ− 1)!! = (ℓ− 1) (ℓ− 3) (ℓ− 5) . . .1 possible pairings , since

the first field has (ℓ−1) possible contractions (pairing), There are (ℓ−3)

for the second field, etc.

The integral VANISHES if ℓ is ODD.

FERMIONIC CASE:∫
ψ̄α1(x1) . . . ψ̄αℓ(xℓ) ψβ1(y1) . . . ψβℓ(yℓ) dµC(ψ̄, ψ)

=
∑

pairings {(xi,αi ; yj,βj),...}

∏
pairs

sign Cf(pair) ,

sign: determined by the Number of Anticommutations to Perform a Per-

mutation such that ψβ2(x2) is Placed on the Right of the Contracting

ψ̄α1(x1) Leading to a PROPAGATOR [Cf ]α1β2(x1, x2).

The Integral VANISHES if the NUMBER of ψ̄ and ψ are DIFFERENT.
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In Cayley’s Notation (up to a global multiplicative factor (−1))∫
ψ̄α1(x1) . . . ψ̄αℓ(xℓ)ψβ1(y1) . . . ψβℓ(yℓ)dµC(ψ̄, ψ)

=

(
x1, α1 x2, α2 . . . xℓ, αℓ
y1, β1 y2, β2 . . . yℓ, βℓ

)

≡ det

 Cα1,β1(x1, y1) . . . Cα1βℓ(x1, yℓ)... . . . ...
Cαℓ,β1(xℓ, y1) . . . Cαℓβℓ(xℓ, yℓ)


and we let C ≡ Cf .

IMPORTANT OBSERVATION: The ABOVE det is a GRAM Determi-

nant

det(fi, gj), of a Matrix with Elements Given by a SCALAR PRO-

DUCT in L2(d
dx,Rd).

22



MATH DIFFICULTY: Control the PERTUBATIONS ABOUT
GAUSSIAN MEASURES

3) PROBLEMS: PRESENCE of SINGULARITIES

For Example, in the Continuum Infinite Volume BOSONIC Case:

(−∆+m2)Cb(x, y) = δ(x− y)

|x− y| ≪ 1 : Cb(x, y) ≈


−

1

2π
ln(m |x− y|) , d = 2

Γ(d−2
2 )

4πd/2
|x− y|−d+2 , d ≥ 3

|x− y| ≫ 1 : Cb(x, y) ≈
√
π/2 (2π)−d/2 m(d−3)/2 |x− y|−(d−1)/2 e−m|x−y| .

IR (Large-Distance) SINGULARITIES:m = 0 (Critical Phenomena, Phase
transitions). NOT INTEGRABLE when |x− y| ↗ ∞ OR |Λ| ↗ ∞.

UV (Short-Distance) SINGULARITIES: LOOSE INTEGRABILITY When
|x− y| ↘ 0 OR a↘ 0.

23



NATURAL to TRY: PERTURBATION Series for the CUTOFF Model

Taylor Expansion in λ for e− λ
∫
V (Φ),

Sℓ(x1, . . . , xℓ) =
∞∑
n=0

(−λ)n

n!

∫
Φ(x1) . . .Φ(xℓ)

×
[∫

V (Φ(z1))d
dz1 . . .

∫
V (Φ(zn))ddzn

]
dµC(Φ) .

HERE THEY COME: Feynman Diagrams, Amplitudes & Integrals!

SIMILAR PROBLEM: We CAN COMPUTE the GAUSSIAN Integral∫ ∞

−∞
e−αx

2
dx =

√
2π

α
, α > 0 ,

BUT NOT (0 < ϵ≪ 1)

I(α, ϵ) ≡
∫ ∞

−∞
e−αx

2
e−ϵx

4
dx ; α , ϵ > 0 .

Even Though we KNOW IT EXISTS and IS FINITE!
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OBS: Note the ϵ Expansion DIVERGES, Otherwise There Would Be a
Convergence Domain Around ϵ = 0. But we know the Integral DIVER-
GES for ϵ < 0!

HERE: The Series is BOREL SUMMABLE!

Meaning: 1) Perturbation Series With an EXTRA (1/n!) FACTOR Con-
verges, which comes from∣∣∣∣ 1n!

∫ ∞

−∞
e−αx

2 [
−ϵx4

]n
dx

∣∣∣∣ ≤ constn n!

where we used ue−u ≤ e−1 , u > 0, and Stirling’s Formula in

x4ne−αx
2/2 =

[
αx2

4n
e−α

x2
4n

]2n (
4n

α

)2n
≤

(
4n

αe

)2n
= [const]n (n!)2

and the fact the integral of the remaining e−αx
2/2 factor is finite.

2) Use the Borel Series SUM to Define the ’ORIGINAL FUNCTION’
I(α, ϵ) VIA a BOREL TRANSFORM (Type of Laplace Transform with
e−t/s Weight)
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SCALAR MODEL: Cb =
(
−ζb∆+m2

)−1
and −λV (Φ(z)) = −λ [ϕ(z)]4

nth Order Perturbation: THERE ARE: (4n − 1)!! ≃ constn (n!)2 Contri-
butions (Feynman Diagrams): Instanton Problem!

NOTE: EACH TERM is MULTIPLIED by λn.
λ MAY BE AS SMALL AS YOU WANT!
TOO MANY CONTRIBUTIONS TIMES λn MAY STILL BE VERY
BIG! The SERIES MAY DIVERGE! (Proved for ϕ42 and ϕ43)

THIS MAY BE THE CASE OF QED !!!!
Perturbation may be ONLY an ASYMPTOTIC SERIES!

Pure FERMIONS ψ̄, ψ: BETTER Situation. By the Pauli Principle,
FERMIONS Are BOUNDED Operators.

Gram Determinant admits the Estimate∣∣∣det (fi, gj)∣∣∣ ≤
∏
i

∥fi∥2

 ∏
j

∥gj∥2

 ,

which SAVES an n! FACTOR.
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After the UV Treatment that follows, BOREL SUMMABILITY Works

Sometimes. OK e.g. for λϕ4d=1,2,3.

More General Solution: NON-PERTURBATIVE ANALYTICAL

METHODS

POLYMER or CLUSTER + MAYER EXPANSIONS: Truncated, Finite

Order Expansions in λ, KEEPING the e−λV Factor. Need Control of

Remainders.

Use Extensively the FAST DECAY of COVARIANCE (Free Propagator)

CURE: Infinite Volume Limit |Λ| ↗ ∞ EXISTS WHENEVER m ̸= 0.

Gives, for the NORMALIZED CORRELATIONS

S norm
ℓ (x1, . . . , xℓ) =

1

Z
Sℓ(x1, . . . , xℓ)

a Convergent Expansion UNIFORMLY in VOLUME |Λ|, if 0 < λ≪ 1.

27



OBS: Both Numerator & Denominator Diverge for |Λ| ↗ ∞ by Translation

Invariance in x.

C(x, y) ≡ C(x − y) DECAY: (Spectral Mass Gap) Follows from Payley-

Wiener Thm

Scalar Case: Fourier Transform of Cb(x− y) =
(
−ζb∆+m2

)−1
(x− y) is

C̃b(p) =
(
−ζbp2 +m2

)−1
, p ∈ C, which is ANALYTIC in a Poly-STRIP

|Im pµ| ≤ m, µ = 0,1, . . . , d − 1, so that Cb(x, y) ∼ exp(−m|x − y|), for

|x− y| >> 1.

SOME WORDS in the END Regarding the MASSLESS CASE m = 0.
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TASTE OF CLUSTER EXPANSION: In VOLUME Λ, we can take (as-

sume there is no UV problem):

S norm
ℓ,Λ (x1, . . . , xℓ) =

1

ZΛ
Sℓ,Λ(x1, . . . , xℓ) , ZΛ ≡ S0,Λ ,

Unnormalized Correlations:

Sℓ,Λ(x1, . . . , xℓ) =
∫

Φ(x1) · · ·Φ(xℓ) e
∫
Λ [−λ V (Φ(z))] ddz dµCΛ

(Φ)

CΛ = ΛC Λ is interpolated as follows: Consider a covering of lambda

with disjoint cubic cells ∆i of size ≈ 1/m (m is the mass appearing in C):

Λ = ∪i∆i.

Associate a real variable sij ∈ [0,1] to each pair of distinct cells ∆i ̸= ∆j

and write

CΛ({sij}) =
∑

{ij}−pairs ∈P
sij

[
∆iC∆j + i↔ j

]
+

∑
i

∆iC∆i ,

such that CΛ = CΛ({sij} = 1).
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By
d

dsij
CΛ({sij}) we generate a link between ∆i and ∆j given by the

explicit propagator
[
∆iC∆j + i↔ j

]
.

For f ∈ C1(R), we define If(s) = f(s = 0) and J f(s) =
∫ 1

0

df(s)

ds
ds such

that by the Fundamental Theorem of Calculus, we have:

f(1) = [I + J ]f(s) .

CLUSTER EXPANSION:

∏
{ij}−pairs ∈P

[Iij + Jij] =
∑

Q⊂P

 ∏
q∈Q

Jq


 ∏
p/∈Q

Ip


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For the ACTION of J : INTEGRATION by PARTS FORMULA:

d

ds

∫
f(ϕ) dµC(s)(ϕ) = −

1

2

∫
dxdy

dC(s, x, y)

ds

∫ [
δ

δϕ(x)

δ

δϕ(y)
f(ϕ)

]
dµC(s)(ϕ) .

Each
δ

δϕ
may generate new ϕ fields in the integrand.

By Wick’s Thm, for boson fields, this leads to bad factorials!

However, the NUMBER of GENERATED Fields per PAIR of CELLS is

FINITE and the propagators produced by
d

ds
, with ROOT in Cell ∆,

MUST GO FURTHER AND FURTHER.

This Gives SMALL WEIGHTS Accompanying the bad factorials due to a

Large Number of Produced Fields
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NET RESULT: EXP DECAY FACTORS CAN BEAT ANY FACTO-

RIAL Coming from Wick!.

THE EXPANSION CONVERGES FOR SMALL |λ| both in Nume-

rator and Denominator of Normalized Correlations.

USING A MAYER EXPANSION: The BAD Dependence on |Λ| cancels

out leading to the EXISTENCE of THERMODYNAMIC LIMIT.

OBS: NEED TO USE A BETTER (INDUCTIVE, TREE) Expansion

Instead of the above PAIRWISE, to Preserve POSITIVITY of Covariance!
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PHYSICS: GOING BACK TO PERTURBATION in λ...

Now Consider the CONTINUUM LIMIT a↘ 0:

Depending on d: INDIVIDUAL CONTRIBUTIONS MAY DIVERGE Due

to UV Singularities of C(x, y)

To Have the UV Limit: RENORMALIZATION

SUBTRACTION of UV SINGULARITIES By REDEFINING the PHYSI-

CAL PARAMETERS ζ, m and λ.
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HEPP’s Thm (Perturbative Renormalization, 1965): For a Class of MO-

DELS called PERTURBATIVELY RENORMALIZABLE, Very Dependent

on d, we can RENDER FINITE CORRELATIONS IN EACH FIXED

PERTURBATION ORDER.

How: Consider a CUTOFF MODEL

For Example: USE a SPACETIME Lattice of Spacing a or Replace e.g.

in Bosonic Case the Fourier Transform C̃(p) = 1
ζp2+m2 by

C̃a(p) =
e−p

2 a

ζa p2 +m2
a

, a > 0 ,

so that C is obtained from Ca in the a↘ 0 Limit.

Replace the Covariance C(x, y) of Gaussian Measure by Ca(x, y), and

Define UV Cutoff Correlations S norm
ℓ,a (x1, . . . , xℓ) = 1

Za
Sℓ,a(x1, . . . , xℓ).

Fix the PHYSICAL (Renormalized) Model Parameters λren > 0, mren > 0

and real ζren.
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Perturbative Renormalization: It is POSSIBLE to Define VIA PERTUR-

BATION SERIES in λren the BARE (cutoff dependent) PARAMETERS:

λa ≡ λ (a, λren,mren, ζren) =
∑
n≥0

λn(a,mren, ζren)λ
n
ren ,

ma ≡ m (a, λren,mren, ζren) =
∑
n≥0

mn(a,mren, ζren)λ
n
ren ,

ζa ≡ ζ (a, λren,mren, ζren) =
∑
n≥0

ζn(a,mren, ζren)λ
n
ren ;

such that the limit a ↘ 0 exists for S norm
ℓ,a (x1, . . . , xℓ) = 1

Za
Sℓ,a(x1, . . . , xℓ)

Order by Order in Perturbation.

ABOVE SERIES: Obtained Using the Zimmermann’s FOREST FOR-

MULA (see e.g. Collin’s Book).

Renormalization (Subtraction Procedure) GOES FROM SMALLER DI-

VERGENT SUBGRAPHS of a Feynman Graph TO THE BIGGER SUB-

GRAPHS (Including Eventually the Graph Itself)
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FOREST: Sets of EITHER DISJOINT (no common line) or CHAINED

GRAPHS (with Strict Inclusion, G1 ⊂ G2 ⊂ . . . ⊂ G)

The OVERLAPPING DIVERGENCE PROBLEM Has Been Cured LONG

AGO! But Even Books Published After 1965 May Still Talk About This

While Forgetting Forests...

BUT The Perturbation Convergence PROBLEM CONTINUES: BAD

DEPENDENCE in Pertubation order n.

INDIVIDUAL Renormalized Contributions at Order n MAY HAVE A (n!)

BEHAVIOR.

This is the RENORMALON Problem!
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Example: THE BUBBLE CHAIN CASE in the λϕ44 Model

BUBBLEs FIGURE

B̃(p) ∼ ∫
C̃(k)C(k+ p) d4k DIVERGES LOGARITHMICALLY

B̃a(p) ∼ ∫
C̃a(k)Ca(k+ p) d4k ∼ − log a

B̃ren(p) ≡ lim
a↘0

[
B̃a(p)− B̃a(p = 0)

]
∼ log |p| .
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Graph with RENORMALIZED BUBBLE CHAIN With n−1 Bubbles as a

Subgraph:∫
[C̃(p)]3

[
B̃ren(p)

]n−1
d4p ≃

∫ 1

(p2 +m2)3
(log |p|)n d4p ∼ n!
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CURE: Consider the Gross-Neveu2 Model (With More than One-Component

Fermions)

The Scenario is the SAME. Re-Introduce the (RUNNING) Coupling Cons-

tant in the Story∫
λna(p) [C̃(p)]3

[
B̃a(p)− B̃a(p = 0)

]n−1
d4p

λna(p) is Dimensionless and Behaves as −
(
log |p| ≃ log a−1

)−1
|, for large

|p| (a↘ 0).

This KILLS the n! Behavior of the Bubble Chain

GN2 MODEL IS UV ASYMPTOTICALLY FREE!

NOT the Case for ϕ44 !
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HOW CAN THIS BE RIGOROUSLY IMPLEMENTED?

MULTISCALE NON-PERTURBATIVE Polymer or Cluster + Mayer:

Expansions.

CURE: Simultaneously Both Limits a ↘ 0 and |Λ| ↗ ∞, resulting in

Convergent Expansions, UNIFORMLY Both in a, |Λ|, for COMPLETELY

CUTOFF Correlations

S norm
ℓ,a,Λ (x1, . . . , xℓ) =

1

Za,Λ
Sℓ,a,Λ(x1, . . . , xℓ) ,

if 0 < λren ≪ 1.

IMPLEMENTATION: Use ρ to play the role of UV Cutoff Parameter

a−1 > 0
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REPLACE Cb e Cf by Cb,ρ e Cf,ρ such that in Fourier Space

C̃b(p) =
1

p2 +m2
, C̃f(p) =

−ip/+m

p2 +m2
,

Become

C̃b,ρ(p) =
1

ζb,ρp
2 +m2

ρ
ηρ(p) , C̃f,ρ(p) =

−iζf,ρp/+mρ

ζ2f,ρp
2 +m2

ρ
ηρ(p) ,

where ηρ(p) is a UV Cutoff Function of ρ. For example, as before

ηρ(p) = e−p
2M−2ρ

, M ∈ N, M > 2 .

ηρ(p) has support concentrated on P = {p ∈ Rd / p2 ≤M2ρ}.

UV Limit is Given by ρ↗ ∞, in which ηρ(p) → 1.
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Generically: CUTOFF FIELDS Φρ (ϕρ, ψ̄ρ and ψρ)

(Forgetting Λ Dependence) the UV Cutoff Correlations

Sℓ,ρ(x1, . . . , xℓ) =
∫

Φ(x1) · · ·Φ(xℓ) dνρ(Φρ) ,

with dνρ(Φρ) = exp
{∫

−λρ V (Φρ(z)) d
dz

}
dµCρ(Φρ), where dµCρ(Φρ) Has

Covariance Cρ and

|Cρ(x− y)| ≃ exp[−Mρ|x− y|] , |x− y| ≫ 1 .

MULTISCALE ANALYSIS (Renormalization Group):

Decompose ηρ(p) =
∑ρ
i=0 η

i(p) with

ηi(p) ≡ e−p
2M−2i

− e−p
2M−2(i−1)

, i = 1, . . . , ρ ; η0(p) = 1 ,

ηi(p) is Supported on |p| ≃M i !
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This Decomposition Induces a Field, a Covariance and a Gaussian Mea-

sure Decomposition. Namely,

C̃ρ(p) =
∑ρ
i=0 C̃

i(p)

Φρ = ⊕ρi=1 Φi

such that

Sℓ,ρ(x1, . . . , xℓ) =
∫

Φ(x1) · · ·Φ(xℓ) dνρ(Φρ = ⊕ρi=1 Φi)

with dνρ(Φρ) = exp
{∫

−λρ V
(
⊕ρi=1 Φi(z)

)
ddz

} ρ∏
i=0

dµCi(Φ
i),

dµCi(Φ
i) has Covariance Ci.

Ci Has the SCALED DECAY Ci(x− y) ≃ e−M
i|x−y| , for |x− y| ≫ 1.
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Starting with ρ Dependent Parameters λρ, mρ and ζρ no cutoff UV ρ,

NON-PERTURBATIVE Renormalization Aims at FINDING FUNCTI-

ONS 
λρ ≡ λ(ρ, λren,mren, ζren),
mρ ≡ m(ρ, λren,mren, ζren),
ζρ ≡ ζ(ρ, λren,mren, ζren) , . . .

of ρ, and the Renormalized Parameters (λren,mren, ζren), with λren > 0,

such that the limit ρ→ ∞ of Correlations EXISTS.

RG MAP: Dynamical System Generated by the EACH INTEGRATION

over the SCALED FIELDS Φρ, Φρ−1,..., Φi,..., Φ0, RESPECTING THIS

ORDER.

Equivalently: SMALL DISTANCES −→ LARGE DISTANCES.
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In PARAMETER SPACE: Before Integrating Over Φi
λρ ≡ λ(ρ, λren,mren, ζren),
mρ ≡ m(ρ, λren,mren, ζren),
ζρ ≡ ζ(ρ, λren,mren, ζren) ,

−→ . . . −→


λi ≡ λ(i, λren,mren, ζren),
mi ≡ m(i, λren,mren, ζren),
ζi ≡ ζ(i, λren,mren, ζren) ,

POSSIBLE to Formulate in HAMILTONIAN or ACTION SPACE!

TAUTOLOGY: UV LIMIT EXISTS if THERE IS A STABLE FIXED
POINT of this MAP!

OBSERVATION: ZERO MASS CASE (m = 0) the IR Limit Can Be
Similarly Treated.

IMPORTANT: STABLE FIXED POINT Defines the CONCEPT of ASYMP-
TOTIC SAFETY

SUCCESS: MANY MODELS (QFT, Statistical Mech., Condensed Mat-
ter)

QFT: GN2, YM4, Infrared ϕ44 (with λ < 0), Fermi Liquids in d = 3,...
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IN ALL THIS: Still Perturbation Series Gives the INSPIRATION!

MANY NAMES ARE INVOLVED IN DEVELOPING THIS MATTER!

PERSONAL CONTRIBUTION: UV Renormalizability of the PERTUR-

BATIVELY NON-RENORMALIZABLE GN3 with a Large Number N of

Components. BUBBLE CHAIN SUMMATION with Cutoff Leads to

a Perturbatively Renomrmalizable Model in a NEW PARAMETER

and then to a NONTRIVIAL UV FIXED POINT.

BUT, for GN3: NO O-S AXIOMS YET!
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While an Undergraduate Student, I profited from long conversations with

Prof. Patricio Letelier during my several visits to the UNICAMP. After

this, unfortunately, I never met him...

BUT HERE IS MY CONTACT POINT, TODAY, With PROF. LETE-

LIER!

WHAT ABOUT GRAVITY?

Quantum Gravity is NOT Perturbatively Renormalizable. Any Way to

See It is UV Asymptotically SAFE?

THANKS FOR YOUR ATTENTION!
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