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1 Moyal quantization

1.1 Hamiltonian Mechanics
• Traditionally, Hamilton’s equations of motion of a mechan-

ical system are formulated on a flat 2n-dimensional phase
space

• Fix canonical coordinates (q, p) :=(q1, . . . ,qn, p1, . . . , pn) on
phase space, one can identify the phase space with R2n.

• The classical observables are real-valued smooth functions
defined on phase space, denoted C∞(R2n).

• For two such classical observables f and g, their Poisson
bracket takes the form:

{ f ,g}=
n

∑
i=1

∂ f
∂qi

∂g
∂ pi
− ∂g

∂qi
∂ f
∂ pi

. (1)
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Two important algebraic structures defined on the space C∞(R2n).

• Commutative algebra. C∞(R2n) is a vector space endowed
with the commutative associative product:

( f ,g) 7→ f ·g,

given by ( f ·g)(q, p) = f (q, p)g(q, p).

• Lie algebra. C∞(R2n) with the Poisson bracket is an infinite-
dimensional Lie algebra.

Since the Poisson bracket involves only first derivatives, the Lie al-
gebra (C∞(R2n),{ , }) enjoys a supplementary property, i.e., Leib-
niz rule applies to each argument of the Poisson bracket:

{ f g,h}= f{g,h}+{ f ,h}g.
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The space C∞(R2n) endowed with the pointwise product of func-
tions and the Poisson bracket is called the algebra of classical ob-
servables.
The dynamics of a mechanical system is governed by its Hamilto-
nian H and Hamilton’s equations of motion read

dqi

dt
= {qi,H} (2)

d pi

dt
= {pi,H}.

This is in essence how Classical Mechanics is cast into the Hamil-
tonian formalism as explained in any standard textbook on Classi-
cal Mechanics.
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Time evolution
Suppose that at t = 0 the system is in the pure state (q, p) ∈ R2n.

• The system evolves according to Hamilton’s equations, and
describes a path in phase space

t 7→ (q̃(t;q, p), p̃(t;q, p))

defined, in general, for t in a neighborhood of t = 0, and
satisfying the initial conditions:

q̃(0;q, p) = q and p̃(0;q, p) = p.

• One has the Hamiltonian flow φt : R2n→ R2n defined by

φt(q, p) = (q̃(t;q, p), p̃(t;q, p)).

.
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• The Hamiltonian flow φt is a canonical transformation of
phase space.

• Since Hamilton’s equations are first-order differential equa-
tions (vector fields) the Hamiltonian flow has the group prop-
erty: φt ◦φs = φt+s (for t and s small enough) and φt=0 is the
identity transformation.

There is a dual description of Hamilton’s equations in the algebra
of classical observables.

• Solutions of Hamilton’s equation induce in a natural way
a path t 7→ ft starting at f in the algebra of observables
C∞(R2n) by setting ft(q, p) := f (φt(q, p)).

• The path t 7→ ft also satisfies Hamilton’s equation:

d ft
dt

= { ft ,H}, ft=0 = f . (3)
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• There is a one-to-one correspondence between paths in phase
space which are solutions of Hamilton’s equations and paths
in the algebra of classical observables which are solutions of
Hamilton’s equation.

• The algebraic structure of the algebra of classical observ-
ables is compatible with time evolution, i.e. the Hamiltonian
flow, in the sense that:

( f g)t = ftgt (4)
{ f ,g}t = { ft ,gt}.

Remark. At the quantum level, this feature no longer survives.
A similar property holds for other algebraic structures. Moreover,
the one-to-one correspondence between paths in phase space and
in C∞(R2n) does not hold in general. It is a manifestation of uncer-
tainty principle and the non existence of trajectory in phase space.
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1.2 The Moyal star product
The basic idea here is to deform the commutative algebra of clas-
sical observables into a noncommutative algebra by introducing a
noncommutative associative product, the Moyal star product.
For reasons that will become clear later, one has to extend the al-
gebra of classical observables to a larger space, namely, the vector
space of formal power series in the parameter λ with coefficients
in C∞(R2n).

• This space is denoted Aλ =C∞(R2n)Jλ K. An element fλ in
Aλ is simply a formal power series of functions:

fλ = ∑
r≥0

λ
r fr, fr ∈C∞(R2n).

• The space Aλ inherits the commutative R-algebra structure
of C∞(R2n) in the sense that for any two elements of Aλ ,
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fλ = ∑r≥0 λ r fr and gλ = ∑r≥0 λ rgr, addition, product by a
scalar and product in Aλ are defined by:

fλ +gλ = ∑
r≥0

λ
r( fr +gr),

µ fλ = ∑
r≥0

λ
r(µ fr), µ ∈ R,

fλ gλ = ∑
r≥0

λ
r( ∑

i+ j=r
fig j).

• Extending the multiplication by scalars to elements µλ =

∑r≥0 λ rµr ∈ RJλ K by

µλ fλ = ∑
r≥0

λ
r( ∑

i+ j=r
µi f j)

gives to Aλ the structure of a commutative RJλ K-algebra.
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Consider the algebra of classical observables C∞(R2n) endowed
with the canonical Poisson bracket.

• Write P( f ,g) for the Poisson bracket of f and g.

• Label the 2n canonical variables (q, p) using a single symbol
x by letting xi = qi and xn+i = pi, for 1≤ i≤ n

• Introduce the following skew-symmetric matrix of order 2n:

Π =

(
On In
−In On

)
. (5)

• The Poisson bracket takes the form

P( f ,g) = ∑
1≤α,β≤2n

Π
αβ ∂ f

∂xα

∂g
∂xβ

. (6)
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The rth-power of P is defined by the following expression

Pr( f ,g) := ∑
1≤α1,β1,...,αr ,βr≤2n

Π
α1β1 · · ·Παrβr

∂ r f
∂xα1 · · ·∂xαr

∂ rg
∂xβ1 · · ·∂xβr

.

(7)

One conventionally set P0( f ,g) = f g. The powers of P are bidif-
ferential operations, i.e., (7) is a differential operator in each of its
arguments.
The expansion of (7) gives the explicit form:

Pr( f ,g) =
r

∑
k=0

(−1)r−k
(

r
k

)
×·· ·

× ∑
1≤i1,...,ir≤n

∂ r f
∂qi1 · · ·∂qik ∂ pik+1 · · ·∂ pir

∂ rg
∂ pi1 · · ·∂ pik ∂qik+1 · · ·∂qir

.
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There is a useful equivalent way to define the rth-power of P by ap-
plying r times the differential operator in the 4n variables (q, p,q′, p′)

P̃ =
n

∑
i=1

∂ 2

∂qi∂ p′i
− ∂ 2

∂q′i∂ pi
. (8)

to the function f (q, p)g(q′, p′) and evaluating on the diagonal q′ =
q and p′ = p:

Pr( f ,g)(q, p) =
( n

∑
i=1

∂ 2

∂qi∂ p′i
− ∂ 2

∂q′i∂ pi

)r
( f (q, p)g(q′, p′))

∣∣
q′=q,p′=p.

(9)
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Definition 1. The Moyal star product is the RJλ K-bilinear map
? : Aλ ×Aλ → Aλ defined by

f ?g = f g+ ∑
r≥1

λ r

r!
Pr( f ,g), f ,g ∈C∞(R2n). (10)

For two formal power series fλ = ∑r≥0 λ r fr and gλ = ∑r≥0 λ rgr,
one has:

fλ ?gλ = ∑
r≥0

λ
r(

∑
i+ j+k=r
i, j,k≥0

1
k!

Pk( fi,g j)
)
. (11)

Theorem 1. The Moyal star product is an associative product on
Aλ satisfying f ?1 = 1? f = f for any function f .
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Proof. The associativity condition is ( f ? g) ? h = f ? (g ? h) for
arbitrary functions f ,g,h ∈C∞(R2n).
The associativity condition is an equality between formal series of
tridifferential operators, hence it is sufficient to check the associa-
tivity when f , g and h are exponential functions:

f (x) = exp(a · x), g(x) = exp(b · x), h(x) = exp(c · x).

where a, b and c are 2n-tuples. A simple computation leads to

( f ?g)(x) = exp(λΠ(a,b))exp((a+b) · x),

where Π(a,b) = ∑1≤α,β≤2n Παβ aα bβ = ∑
i=n
i=1(aibn+i−bian+i).

The associativity condition is then equivalent to the following iden-
tity valid for any 2n-tuples a, b and c:

exp(λΠ(a,b))exp(λΠ(a+b,c))= exp(λΠ(a,b+c))exp(λΠ(b,c)).
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• Aλ has the structure of a commutative RJλ K-algebra for the
natural extension of the pointwise product. We have defined
another associative product on Aλ .

• The term of order λ in the Moyal star product is the Poisson
bracket, we get a noncommutative algebra (Aλ ,?) with unit
1. This algebra is called the algebra of quantum observables.

• Heuristically, as λ tends to zero, one recovers the algebra of
classical observables. In that sense the Moyal star product
is a noncommutative associative deformation of the usual
product of functions. The idea to view Quantum Mechanics
as a deformation of Classical Mechanics was introduced by
Flato and his collaborators in the 70’s and led to what is
called deformation quantization.
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• The algebra Aλ possesses in a natural way a Lie algebra
structure for the star commutator defined by

[ f ,g]? =
1

2λ
( f ?g−g? f ). (12)

The rescaling by a factor 2λ is to ensure that the classical
term of the star commutator is exactly the Poisson bracket.

•

[ f ,g]? = ∑
r≥0

λ 2r

(2r+1)!
P2r+1( f ,g) = { f ,g}+O(λ 2). (13)

The star commutator is a Lie algebra deformation of the
Poisson bracket and was studied by Moyal (1949) in rela-
tion with statistical properties of Quantum Mechanics.
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• For a Hamiltonian H, the quantum equation of motion are
given by the Heisenberg equations:

d ft
dt

= [ ft ,H]? = { ft ,H}+O(λ 2).

• It defines a trajectory in Aλ , but not on phase space in gen-
eral as higher derivatives contribute in the equation of mo-
tion.

To sum up, the Moyal star product realizes the following corre-
spondence between the algebras of classical and quantum observ-
ables: (

C∞(R2n), · ,{ , }
)
;
(
Aλ ,?, [ , ]?

)
.

Let us what is the relation of Moyal quantization with the standard
formulation of Quantum Mechanics.
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1.3 Relation with Quantum Mechanics

Hermann Weyl (1885-1955)

In its standard framework, the quantization of the classical phase
space R2n is accomplished by representing the canonical coordi-
nates (q, p) by unbounded self-adjoint operators (q̂, p̂) in a Hilbert
space.
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These operators are required to satisfy the canonical commutation
relations (CCR) on a certain domain:

[q̂i, q̂ j] = 0 (14)
[p̂i, p̂ j] = 0

[q̂i, p̂ j] = ıh̄δ
i
j,

for i, j = 1, . . . ,n. When h̄ is seen as a central element, (14) defines
the Heisenberg Lie algebra h2n.
It is usually a delicate matter to manipulate unbounded operators
and, as early as 1927, Weyl realized the advantages to deal with an
integrated form of the CCR by introducing the n-parameter unitary
groups:

U(a) = e
ı
h̄ a·q̂, V (b) = e

ı
h̄ b·p̂,

for any real n-tuples a = (a1, . . . ,an) and b = (b1, . . . ,bn).
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These unitary (hence bounded) operators satisfy the Weyl rela-
tions:

U(a)U(b) =U(b)U(a),

V (a)V (b) =V (b)V (a),

U(a)V (b) = e−
ı
h̄ a·bV (b)U(a).

From the early days of Quantum Mechanics, a specific represen-
tation of the CCR was used by Schrödinger to write down his cel-
ebrated equation. It is nowadays known as the Schrödinger rep-
resentation and it acts on the Hilbert space of square-integrable
functions L2(Rn,dx), where dx = dx1 · · ·dxn is the Lebesgue mea-
sure:

(q̂i
φ)(x) = xi

φ(x) (15)

(p̂ jφ)(x) =−ıh̄
∂φ

∂x j (x)
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where φ ∈ L2(Rn,dx) is, e.g., a smooth function with compact sup-
port. Each of he operators q̂i and p̂ j admit a unique self-adjoint ex-
tension and the Schrödinger representation (15) can be integrated
to unitary operators. One has for any square-integrable function
φ ∈ L2(Rn,dx):

(U(a)φ)(x) = e
ı
h̄ a·x

φ(x) (16)
(V (b)φ)(x) = φ(x+b).

There is a fundamental result due to von Neumann which essen-
tially assert the uniqueness of the Schrödinger representation. Von
Neumann uniqueness theorem (1931) states that two (continuous)
n-parameter unitary groups satisfying the Weyl relations are uni-
tarily equivalent, up to multiplicity, to the Schrödinger representa-
tion (16).
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Die Eindeutigkeit der SehrSdingerschen Operatoren. 
Von 

5. v. ~Teumann in Berlin. 

1. Die sogenannbe Vertauschtmgsrelation 

p Q _ Q p =  h 1 

ist in der neuen Quantentheorie von fundamentaler Bedeutung, sie ist es, 
die den ,,Koordinaten-Operator" ]g und den ,Imputs-Operator" P im wesent- 
lichen definiertl). Mathematisch gesprochen, ]iegt darin die folgende An- 
nahme: Seien P, Q zwei Hermitesche l~unktionaloperatoren des Hilbertschen 
Raumes, dann werden sie durch die Vertauschungsrelation bis auf eine 
Drohung des Hflbertschen Raumes, d. i. eine unitiire Transformation U, 
eindeutig festgelegt~). Es liegt im Wesen der Sache, da~ noch der Zusatz 
gemacht werden muB: vorausgesetzt, da~ P, Q ein irreduzibles System 
bilden (vgl. weiter unten Anm. *)). Wird nun, wie es sich dutch die 
SchrSdingersche Fassung der Quantentheorie ats besonders giinstig erwies, 
der Hilbertsche Raum als Funktionenraum interpretier~ --  der Einfachheit 
halber etwa als Raum aller komplexen Funktionen f(q) (-- co < q < + oc) 

+ c o  
o. 

mit endlichem f l f ( q )  E dq --,  so gibt es nach SchrSdinger ein besonders 

einfaches LSsungssystem der Vertauschungsrelation 

h d s). 
Q: f ( q ) - * q f ( q ) ,  P: f (q)-+r~U~u~f(q)  

1) Vgl. Born-Heisenberg-Jordan, Zeitsohr. f. Phys. 34 (1925), S. 858--888, ferner 
Dirac, Proe. Roy. Soc. 109 (1925) u.f. Besonders in der letztgenann~en Darsteltung 
ist die Rolle dieser Relation fundamental. Einen interessanten Versueh zur Begrfindung 
des im folgenden zu diskutierenden EindeatigkeitssaVzes machte Jordan, Zeitsehr. f. 
Phys. 37 (1926), S. 383--386. Indessen beruht dieser auf Konvergenzannahmen fiber 
Potenzreihen unbeschr~mkter 0peratoren, deren Ghltigkeitsbereich fraglich ist. 

~) Dieselbe bewirkt ein Ersetzen yon P, Q dutch UP U -1, UQ U -1, wodureh weder 
tier Hermitesehe Charakter noeh das Bestehen der Vertausehungsrelation beriihrt wird. 

a) Vgl. SehrSdinger, Annalen d. Phys. 79 (1926), S. 734--756. 



A full quantization procedure however requires more than a rep-
resentation of the CCR, the latter specifies only the quantization
of canonical coordinates. One should also prescribe how a “large”
class of classical observables are quantized. This is the so-called
ordering problem. For example, consider a system with one degree
of freedom with canonical coordinates q and p and correspond-
ing operators q̂ and p̂ given by (15). Polynomials in the variables
(q, p) can be quantized by assigning a differential operator Tmn in
L2(R,dx) to monomials qm pn in the following way. Introduce the
notation â1 = · · · = âm = q̂ and âm+1 = · · · = âm+n = p̂. The op-
erator Tmn is given by the complete symmetrization of the product
â1 · · · âm+n:

Tmn = Sym(â1 · · · âm+n) :=
1

(m+n)! ∑
σ∈Sm+n

âσ(1) · · · âσ(m+n),

(17)
where Sm+n is the symmetric group of degree m+ n. Applying
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this rule e.g. to the monomial q2 p gives the correspondence:

q2 p 7→ 1
3
(q̂q̂p̂+ q̂p̂q̂+ p̂q̂q̂).

Clearly this rule can be extended by linearity to polynomial func-
tions on phase space R2n. Hence we can associate an operator
W ( f ) to any polynomial f : For f (q, p) = ∑I,J∈Nn fIJqI pJ , where
the fIJ are complex numbers and only finitely many of them are
nonzero, one has

W ( f ) = ∑
I,J∈Nn

fIJW (qI pJ) = ∑
I,J∈Nn

fIJTIJ ,

where the TIJ are direct generalization to the n degrees of freedom
case of the Tmn introduced in (17). For any polynomial f , the op-
erator W ( f ) can be considered as defined on the dense subspace of
L2(Rn,dx) consisting of smooth functions with compact support.
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The rule f 7→W ( f ) is called the Weyl transform, the corresponding
ordering is known as the Weyl ordering and is implicitly assumed
in many quantization problems. Other ordering rules such as the
standard ordering or the normal ordering are also of physical inter-
est. We now proceed to explain the link between the Weyl ordering
and the Moyal star product.
Let us denote by C[q, p] the algebra of complex-valued polynomi-
als in the 2n variables (q, p) = (q1, . . . ,qn, p1, . . . , pn). The Moyal
star product of polynomial functions on phase space is polynomial
in λ and we have a noncommutative product on C[q, p][λ ], the
space of polynomials in λ with coefficients in C[q, p]:

? : C[q, p][λ ]×C[q, p][λ ]→ C[q, p][λ ].

As far as the algebra of observables is concerned, the following
theorem gives in essence the relation between Moyal quantization
and standard Quantum Mechanics.
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Theorem 2. The Moyal star product with deformation parameter
λ = ıh̄

2 satisfies
W ( f ?g) =W ( f )W (g)

for any polynomials f ,g in C[q, p][h̄].

Through the Weyl transform, the star commutator (12) is sent to
the (scaled) commutator:

W ([ f ,g]?) =
1
ıh̄
[W ( f ),W (g)]. (18)

This should be put in relation with the Groenewold-van Hove no-
go theorem that basically says that there is no consistent quanti-
zation of all polynomial functions on phase space implementing
Dirac’s idea that the Poisson bracket { , } should be mapped to the
(scaled) commutator 1

ıh̄ [ , ].
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The Weyl transform was introduced by H. Weyl in 1927 as an at-
tempt to understand the ambiguity inherent to the quantization pro-
cess. It was presented in the following form.
Let f be an integrable function defined on R2n. The Fourier trans-
form of f is defined by

f̃ (ξ ,η) =
1

(2π h̄)n

∫
R2n

f (q, p)e−
ı
h̄ (ξ ·q+η ·p) dqd p. (19)

Weyl proposed the following correspondence between functions
on phase space and operators:

W ( f ) =
1

(2π h̄)n

∫
R2n

f̃ (ξ ,η)e
ı
h̄ (ξ ·q̂+η ·p̂) dξ dη , (20)

where the operators q̂i and p̂i are given by (15). One can make
sense of (20) when f is a polynomial in the distribution (gener-
alized functions) sense. A few years after Weyl, E. Wigner in-
troduced a kind of trace formula that associates a function to an
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operator: the Wigner transform (nowadays we will say the symbol
of an operator) and inaugurated the phase space approach to Quan-
tum Mechanics. The Wigner transform appears to be the inverse of
the Weyl transform.
The Weyl transform has triggered several works on the foundation
of quantization. Von Neumann has exploited this notion in proving
his uniqueness theorem for the Schrödinger representation.
Incidentally, the paper by von Neumann seems to be the first refer-
ence in which the Moyal product appeared in an integral form.
The work of Groenewold (1946) is also based on the Weyl trans-
form and led him to the (re)discovery of the Moyal star product by
computing W−1(W ( f )W (g)).
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574 J.v. Neumann. 

Wir beweisen einige Reehenregeln fiir diese 0peratoren. Da~ a A  den 
Kern a a ( a ,  fl) hat, ist klar, A* hat wegen S ( r  den 
Kern a ( - - a , - - f l ) ,  A S ( u , v )  und S(u ,  v ) A  wegen der Multiplikations- 
regel der S (a, fl) den Kern 

e�89 f i - - v )  bzw. e-~(~ f i - - v ) .  

Haben A, B die bzw. Kerne a(a ,  fl), b (e ,  fl), so hat A ~-B  offenbar 
a (e, 77) ~- b (a, 77), bei A B  dagegen ist eine trleine Rechnung notwendig: 

( A B f ,  g) -~ (B  f, A ' g )  = f f  b(a,  77) (S (~, 77)f, A ' g )  dad77 

= f f  b (a, 77) (A S (a, fl) f, g) da d,8 

= f f f f b  (a> 77)e*~'a-~)a(r --a, a --77)(S (r, ~) f, g)dad77d~/d~ 

= f f  [ f f  e ~' ( ~ - ' ~  (~ - ,~, ~ - 77) b (~, ~) d,~ dZ] (S  (r, ~) f, g) dr  a~. 

Der Kern von A B ist also (start 7, ~ schreiben wit wieder a, 77, statt 

~, 77 ~, ,~) f f e~(~"-~)a(,~ - ~, 77 - ~) b(~, ~) d ~ d v .  (Die absolute 
Integ~ierba~keit folgt aus der Deduktion.) 

SchlieB]ich zeigen wit: wenn A verschwindet, so ist aueh sein Kern 
(bis auf nine Lebesguesche Nnllmenge) gleieh 0. Aus A = 0 folgt niimlich 
S (--  u, -- v ) A S ( u, v) = O, also, da dieses den Kern e ' (""- ~ ~) a ( . ,  77 ) hat, 

f f e ~ (~-~)  a (~, fi) ( s (a, /3) f, g) d .  dfl ~ O . 
Somit ist j edenfalls 

f f P(a, 77) a(c,, 77) (S(. ,  77) f g) ded77 ~- O, 

wean P(r  77) ein Linearaggregat yon endlich vielen e i(k~+zS) ist, also ffir 
jedes trigonometrische Polynom mit einer Periode p > 0 in ~, 77. Da der 
zweite Faktor absolut integrierbar ist, und der dritte beschriinkt, kSnnen 
wit mit dem ersten (P(r  77)) Orenzfiberg/inge ausfiihren, falls dieser dabei 
gteichmii~ig besehriialkt bleibt. So kSnnen wit die Klasso der P(a,/3) suk- 
zessiv erweitern: 1. zu allen stetigen Funktionen mit einer Periode p ~ 0 
in a, fl, 2. zu allen beschr~inkten stetigen Funld6ionen, 3. zu allen besehr~nkten 
Funktionen der ersten Baireschen Klasse. Wenn also S~ ein beliebiges (end- 
fiches) Rechteck in der a, 77-Ebene ist, so kSnnen wit P(a ,  77) in S~ gleich 1 
und au~erhalb ~-0 setzen, es wird: 

f f a(a, fl) ( S (,~, fi) f, g) dadfi  = 0 
s~ 

ffir alle diese ~ .  Daher ist (mit Ausnahme einer a, 77-Nultmenge) 
a ( a ,  f l ) (S (a ,  f l ) f , g ) -~O.  Dies gilt bei festem f , g ,  ist abet nut f fest, 
w~ihrend g ein vollst~indiges normiertes Orthogonatsystem durcM~inft, so 
gilt es fiir dieses f u n d  alle genannten g auch noch mit Ausnahme einer 



1.4 The example of the harmonic oscillator
Let us explore further the relation of Moyal quantization with Quan-
tum Mechanics. At this stage one may wonder how from Moyal
quantization one can get the spectrum of an observable. We will
briefly illustrate this point for the simple case of the harmonic os-
cillator.
Consider the Hamiltonian of the (normalized) harmonic oscillator
in one degree of of freedom:

H0(q, p) =
1
2
(p2 +q2), (q, p) ∈ R2. (21)

In Quantum Mechanics, the spectral analysis of the corresponding
Schrödinger equation

ıh̄
∂

∂ t
ψ(t,q) =

1
2
(−h̄2 ∂ 2

∂q2 +q2)ψ(t,q)
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leads to the spectrum of the quantum Hamiltonian: En = h̄(n+ 1
2 ),

n = 0,1,2, . . .
The tool that allows to determine the spectrum is the star exponen-
tial. For the example at hand, let ? be the Moyal product on R2 with
deformation parameter λ = ıh̄

2 , one defines the star exponential of
a classical Hamiltonian H formally by the series

Exp?
( tH

ıh̄

)
:= ∑

n≥0

1
n!
( t

ıh̄

)n H ? · · ·?H︸ ︷︷ ︸
n factors

. (22)

One should be aware that are several issues that should be ad-
dressed about this series and its convergence. First, the series (22)
involves negative powers of h̄ and hence is not a formal series in h̄.
Thus it does not belong to the algebra of quantum observables Aλ

with λ = ıh̄
2 . The series is at best an element of C∞(R2)Jh̄−1, h̄K,

i.e., formal in both h̄−1 and h̄. Moreover, in physical applications,
one would like to consider h̄ not as a formal parameter but as the
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physical Planck’s constant divided by 2π . Therefore (22) should
be seen as a series of functions defined on R2.
An alternative definition of the star exponential is through an evo-
lution linear partial differential equation for φ(t) := Exp?

( tH
ıh̄

)
. On

can define the star exponential as the (unique) solution of the evo-
lution equation

ıh̄
∂

∂ t
φ(t) = H ?φ(t), (23)

with the initial data φ(0) = 1. Still one has to properly deal with
the right-hand side of (23) when H is a general function. Indeed it
might not be a polynomial in h̄ and hence involves infinitely many
derivatives with respect to q and p: it will not be a differential
operator, but can be a (formal) pseudo-differential operator.
Without entering into mathematical considerations regarding the
existence of the solutions of equation (23), let us mention that in a
more general geometrical setting these analytical issues have been
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addressed by interpreting the star exponential as the symbol of an
operator living in a bigger algebra than Aλ .
For the Hamiltonian of the harmonic oscillator (21) the details have
been worked out in the Ann. Phys paper by Flato et al.
The situation here is greatly simplified by the fact that the star pow-
ers of H0 appearing in (22) are polynomials in H0. More explicitly,
for a smooth function F of H0, one has

H0 ?F(H0) = H0 F(H0)−
h̄2

4
(
F ′(H0)+H0F ′′(H0)

)
,

hence the equation (23) takes the form

ıh̄
∂

∂ t
φ(t,H0) = H0 φ(t,H0)−

h̄2

4
( ∂

∂H0
φ(t,H0)+H0

∂ 2

∂H2
0

φ(t,H0)
)

whose unique solution satisfying φ(0,H0) = 1 exists for |t| < π
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and is given by

φ(t,H0) = Exp?(
tH0

ıh̄
) =

1
cos(t/2)

exp
(2H0

ıh̄
tan(t/2)

)
. (24)

It is worth noticing that the convergence of the series (22) for H0
should be understood in the space of distributions D ′(R2) when
|t| < π is fixed. An important feature of the solution (24) is its
periodicity in the variable t and can be Fourier expanded:

1
cos(t/2)

exp
( (q2 + p2)

ıh̄
tan(t/2)

)
= ∑

n≥0
exp(−ı(n+

1
2
)t) πn(q, p)

where

πn(q, p) = 2(−1)n exp(− (p2 +q2)

h̄
)Ln(

2(p2 +q2)

h̄
), (25)

and where the Ln’s are the Laguerre polynomials.
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The Fourier expansion (25) is the key ingredient allowing the iden-
tification of the quantized energy level of the harmonic oscillator
and its corresponding eigenstates. From the “spectral decompo-
sition” (25), one sees that the energy levels are En = h̄(n+ 1/2),
n = 0,1, . . ., and the corresponding eigenstates are given by the
functions πn.
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The analogy with traditional Quantum Mechanics can be further
emphasized.

Ĥ0|n〉= En|n〉, |n〉〈n| ◦ |n′〉〈n′|= δnn′ |n〉〈n|,

∑
n≥0
|n〉〈n|= 1, ∑

n≥0
En|n〉〈n|= Ĥ0.

The counterpart of these relations in deformation quantization are:

H ?πn = Enπn, πn ?πn′ = δnn′πn

∑
n≥0

πn = 1, ∑
n≥0

Enπn = H0,

which can be established by simple computations with the Moyal
star product.
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2 Deformation Quantization

2.1 Basic notions

Here we will see how one can generalize the Moyal quantization
to more general spaces.
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Definition 2 (Poisson Manifold). Smooth manifold X with a Pois-
son bracket, i.e., bilinear map:

{ , } : C∞(X)×C∞(X)→C∞(X)

satisfying antisymmetry, Leibniz rule, and Jacobi identity.

• Equivalently, p ∈ Γ(X ,∧2T X) with [p,p]SN = 0. { f ,g} =
〈p,d f ∧dg〉.

• Locally,

{ f ,g}(x) = ∑
i, j
pi j(x) ∂i f (x) ∂ jg(x),

where pi j are local smooth functions satisfying

• pi j =−p ji

• ∑
a
(pia

∂ap
jk +p ja

∂ap
ki +pka

∂ap
i j) = 0, ∀i, j,k.
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Consider a Poisson manifold (M,p).

Definition 3 (Star-product). [Flato et al. from mid 70’s]

• Ah̄ :=C∞(X)[[h̄]], formal series in h̄ with coefficients in C∞(X).
Elements: f0 + h̄ f1 + h̄2 f2 + · · ·

• ?h̄ : Ah̄×Ah̄→ Ah̄; f ?h̄ g = f g+∑r≥1 h̄rCr( f ,g)

• Cr are bidifferential operators null on constants: (1 ?h̄ f =
f ?h̄ 1 = f );

• ?h̄ is associative;

• C1( f ,g)−C1(g, f ) = 2{ f ,g}, so that

[ f ,g]h̄ ≡ ( f ?h̄ g−g?h̄ f )/(2h̄) = { f ,g}+O(h̄)

defines a Lie algebra deformation.
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Example Take two commuting vector fields D1 and D2 on X . The
wedge product D1 ∧D2 defines a Poisson tensor p on X . The fol-
lowing defines a globally defined star-product on X :

f ?g = ∑
k≥0

h̄k

k!
Dk

1( f )Dk
2(g).

( Quantum plane: take D1 = x ∂

∂x , D2 = y ∂

∂y .)
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Definition 4 (Equivalence). Two star products ?1 and ?2 are said
equivalent if there exists a formal series of differential operators

T ( f ) = f + ∑
r≥1

h̄rTr( f )

such that
T ( f ?1 g) = T ( f )?2 T (g).

Example Normal product. z = 1√
2
(p− ıq).

f (z̄,z)?′ g(z̄,z) = ∑
k≥0

h̄k

k!
∂ k f
∂ zk

∂ kg
∂ z̄k

Normal and Moyal star products are equivalent: T = exp(− h̄
4

∂ 2

∂ z∂ z̄ ).
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• It is a highly non-trivial fact that star-products exist on any
Poisson manifold. But one can easily find the 2 first terms:

f ?g = f g+ h̄{ f ,g}+ h̄2C2( f ,g)

C2( f ,g) = ∑

(1
2
pi1 j1 pi2 j2 ∂i1i2 f ∂ j1 j2g

+
1
3
pi1 j1 ∂i1p

i2 j2 (∂ j1 j2 f ∂i2g+∂i2 f ∂ j1 j2g)
)

• Associativity is equivalent to solve infinitely many non-linear
equations (Maurer-Cartan equations).
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2.2 Gerstenhaber bracket and Hochschild cohomol-
ogy

The normalized differential Hochschild cochain complex of the as-
sociative algebra A := C∞(X), with product m0( f ,g) = f g, with
values in itself

C •(A,A) =⊕m≥0C
m(A,A)

consists of polydifferential operators on X that are vanishing on
constants.

Locally, an m-cochain C ∈ C m(A,A) has the form

C( f1, . . . , fm) = ∑Cα1···αm∂
α1 f1 · · ·∂ αm fm, f1, . . . , fm ∈ A,

(26)
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where the sum is finite and runs over multi-indices αi ∈ Nd such
that |αi| ≥ 1, and the Cα1···αm are locally defined smooth functions
on X .
Usually one considers the Hochschild complex as a Z-graded vec-
tor space with a shift in the degree: D•poly(X) =C •(A,A)[1]. Hence

Dk
poly(X) =

{
C k+1(A,A) for k ≥−1,
{0} otherwise.

The Gerstenhaber bracket [·, ·]G on D•poly(X) is defined on homo-

geneous elements Di ∈ Dki
poly(X) by:

[D1,D2]G = D1 ◦D2− (−1)k1k2D2 ◦D1,

where ◦ : Dk1
poly(X)×Dk2

poly(X)→ Dk1+k2
poly (X) is a composition law

45



for polydifferential operators:

(D1 ◦D2)( f0, . . . , fk1+k2)

= ∑
0≤ j≤k1

(−1) jk2D1( f0, . . . , f j−1,D2( f j, . . . , f j+k2), f j+k2+1, . . . fk1+k2).

[m0,m0]G( f ,g,h) = 2
(
m0(m0( f ,g),h)−m0( f ,m0(g,h)

)
= 0

The Hochschild differential is given by δ = [m0, · ]G. It is the
standard Hochschild differential d up to a sign: for D ∈Dk

poly(R
d),

we have δD = (−1)kdD.

Theorem 3 (HKR, Vey). The cohomology H•(A,A) of the complex
(C •(A,A),δ ) is the space of polyvectors Γ(∧•T X).
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• (D•poly(X), [·, ·]G,δ ) is a differential graded Lie algebra (DGLA).

• In terms of the Gerstenhaber bracket, the associativity of the
star-product ?h̄ =m0+∑r≥1 h̄rcr is equivalent to the Maurer-
Cartan equations:

δck +
1
2 ∑

a+b=k
a,b≥1

[ca,cb]G = 0, for all k ≥ 1. (27)

• If ?(k) = m0 + ∑
1≤r≤k

h̄rcr is associative up to order h̄k, then

∑
a+b=k+1

a,b≥1

[ca,cb]G (28)

is a Hochschild cocycle.
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• One can extend ?(k) to a product ?(k+1), associative up to
order h̄k+1, if (28) is a coboundary. Hence the obstructions
to associativity belongs to the 3rd Hochschild cohomology
space.

• In a similar fashion, the obstuctions to equivalence belongs
to the 2nd Hochschild cohomology space.
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2.3 A panorama of results

Existence

Symplectic manifolds: DeWilde-Lecomte [1982], Glue local Moyal
products. Fedosov [1994], Weyl bundle, flat connexion.
Poisson manifolds: Kontsevich [1997], Local formula using graph
techniques. Consequence of the Formality Theorem.
Classification

How unique is a star-product?
Symplectic case: Equivalence classes of star-products are parametrized
by the 2nd De Rham cohomology space H2

dR(X).
More precisely: {?h̄}/∼ = H2

dR(X)[[h̄]]
Poisson case: {?h̄}/ ∼ = equivalence classes of formal Poisson
structures.
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Denote by T •poly(X) the graded vector space T •poly(X)=⊕k∈ZT k
poly(X),

where

T k
poly(X) =

{
Γ(∧k+1T X) for k ≥−1,
{0} otherwise.

T •poly(X) is endowed with the Schouten-Nijenhuis bracket [·, ·]SN .

Recall that the Jacobi identity for a bivector p∈ Γ(∧2T X) is equiv-
alent to the condition [p,p]SN = 0.
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Kontsevich Quantization Formula

Two algebraic stuctures on a manifold X .

• (D•poly(X), [·, ·]G,δ ) is a differential graded Lie algebra (DGLA).

• (T •poly(X), [·, ·]SN ,0) is a differential graded Lie algebra.

The Formality theorem

Theorem 4 (Kontsevich). There is an L∞ quasi-isomorphism be-
tween the differential graded Lie algebras (T •poly(X), [·, ·]SN ,0) and
(D•poly(X), [·, ·]G,δ ).
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• A remarkable consequence of the Formality theorem is the
existence of deformation quantization of any smooth Pois-
son manifold.

• Kontsevich gives an explicit description of the L∞ quasi-
isomorphism for X = Rd in terms of graphs and weights.

• Consider Rn endowed with a Poisson structure p∈Γ(Rn,∧2TRn).

• The Kontsevich quantization formula defines a deformation
quantization of (Rn,p):

f ?K
h̄ g = f g+ ∑

r≥1
h̄rkr( f ,g), f ,g ∈C∞(Rn).

• The kr’s are bidifferential operators defined by weights and
bidifferential operators associated to graphs.
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Definition 5 (Graphs). The set K consists of all the simple di-
rected graphs Γ satisfying:

1. The set of vertices VΓ is finite and is a disjoint union of
nonempty sets: VΓ =V 1

Γ
tV 2

Γ
. Vertices belonging to V 1

Γ
(resp.

V 2
Γ

) are said of type 1 (resp. 2);

2. Each vertex of type 1 is of outdegree 2;

3. Each vertex of type 2 is of indegree at least 1 and of outde-
gree 0;

4. Vertices and edges are labeled.

We denote by Kn,m for m,n ≥ 1 the subset of K consisting of
graphs having n vertices of type 1 and m vertices of type 2. Thus a
graph in Kn,m has 2n edges.
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Example 1. A graph Γ in K3,2.

• • •
1 2 3

• •
L R

i1

&&

j1

77
i2

77

j2

��

i3

xx

j3
ww

• Bidifferential operator BΓ associated to Γ:

BΓ( f ,g) = ∑
0≤i∗, j∗≤n

pi1 j1 ∂ j1 j3p
i2 j2 ∂i2p

i3 j3 ∂i1 j2 f ∂i3g.

• To each graph Γ ∈Kr,2 is associated a real number w(Γ).

• w(Γ) is expressed as an integral over compactification of
configuration space of r points:
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• H = {z ∈ C | Im(z) > 0} be the upper half-plane. Hn will
denote the configuration space {z1, . . . ,zn ∈H |zi 6= z j for i 6=
j}.

• Let φ : H2→ R/2πZ be the function:

φ(z1,z2) =
1

2
√
−1

Log
( (z2− z1)(z̄2− z1)

(z2− z̄1)(z̄2− z̄1)

)
. (29)

φ(z1,z2) is extended by continuity for z1,z2 ∈ R, z1 6= z2.

• For a graph Γ ∈Kr,2, the vertex k, 1 ≤ k ≤ r, is associated
with the variable zk ∈ H, the vertex L with 0 ∈ R, and the
vertex R with 1 ∈ R.
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• The weight w(Γ) is defined by integrating an 2r-form over
(a compactification of) Hr:

w(Γ) =
1

r!(2π)2r

∫
Hr

∧
1≤k≤r

(
dφ(zk, Ik)∧dφ(zk,Jk)

)
, (30)

where Ik (resp. Jk) denotes the variable or real number asso-
ciated with the ending vertex of the arrow ik (resp. jk).

• The weights are universal in the sense that they do not de-
pend on the Poisson structure or the dimension n.
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Theorem 5 (Kontsevich). Let kr( f ,g)=∑Γ∈Kr,2
w(Γ)BΓ( f ,g), then

f ?K
h̄ g = f g+ ∑

r≥1
h̄rkr( f ,g), f ,g ∈C∞(Rn).

defines an associative product in C∞(Rn)Jh̄K.

k1( f ,g) = { f ,g}=

f g
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k2( f ,g)=
1
2

f g

+
1
3

f g

+
1
3

f g

− 1
6

f g

k2( f ,g) =
1
2
pi1 j1 pi2 j2 ∂i1i2 f ∂ j1 j2g

+
1
3
pi1 j1 ∂i1p

i2 j2 (∂ j1 j2 f ∂i2g+∂i2 f ∂ j1 j2g)

−1
6

∂ j2p
i1 j1 ∂ j1p

i2 j2 ∂i1 f ∂i2 g,
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