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The basic “canonical” procedure

I The basic procedure starts from a phase space or symplectic manifold,
e.g. R2,

R2 3 (q,p) , {q,p}= 1 7→ self-adjoint (Q,P) , [Q,P] = ih̄I ,

f (q,p) 7→ f (Q,P) 7→ (Symf )(Q,P) .

I Remind that [Q,P] = ih̄I holds true with self-adjoint Q, P, only if both
have continuous spectrum (−∞,+∞)

I But then what about singular f , e.g. the angle arctan(p/q)? What about
other phase space geometries? barriers or other impassable
boundaries? The motion on a circle? In a bounded interval? On the
positive half-line? ....
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Various paths to quantum models from classical models

Despite their elementary aspects, examples like the motion on the
circle, on the positive half-line,...., leave open many questions both on

mathematical and physical levels, irrespective of the manifold
quantization procedures, like Path Integral Quantization (Feynman,

thesis, 1942), or, after approaches by Weyl (1927), Groenewold
(1946), Moyal (1947), Geometric Quantization, Kirillov (1961),

Souriau (1966), Kostant (1970), Deformation Quantization, Bayen,
Flato, Fronsdal, Lichnerowicz, Sternheimer (1978), Fedosov (1985),

Kontsevich (2003), Coherent state or anti-Wick or Toeplitz
quantization with Klauder (1961), Berezin (1974) ....
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The basic “canonical” procedure

I The canonical procedure is quasi-universally accepted in view of its
numerous experimental validations, one of the most famous and
simplest one going back to the early period of Q.M. with the quantitative
prediction (1925) of the isotopic effect in vibrational spectra of diatomic
molecules.

I These data validated the canonical quantization, contrary to the
Bohr-Sommerfeld ansatz (which predicts no isotopic effect).

I Nevertheless this does not prove that another method of quantization
fails to yield the same prediction.

I Moreover, as already mentioned above, the canonical quantization is too
rigid or even untractable in some circumstances. As a matter of fact, the
canonical or the Weyl-Wigner integral quantization maps f (q) to f (Q)
(resp. f (p) to f (P)), and so might be unable to cure a given classical
singularity.

I Nevertheless, physics works mostly with effective models, and an
effective quantum model is expected to be more regular than a classical
one.
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Let’s be more mathematically precise:

I Quantization is

(i) a linear map

Q : C (X) 7→A (H )

C (X): vector space of complex-valued functions f (x) on a set X
A (H ): vector space of linear operators

Q(f )≡ Af

in some complex Hilbert space H such that
(ii) f = 1 7→ identity operator I on H ,
(iii) real f 7→ (essentially) self-adjoint operator Af in H (if not, should be at least

symmetric)

I Add preservation of symmetry (“covariance”)

I Add further requirements on X and C (X) (e.g., measure, topology, manifold,
closure under algebraic operations, time evolution or dynamics...)

I Add physical interpretation about measurement of spectra of classical f ∈ C (X) or
quantum A ∈A (H ) to which are given the status of observables.

I Add requirement of unambiguous classical limit of the quantum physical
quantities, the limit operation being associated to a change of scale
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Integral quantization: general setting and POVM

I (X ,ν): measure space.

I X 3 x 7→M(x) ∈L (H ): X -labelled family of bounded operators on
Hilbert space H resolving the identity I:

∫
X

M(x) dν(x) = I , in a weak sense

I If the M(x)’s are positive semi-definite and unit trace,

M(x)≡ ρ(x) (density operator)

and if X is space with suitable topology, the map

B(X ) 3∆ 7→
∫

∆
ρ(x)dν(x)

may define a normalized positive operator-valued measure (POVM) on
(Borel) subsets of X , with probabilistic content.
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Integral quantization: the map

I Quantization of complex-valued functions f (x) (on more singular
objects!) on X is the linear map:

f 7→ Af =
∫

X
M(x) f (x) dν(x) ,

I understood as the sesquilinear form,

Bf (ψ1,ψ2) =
∫

X
〈ψ1|M(x)|ψ2〉 f (x) dν(x) ,

defined on a dense subspace of H .

I If f is real and at least semi-bounded, and if the M(x)’s are positive
operators, then the Friedrich’s extension of Bf univocally defines a
self-adjoint operator.

I If f is not semi-bounded, no natural choice of a self-adjoint operator
associated with Bf , a subtle question. More information on H is needed.
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Semi-classical aspects ≈ Bargmann-Segal map

I Quantization issues, e.g. spectral properties of Af , quantum dynamics, may be
understood from functional properties of lower (Lieb) or covariant (Berezin)
symbols (generalize Husimi function or Wigner function)→ semi-classical
portraits

f 7→ Af 7→ f̌ (x) := tr(M(x)Af ) ,

I If M = ρ, then f̌ (x) is the local averaging of the original f with respect to the
probability distribution x ′ 7→ tr(ρ(x)ρ(x ′))

f (x) 7→ f̌ (x) =
∫

X
f (x ′) tr(ρ(x)ρ(x ′))dν(x ′) .

I The Bargmann-Segal-like map f 7→ f̌ is in general a regularization of the original,
possibly extremely singular, f .

I The classical limit itself means: given one or more scale parameter(s) ε(i) and a
distance d(f , f̌ ):

d(f , f̌ )→ 0 as ε(i)→ 0 .
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Covariant integral quantization with UIR of a group:

Resolution of the identity

I Let G be a Lie group with left Haar measure dµ(g), and let g 7→ U(g) be
a unitary irreducible representation (UIR) of G in a Hilbert space H .

I Let M a bounded operator on H . Suppose that the operator

R :=
∫

G
M(g) dµ(g) , M(g) := U(g)MU†(g) ,

is defined in a weak sense. From the left invariance of dµ(g) the
operator R commutes with all operators U(g), g ∈G, and so from
Schur’s Lemma, R = cMI with

cM =
∫

G
tr(ρ0 M(g)) dµ(g) ,

where the unit trace positive operator ρ0 is chosen in order to make the
integral convergent.

I Resolution of the identity follows:

∫
G

M(g) dν(g) = I , dν(g) := dµ(g)/cM .
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Covariant quantization: with square integrable UIR (e.g. affine group)

I For square-integrable UIR U for which ρ is an “admissible” density operator,

cρ =
∫

G
dµ(g) tr

(
ρU(g)ρU†(g)

)
< ∞

I Resolution of the identity then is obeyed by the family:

ρ(g) = U(g)ρU†(g)

I This allows covariant integral quantization of complex-valued functions on the
group

f 7→ Af =
1
cρ

∫
G

ρ(g) f (g) dµ(g) ,

U(g)Af U†(g) = AU(g)f ,

where
(U(g)f )(g′) := f (g−1g′)

(regular representation if f ∈ L2(G, dµ(g))).

I Generalization of the Berezin or heat kernel transform on G:

f̌ (g) :=
∫

G
tr(ρ(g)ρ(g′)) f (g′) dν(g′)

Jean Pierre Gazeau Integral quantization & Affine symmetry



- - :

Why affine integral quantization?

Positive operator-valued measure (POVM) based on x 7→ ρ(x),
particularly “coherent states” (CS) ρ(x) = |x〉〈x |:

a bridge classical↔ quantum models

I Integral quantizations, particularly CS quantizations, are suitable when
we have to deal with some singularities

I POVM afford a semi-classical phase space portrait of quantum states
and quantum dynamics together with a probabilistic interpretation
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Affine group

I As the complex plane is viewed as the phase space for the motion of a
particle on the line, the half-plane is viewed as the phase space for the
motion of a particle on the half-line.

I One equips the upper half-plane Π+ := {(q,p) |p ∈ R , q > 0} with the
measure dqdp.

I Together with
(i) the multiplication law

(q,p)(q0,p0) =

(
qq0,

p0

q
+ p
)
, q ∈ R∗+, p ∈ R ,

(ii) the unity (1,0)
(iii) and the inverse

(q,p)−1 =

(
1
q
,−qp

)
,

Π+ is viewed as the affine group Aff+(R) of the real line

I The measure dq dp is left-invariant with respect to this action.
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UIR of the affine group

I The affine group Aff+(R) has two non-equivalent UIR U± (∼ carried on
by Hardy spaces)

I Both are square integrable: this is the rationale behind continuous
wavelet analysis resulting from a resolution of the identity.

I The UIR U+ ≡ U is realized in the Hilbert space H = L2(R∗+,dx):

U(q,p)ψ(x) = (eipx/
√

q)ψ(x/q) .

I By adopting the integral quantization scheme described above, we
restrict to the specific case of rank-one density operator or projector

ρ = |ψ〉〈ψ|

where ψ is a unit-norm state in L2(R†
+,dx)∩L2(R†

+,dx/x) (also called
“fiducial vector” or “wavelet”).

I The action of UIR U produces all affine coherent states, i.e. wavelets,
defined as |q,p〉 = U(q,p)|ψ〉.
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Affine CS quantization

I Due to the irreducibility and square-integrability of the UIR U, the
following resolution of the identity holds∫

Π+

|q,p〉〈q,p| dqdp
2πc−1

= I ,

where
cγ :=

∫
∞

0
|ψ(x)|2 dx

x2+γ
.

I Thus, a necessary condition for resolution of the identity holding true is
that c−1 < ∞, which implies ψ(0) = 0, a well-known requirement in
wavelet analysis.

I Corresponding quantization reads as

f 7→ Af =
∫

Π+

f (q,p)|q,p〉〈q,p| dq dp
2πc−1

,
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Covariance

I As expected, the map f 7→ Af is covariant with respect to the unitary
affine action U:

U(q0,p0)Af U
†(q0,p0) = AU(q0,p0)f ,

with

(U(q0,p0)f )(q,p) = f
(

(q0,p0)−1(q,p)
)

= f
(

q
q0

,q0(p−p0)

)
,

I U is the left regular representation of the affine group.
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CS affine quantization with real fiducial vector

I Quantization of the momentum

Ap = P =−i
∂

∂x
.

I Quantization of powers of the position

Aqβ =
cβ−1

c−1
Qβ , Qf (x) = xf (x) .

I Whereas Q is self-adjoint, operator P is symmetric but has no
self-adjoint extension.

I This affine quantization is, up to a multiplicative constant, canonical,

[Q,P] = ic0/c−1I

(The constant can be brought to 1 through a suitable rescaling.)
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CS affine quantization with real fiducial vector: dilation

I The quantization of the product qp yields:

Aqp =
c0

c−1

QP + PQ
2

≡ c0
c−1

D ,

where D is the dilation generator. As one of the two generators (with Q)
of the UIR U of the affine group, it is essentially self-adjoint, with
continuous spectrum λ ∈ R and corresponding eigendistributions x

1
2 +iλ .
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CS affine quantization with real fiducial vector: kinetic energy

I The quantization of kinetic energy gives

Ap2 = P2 +
K (ψ)

Q2 , K (ψ) =
∫

∞

0
(ψ
′(u))2 u

du
c−1

> 0.

I Therefore, this “wavelet” quantization prevents a quantum free particle
moving on the positive line from reaching the origin.

I While the operator P2 =−d2/dx2 in L2(R∗+,dx) is not essentially
self-adjoint, the above regularized operator, defined on the domain of
smooth function of compact support, is essentially self-adjoint1 for
K > 3/4. Then quantum dynamics of the free motion is unique.

1Reed M. and Simon B., Methods of Modern Mathematical Physics, II. Fourier Analysis,
Self-Adjointness Volume 2 Academic Press, New York, 1975
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Semi-classical portraits

I The quantum states and their dynamics have phase space
representations through wavelet symbols. For the state |φ〉 one has

Φ(q,p) = 〈q,p|φ〉/
√

2π ,

I The associated probability distribution on phase space given by

ρφ (q,p) =
1

2πc−1
|〈q,p|φ〉|2.

I Having the (energy) eigenstates of some quantum Hamiltonian H, e.g.
the ACS quantized Ah of a classical h(q,p), at our disposal, we can
compute the time evolution

ρφ (q,p, t) :=
1

2πc−1
|〈q,p|e−iHt |φ〉|2

for any state φ .
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Summary

Affine CS quantization of the half-plane in a nutshell

e.g. Volume - Expansion pair : (q,p) ∈ R+×R

Affine group : (q,p)(q0,p0) = (qq0,
p0
q

+ p) , Left invariant measure: dq dp

UIR : L2(R+, dx) 3 ψ(x) 7→ (U(q,p)ψ)(x) =
eipx
√

q
ψ

(
x
q

)

Affine CS : L2(R+, dx)∩L2(R+, dx/x) 3 ψ 7→ |q,p〉= U(q,p)ψ

ACS-integral quantization : f (q,p) 7→ Af = Cstψ

∫
R+×R

dq dp f (q,p) |q,p〉〈q,p|
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Probe operator to be affine transported

I Given a weight function ϖ(q,p) one defines the operator

∫
Π+

C−1
DMU(q,p)C−1

DM ϖ(q,p)dq dp := Mϖ .

I The appearance of the positive self-adjoint and invertible Duflo-Moore
operator CDM :=

√
2π/Q is due to the non-modularity of the affine group.

This operator is needed to establish the square-integrability of the UIR U∫
Π+

dq dp〈U(q,p)ψ|φ〉〈U(q,p)ψ ′|φ ′〉= 〈CDMψ|CDMψ
′〉〈φ ′|φ〉 ,

for any pair (ψ,ψ ′) of admissible vectors, i.e. which obey ‖CDMψ‖< ∞,
‖CDMψ ′‖< ∞, and any pair (φ ,φ ′) of vectors in L2(R∗+,dx).

I Operator Mϖ is symmetric if ϖ(q,p) obeys ϖ(q,p) = 1
q ϖ

(
1
q ,−qp

)
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Quantization

I Corresponding integral quantization

f 7→ Aϖ

f =
∫

Π+

dq dp
cMϖ

f (q,p)Mϖ (q,p) , Mϖ (q,p) = U(q,p)Mϖ U†(q,p)

I The constant cMϖ is given by

cMϖ =
√

2π

∫ +∞

0

dq
q

ϖ̂p (1,−q) ,

where ϖ̂p is the partial Fourier transform of ϖ with respect to the variable
p.

I Resolution of the identity holds for cMϖ < ∞.

I By construction, this quantization map is covariant

U(q0,p0)Aϖ

f U†(q0,p0) = AϖU(q0,p0)f .
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Quantization formulas

Proposition

The action on φ in H of the operator Aϖ

f defined by the integral quantization
map is given by

(Aϖ

f φ)(x) =
∫ +∞

0
A ϖ

f (x ,x ′)φ(x ′) dx ′ ,

where the kernel A ϖ

f is defined as

A ϖ

f (x ,x ′) =
1

cMϖ

x
x ′

∫ +∞

0

dq
q

ϖ̂p

( x
x ′
,−q

)
f̂p

(
x
q
,x ′−x

)
.

Here f̂p is the partial Fourier transform of f with respect to the variable p.
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Particular cases

I Position dependent function f (q,p)≡ u(q). Its quantum version is the
multiplication operator

Aϖ

u(q) =
2π

cMϖ

∫ +∞

0

dq
q

M ϖ (q,q) u
(

Q
q

)
=

√
2π

cMϖ

∫ +∞

0

dq
q

ϖ̂p(1,−q)u
(

Q
q

)
i.e. the multiplication by the convolution on the multiplicative group R∗+ of

u(x) with
√

2π

cMϖ
ϖ̂p(1,−x).

I An interesting more particular case is when u is a simple power of q, say
u(q) = qβ . Then we have

Aϖ

qβ =

√
2π

cMϖ

∫ +∞

0

dq
q1+β

ϖ̂p(1,−q)Qβ ≡
dβ

d0
Qβ ,

where dβ =
∫+∞

0
dq

q1+β
ϖ̂p(1,−q)
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Particular cases (continued)

I Momentum dependent functions f (q,p)≡ v(p)

A ϖ

v(p)(x ,x ′) =
1

cMϖ

v̂(x ′−x)
x
x ′

∫ +∞

0

dq
q

ϖ̂p

( x
x ′

,−q
)
≡ 1

cMϖ

v̂(x ′−x)
x
x ′

Ω
( x

x ′
)
.

I As a simple but important example, let us examine the case v(p) = pn, n ∈ N.
From distribution theory

v̂(x ′−x) =
√

2π in δ
(n)(x ′−x) ,

we derive the differential action of the operator Aϖ

pn in H as the polynomial in
P =−id/dx

Aϖ

pn =

√
2π

cMϖ

n

∑
k=0

(
n
k

) (
−i

d
dx ′

)n−k x
x ′

Ω
( x

x ′
)∣∣∣

x ′=x
Pk = Pn + · · · .

I In particular

Aϖ
p = P +

i
x

[
1 +

Ω′(1)

Ω(1)

]
.

I This operator is symmetric but has no self-adjoint extension

I The commutation rule [Aq ,Ap] = d1
d0

iI holds canonical up to a factor which can be
easily put equal to one through a rescaling of the weight function.
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Particular cases (continued)

I For the kinetic energy we have

Aϖ

p2 = P2 +
2i
Q

[
1 +

Ω′(1)

Ω(1)

]
P− 1

Q2

[
2 + 4

Ω′(1)

Ω(1)
+

Ω′′(1)

Ω(1)

]
.

I This symmetric operator is essentially self-adjoint or not, depending on
the strength of the (attractive or repulsive) potentiel 1/x2.

I With the choice of a weight function such that −2−4 Ω′(1)
Ω(1)

− Ω′′(1)
Ω(1)

> 3/4,
it is essentially self-adjoint and so quantum dynamics of the free motion
on the half-line is unique.
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Particular cases (continued)

I Separable functions f (q,p)≡ u(q)v(p)

A ϖ

u(q)v(p)(x ,x ′) =
1

cMϖ

v̂(x ′−x)
x
x ′

∫ +∞

0

dq
q

ϖ̂p

( x
x ′
,−q

)
u
(

x
q

)
.

I The elementary example is the quantization of the function qp which
produces the integral kernel and its corresponding operator

A ϖ
qp(x ,x ′) =

√
2π

cMϖ

iδ
′(x ′−x)

x2

x ′

∫ +∞

0

dq
q2 ϖ̂p

( x
x ′
,−q

)
,

Aϖ
qp =

Ω1(1)

Ω(1)
D + i

[
3
2

Ω1(1)

Ω(1)
+

Ω′1(1)

Ω(1)

]
,

where D = 1
2 (QP + PQ) is the dilation generator. Here

Ωβ (u) =
∫ +∞

0

dq
q1+β

ϖ̂p (u,−q) , Ω0(u) = Ω(u) .
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Semi-classical portraits

I Given a weight function ϖ(q,p) yielding a symmetric unit trace operator Mϖ , we
define the semi-classical or lower symbol of an operator A in H as the function

Ǎ(q,p) := Tr
(

AU(q,p)Mϖ U†(q,p)
)

= Tr
(
AMϖ (q,p)

)
.

I When the operator A is the affine integral quantized version of a classical f (q,p)
with the same weight ϖ , we get the transform

f (q,p) 7→ f̌ (q,p)≡ Ǎϖ

f (q,p) =
∫

Π+

dq′ dp′

cMϖ

f
(

qq′,
p′

q
+ p
)

Tr
(
Mϖ (q′,p′)Mϖ

)
.

I Of course, this expression has the meaning of an averaging of the classical f if
the function

(q,p)≡ g 7→ 1
cMϖ

Tr
(
Mϖ (g)Mϖ

)
=

=
1

cMϖ

1
2πq

∫ +∞

0
dx
∫ +∞

0
dy e−ip(y−x)

ϖ̂p

(
x
y
,− x

q

)
ϖ̂p

(y
x
,−y

)
.

is a true probability distribution on the half-plane.
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Affine Wigner integral quantization

I With the specific weight ϖaW (q,p) = e−i
√

qp
√

q we obtain twice the affine inversion
operator

MaW ≡ 2I =
∫

Π+

U(q,p)ϖaW (q,p)dq dp , (I ψ)(x) :=
1
x

ψ

(
1
x

)
, I 2 = I .

I This operator is the affine counterpart of the operator yielding the Weyl-Wigner
integral quantization when the phase space is R2, i.e. we deal with
Weyl-Heisenberg symmetry.

Proposition

The integral kernel of the quantization of a function f (q,p) through the weight function
has the following expression,

A aW
f (x ,x ′) =

1√
2π

f̂p

(√
x ′

x
,x ′−x

)
.
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Particular cases of affine Wigner integral quantization

Proposition

(i) The quantization of a function of q, f (q,p) = u(q) provided by the weight ϖaW is
u(Q).

(ii) Similarly, the quantization of a function of p, f (q,p) = v(p) provided by the weight
ϖaW is v(P) (in the pseudo-differential sense).

(iii) More generally, the quantization of a separable function f (q,p) = u(q)v(p)
provided by the weight ϖaW is the integral operator(

AaW
u(q)v(p) ψ

)
(x) =

1√
2π

∫ +∞

0
dx ′ v̂(x ′−x)u

(√
x x ′
)

ψ(x ′) .

(iv) In particular, the quantization of u(q)pn, n ∈ N, yields the symmetric operator,

AaW
u(q)pn =

n

∑
k=0

(
n
k

)
(−i)n−k u(n−k)(Q)Pk ,

and for the dilation, AaW
qp = D

Therefore, this affine integral quantization is the exact counterpart of the Weyl-Wigner
integral quantization
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Results

In quantum cosmology

I Quantum dynamics of isotropic, anisotropic non-oscillatory and
anisotropic models

I Singularity resolution

I Unitary dynamics without boundary conditions

I (Consistent) semi-classical description of involved quantum dynamics
Link with Klauder’s approach : proceeding in quantum theory with an “affine” quantization instead of
the Weyl-Heisenberg quantization was already present in Klauder’s work devoted the question of
dealing with singularities in quantum gravity (see e.g. An Affinity for Affine Quantum Gravity, Proc.
Steklov Inst. of Math. 272, 169-176 (2011); gr-qc/1003.261 for recent references). The procedure
rests on the representation of the affine Lie algebra. In this sense, it remains closer to the canonical
one and it is not of the integral type.
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Hamiltonian formulation from the solving of the constraint in
modelling a closed Friedman universe

I FLRW models filled with barotropic fluid with equation of state p = wρ

and resolving Hamiltonian constraint leads to a model of singular
universe ∼ particle moving on the half-line (0,∞).

I In appropriate affine canonical coordinates (q,p), Hamiltonian reads as

{q,p}= 1, h(q,p) = α(w)p2 + 6k̃qβ(w), q > 0 .

with k̃ = (
∫

dω)2/3k , α(w) = 3(1−w)2/32 and
β (w) = 2(3w + 1)/(3(1−w)). k = 0,−1 or 1 (in suitable unit of inverse
area) depending on whether the universe is flat, open or closed.

I Assume a closed universe with radiation content : w = 1/3 and k = +1.
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Isotropy singularity cured by affine CS quantizationa

aH. Bergeron, A. Dapor, J.P. G. and P. Małkiewicz, Phys. Rev. D 89, 083522 (2014); arXiv:1305.0653 [gr-qc]

I Closed Friedman universe:

h =
1
24

p2 + 6q2 7→ Ah =
1

24
P2 +

K (ψ)

24
1

Q2 + 6M(ψ)Q2

P ≡−i
d
dx

, Qφ(x)≡ xφ(x) , K , M > 0 ∀ψ

I Quantum consistency:

for K > 3
4 quantum Hamiltonian Ah is self-adjoint, giving a unique unitary

evolution
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Semi-classical description

I Semi-classical dynamics is ruled by :

〈q,p|Ah|q,p〉= Cstψ
∫
R+×R

dq′ dp′|〈q′,p′|q,p〉|2h(q′,p′) ,

I with a displacement of the equilibrium point of the potential at

Q4
eq =

1
144

K
M
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Ground state φ0

Phase space probability distribution of the ground state with a certain choice of ψ2

|φ0〉 7→ ρ|φ0〉(q,p) = Cstψ |〈q,p|φ0〉|2

2This stationary quantum state of the universe is distributed around the equilibrium point qe (minimum of the potential curve involved in
the Hamiltonian). The existence of the semi-classical equilibrium point qe 6= 0 is a consequence of the repulsive part of the potential.

Jean Pierre Gazeau Integral quantization & Affine symmetry



- - :

Dynamics

Phase space distribution

ρ|q0,p0〉(q,p, t) = Cstψ |〈q,p|e−iAht |q0,p0〉|2

for some selected values of time t . (Fluid configuration variable is chosen as a clock of
universe). Black curves are phase trajectories obtained from semi-classical (∼
effective) dynamics.
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Phase space trajectories

Compared contour plot of phase space trajectories for classical Hamiltonian h(q,p)
(left) and semi-classical Hamiltonian (right)

〈q,p|Ah|q,p〉= Cstψ
∫
R+×R

dq′ dp′|〈q′,p′|q,p〉|2h(q′,p′)
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A “semiclassical” Friedmann equation

I As the result of affine quantization we obtain two corrections to the Friedmann
equation which reads in its semi-classical version as(

ȧ
a

)2

+ c2a2
P(1−w)2 A

1
V 2 + B

kc2

a2 =
8πG
3c2 ρ ,

where A and B are positive factor dependent on the fiducial ψ and can be
adjusted at will in consistence with (so far very hypothetical!) observations.

I The first correction is the repulsive potential, which depends on the volume. As
the singularity is approached a→ 0, this potential grows faster (∼ a−6) than the
density of fluid (∼ a−3(1+w)) and therefore at some point the contraction must
come to a halt.

I Second, the curvature becomes dressed by the factor B. This effect could in
principle be observed far away from the quantum phase. However, we do not
observe the intrinsic curvature neither in the geometry nor in the dynamics of
space. Nevertheless, for a convenient choice of ψ, this factor ≈ 1

I The form of the repulsive potential does not depend on the state of fluid
filling the universe: the origin of singularity avoidance is quantum
geometrical.
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Anisotropy singularitya

aH Bergeron, A Dapor, J.P.G., and P Małkiewicz, Phys. Rev D 91 124002 (2015); arXiv:1501.07718 [gr-qc]

I Bianchi type I model:

h =
1

24
p2− Cst

24

(
p2

+ + p2
−

)
q−2

I Positivity constraint:

h > 0

I Affine CS quantization of the singular θ(h)h, θ is Heaviside:

θ(h)h 7→ Aθ(h)h =
1

24
P2 +

K (ψ)

24
1

Q2 −6N(ψ)
Cst
Q2 + · · ·
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Phase space trajectories

Compared contour plot of phase space trajectories for classical Hamiltonian θ(h)h(q,p) (left) and
semi-classical Hamiltonian (right)

〈q,p|Ah|q,p〉= Cstψ
∫
R+×R

dq′ dp′|〈q′,p′|q,p〉|2 θ(h)h(q′,p′)

∼ p2 + K̃ (ψ)
1
q2 − L̃(ψ)

k2

q2 + F (k2,p2q2)
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Oscillatory singularitya

aH. Bergeron, E. Czuchry, J.P. G., P. Małkiewicz, and W. Piechocki, Phys. Rev. D; arXiv:1501.02174 [gr-qc];
Phys. Rev. D, 92, 124018; arXiv:1501.07871 [gr-qc]

I Vacuum Bianchi type IX (Mixmaster):

Anisotropy potential V (β±)

C =
3

16
p2 +

3
4

q2/3−hanis
q ≡ his

q −hanis
q

hanis
q =

1
12q2

(
p2

+ + p2
−

)
+

3
4

q2/3V (β±)

I Affine CS + canonical quantization:

C 7→ AC =
3
16

(
P2 + h̄2 K1(ψ)

Q2

)
+

3
4

K3(ψ)Q2/3−Ahanis
q
≡ Ahis

q
−Ahanis

q

Ahanis
q

= ∑
N

EN (Q)|eN (Q)〉〈eN (Q)|
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Adiabatic (∼ Born-Oppenheimer) approximation

|Ψ〉= |q,p〉⊗ |eN〉

1 2 3 4 5

-5

0

5

Scale factor a

H
ub

bl
e

ra
te

H

Three periodic semiclassical trajectories in the half-plane (a,H)

〈q,p|AC |q,p〉=
3

16

(
p2 + h̄2 K4(ψ)

q2

)
+

3
4

K5(ψ)q2/3−EN (q)
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Vibronic approacha

Mix semi-classical dynamics for (q,p) with quantum dynamics for anisotropy

aH. Bergeron, E. Czuchry, J.P. G., and P. Małkiewicz, submitted; arXiv: 1511.05790[gr-qc]; arXiv:1512.00304v1 [gr-qc]
D. R. Yarkony, “Nonadiabatic Quantum ChemistryPast, Present, and Future”, Chem. Rev. 112, 481 (2012).

I General state:

|Ψ〉= |q,p〉⊗ |e〉 |e〉= ∑
N

λN |eN〉

I Semi-classical Hamiltonian dynamics (Klauder):

q̇ = N
∂ 〈Ψ|AC |Ψ〉

∂p
, ṗ =−N

∂ 〈Ψ|AC |Ψ〉
∂q

,
h̄
i

∂ |e〉
∂ t

= N 〈q,p|Ahanis
q
|q,p〉 |e〉

I Quantized constraint is semi-classically consistent:

L
(

Ψ,Ψ̇,N
)

= 〈Ψ(t)
∣∣∣∣(i h̄

∂

∂ t
−N C

)∣∣∣∣Ψ(t)〉 ⇒ ∂L
∂N

= 〈Ψ|AC |Ψ〉= 0
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Beyond BO approximation: vibronic approach continued 1
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Figure: The evolution of the scale factor a(η) (left panel) and the Hubble rate (right panel) as a function of the

conformal time η . The initial value of a is a0 = 5 and the initial state is |φ (int)
0 〉= |0〉.
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Vibronic approach continued 2
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Figure: Evolution of the quantum state with conformal time when the initial value of a is a0 = 5 and the initial state

is |φ (int)
0 〉= |0〉. On the left panel the evolution of the populations |cn(η)|2 for n = 0,1, . . . ,12. |c0(η)|2 corresponds

to the curve on the top. On the right panel, the mean excitation < N̂ > (η).
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Beyond BO approximation: vibronic approach 3
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Figure: The evolution of the scale factor a(η) (left panel) and the Hubble rate (right panel) as a function of the

conformal time η . The initial value of a is a0 = 5 and the initial state is |φ (int)
0 〉= |n = 2〉.
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Vibronic approach continued 4
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Figure: Evolution of the quantum state with conformal time when the initial value of a is a0 = 5 and the initial state

is |φ (int)
0 〉= |n = 2〉. On the top left panel the decay of the initial level n = 2. On the top right panel the excitation of

the level n = 8. On the bottom left panel the evolution of the populations |cn(η)|2 for n = 0,1, . . . ,12. On the bottom
right panel, the mean excitation < N̂ > (η).
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Summarya

a for other approaches based on affine symmetry see
M. Fanuel and S. Zonetti, Affine Quantization and the Initial Cosmological Singularity, Eur. Phys. Lett. 101, 10001 (2013);
J. R. Klauder, An Affinity for Affine Quantum Gravity, Proc. Steklov Institute of Mathematics 272, 169-176 (2011); gr-qc/1003.261

I ACS resolve the hardest singularities
I ACS provide a manageable semiclassical description
I ACS combined with molecular physics like

Born-Oppenheimer-Huang approximations provide a description of
oscillatory singularities

I Other developments: “multiple choice problems” in QG, quantum
theory of cosmological perturbations on quantum backgrounds
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The knowledge of anything, since all things have causes, is not
acquired or complete unless it is known by its causes.

Ibn Sı̂nâ 980-1037
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Covariant quantization with UIR square integrable w.r.t. a subgroup

I In the absence of square-integrability over G, (e.g. Weyl Heisenberg group,
Euclidean group, Galileo group, Poincaré group ....), there exists a definition of
square-integrable representation with respect to a left coset manifold X = G/H,
with H a closed subgroup of G, equipped with a quasi-invariant measure ν .3

I For a global Borel section σ : X →G of the group, let νσ be the unique
quasi-invariant measure defined by

dνσ (x) = λ(σ(x),x)dν(x) ,

where λ(g,x)dν(x) = dν(g−1x), (∀g ∈G)

I A UIR U is said square integrable mod(H,σ) with respect to the density operator
ρ if

cρ :=
∫

X
tr(ρ ρσ (x)) dνσ (x) < ∞

with ρσ (x) = U(σ(x))ρU(σ(x))†.

I Then we have the resolution of the identity and the resulting quantization

f 7→ Af =
1
cρ

∫
X

f (x)ρσ (x) dνσ (x)

3S. T. Ali, J.-P. Antoine, and J.-P. G., Coherent States, Wavelets and their Generalizations (Graduate Texts in
Mathematics, Springer, New York, 2000). New edition in 2014
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Covariant quantization with UIR square integrable

w.r.t. a subgroup: covariance

I Covariance holds here too in the following sense.

U(g)Af U(g)† = Aσg
Ur (g)f , with Aσg

f =
1
cρ

∫
X

f (x)ρσg (x) dνσg (x) .

I Here, the sections σg : X 7→G, g ∈G are covariant translates of σ under g,

σg(x) = gσ(g−1 ·x) = σ(x)h
(

g,g−1x
)

where h is the cocycle defined by the factorisation

gσ(x) = σ(g ·x)h(g,x) , h(g1g2,x) = h(g1,g2 ·x)h(g2,x) ,

and the measure dνσg is defined consistently to (??) by

dνσg (x) = λ
(
σg(x),x

)
dν(x) .

Besides the Weyl-Heisenberg group, another example concerns the motion on
the circle for which G is the group of Euclidean displacements in the plane, i.e.
the semi-direct product R2 oSO(2), and the subgroup H is isomorphic to R. Other
examples involve the relativity groups, Galileo, Poincaré, 1+ 1 Anti de Sitter (unit
disk and SU(1,1)).
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An example of construction of original operator M or ρ

I Let U be a UIR of G and ϖ(x) be a function (the “weight”) on the coset
X = G/H. We will explain later the meaning of this function from a
physical point of view.

I Suppose that it allows to define a bounded operator Mϖ
σ on H through

the operator-valued integral

Mϖ
σ =

∫
X

ϖ(x)C1/2 U(σ(x))C1/2 dνσ (x) .

where the positive invertible operator C is (optionnally) included in order
to make the above operator-valued integral converge in a weak sense.

I Then, under appropriate conditions on C and on the weight function
ϖ(σ(x)) such that U be a UIR which is square integrable mod(H) and M
is admissible in the above sense, the family of transported operators
Mϖ

σ (x) := U(σ(x))Mϖ
σ U(σ(x))† resolves the identity.

Jean Pierre Gazeau Integral quantization & Affine symmetry



- - :

Weyl-Heisenberg group and algebra, Fock or number representation

I Weyl-Heisenberg group GWH = {(s,z) , s ∈ R , z ∈ C} with multiplication
law

(s,z)(s′,z ′) = (s + s′+ Im(zz̄ ′),z + z ′)

I Let H be a separable (complex) Hilbert space with orthonormal basis
e0,e1, . . . ,en ≡ |en〉, . . . , (e.g. the Fock space with |en〉 ≡ |n〉).

I Lowering and raising operators a and a†:

a |en〉=
√

n|en−1〉 , a|e0〉= 0 ,

a† |en〉=
√

n + 1|en+1〉 .

I Operator algebra {a,a†,1} obeys the ccr

[a,a†] = 1 ,

and represents the Lie Weyl-Heisenberg algebra

I Number operator: N = a†a, spectrum N, N|en〉= n|en〉.
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Unitary Weyl-Heisenberg group representation and standard CS

I Consider the center C = {(s,0) , s ∈ R} of GWH. Then, set X is the coset
X = GWH/C ∼ C with measure d2z/π.

I To each z ∈ C corresponds the (unitary) displacement (∼Weyl) operator
D(z) :

C 3 z 7→ D(z) = eza†−z̄a .

I Space inversion→ Unitarity:

D(−z) = (D(z))−1 = D(z)† .

I Addition formula (Quantum Mechanics in a nutshell!):

D(z)D(z ′) = e
1
2 (zz̄ ′−z̄z ′)D(z + z ′) = e(zz̄ ′−z̄z ′)D(z ′)D(z) ,

i.e. z 7→ D(z) is a projective representation of the abelian group C.

I Standard (i.e., Schrödinger-Klauder-Glauber-Sudarshan) CS

|z〉= D(z)|e0〉 ,
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Quantization(s) with weight function(s) I

I Let ϖ(z) be a function on the complex plane obeying ϖ(0) = 1. Suppose
that it allows to define a bounded operator M on H through the
operator-valued integral

Mϖ =
∫
C

ϖ(z)D(z)
d2z
π

.

I Then, the family of displaced Mϖ (z) := D(z)Mϖ D(z)† under the unitary
action D(z) resolves the identity

∫
C

Mϖ (z)
d2z
π

= I .

I It is a direct consequence of D(z)D(z ′)D(z)† = ezz̄ ′−z̄z ′D(z ′), of∫
Cezξ̄−z̄ξ d2ξ

π
= πδ 2(z) , and of ϖ(0) = 1 with D(0) = I.

Jean Pierre Gazeau Integral quantization & Affine symmetry



- - :

Quantization(s) with weight function(s); in variable z

I The resulting quantization map is given by

f 7→ Aϖ

f =
∫
C

Mϖ (z) f (z)
d2z
π

=
∫
C

ϖ(z)D(z) fs[f ](z)
d2z
π

,

I where are involved the symplectic Fourier transforms fs and its space
reverse fs

fs[f ](z) =
∫
C

ezξ̄−z̄ξ f (ξ )
d2ξ

π
, fs[f ](z) = fs[f ](−z)

Both are unipotent fs[fs[f ]] = f and fs[fs[f ]] = f .
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Quantization(s) with weight function(s), in variables (q,p)

I The resulting quantization map is given by in terms of variables
q = (z + z̄)/

√
2, p =−i(z− z̄)/

√
2 and Fourier transform, with

f (z)≡ F (q,p) and ϖ(z)≡ Π(q,p),

Aϖ

f =
∫
R2

D(q,p)Fs[F ](−q,−p)Π(q,p)
dq dp

2π

=
∫
R2

∫
R2

e−
iqp
2 eipQ e−iqP ei(qy−px) F (x ,y)Π(q,p)

dq dp
2π

dx dy
2π

=
∫
R2

∫
R2

e
iqp
2 e−iqP eipQ ei(qy−px) F (x ,y)Π(q,p)

dq dp
2π

dx dy
2π

where
fs[f ](z)≡ Fs[F ](q,p) =

∫
R2 e−i(qy−px) F (x ,y) dx dy

2π
= F[F ](−p,q)

and F denotes the standard two-dimensional Fourier transform,
F[F ](kx ,ky ) =

∫
R2 e−i(kx x+ky y) F (x ,y) dx dy

2π
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Quantization(s) with weight function(s) : Covariance

I Translation covariance:

Aϖ

f (z−z0) = D(z0)Aϖ

f (z)D(z0)† .

I Parity covariance

Aϖ

f (−z) = PAϖ

f (z)P,∀ f ⇐⇒ ϖ(z) = ϖ(−z), ∀z ,

where P = ∑
∞

n=0(−1)n|en〉〈en| is the parity operator.

I Complex conjugation covariance

Aϖ

f (z)
=
(

Aϖ

f (z)

)†
,∀ f ⇐⇒ ϖ(−z) = ϖ(z), ∀z ,
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Quantization(s) with weight function(s): Rotational covariance

I Define the unitary representation θ 7→ UT(θ) of the torus S1 on the Hilbert space
H as the diagonal operator

UT(θ)|en〉= ei(n+ν)θ |en〉 ,

where ν is arbitrary real.

I From the matrix elements of D(z) one proves easily the rotational covariance
property

UT(θ)D(z)UT(θ)† = D
(

eiθ z
)
,

I and its immediate consequence on the nature of M and the covariance of Aϖ

f ,

UT(θ)Aϖ

f UT(−θ) = Aϖ

T (θ)f ⇐⇒ ϖ

(
eiθ z

)
= ϖ(z) , ∀z ,θ

⇐⇒ M diagonal ,

where T (θ)f (z) := f
(
e−iθ z

)
.
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CCR is always the rule!

I Canonical Commutation Rule is a permanent outcome of the above quantization,
whatever the chosen complex function ϖ (z), provided integrability and derivability
at the origin is insured.

Aϖ
z = aϖ (0)− ∂z̄ ϖ |z=0 = a− ∂z̄ ϖ |z=0 , Aϖ

z̄ = a+
ϖ (0)+ ∂z ϖ |z=0 = a+ + ∂z ϖ |z=0 ,

I Equivalently, with z = (q + ip)/
√

2, As a result, we have

Aϖ
q =

1√
2

[(
a + a+

)
− ∂z̄ ϖ |z=0 + ∂z ϖ |z=0

]
,

Aϖ
p =

1√
2i

[(
a−a+

)
− ∂z̄ ϖ |z=0− ∂z ϖ |z=0

]
,

I From this the commutation relation becomes ccr,

Aϖ
q Aϖ

p −Aϖ
p Aϖ

q = i
[
a,a+

]
= iI ,

I Moreover, if |ϖ(z)|= 1

tr
(

(Aϖ

f )†Aϖ

f

)
=
∫
C
|f (z)|2 d2z

π
,

which means that the map f 7→ Aϖ

f is invertible through a trace formula.
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Wigner-Weyl, CS, normal, and other, quantizations

I The normal, Wigner-Weyl and anti-normal (i.e., anti-Wick or Berezin or
CS) quantizations correspond to s→ 1−, s = 0, s =−1 resp. in the
specific choice 4

ϖs(z) = es|z|2/2 , Re s < 1.

I This yields a diagonal Mϖ ≡Ms with

〈en|Ms|en〉=
2

1−s

(
s + 1
s−1

)n
,

and so

Ms =
∫
C

ϖs(z)D(z)
d2z
π

=
2

1−s
exp

[
ln
(

s + 1
s−1

)
a†a
]
.

4K.E. Cahill and R. Glauber, Ordered expansion in Boson Amplitude Operators, Phys. Rev. 117
1857-1881 (1969)
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Wigner-Weyl, CS, normal, and other, quantizations II

I The case s =−1 corresponds to the CS (anti-normal) quantization, since

M = lim
s→−1

2
1−s

exp
(

ln
s + 1
s−1

a†a
)

= |e0〉〈e0| ,

and so

Aϖ

f =
∫
C

D(z)MD(z)† f (z)
d2z
π

=
∫
C
|z〉〈z| f (z)

d2z
π

.

I The choice s = 0 implies M = 2P and corresponds to the Wigner-Weyl
quantization. Then

Aϖ

f =
∫
C

D(z)2PD(z)† f (z)
d2z
π

.

I The case s = 1 is the normal quantization in an asymptotic sense.

I The parameter s was originally introduced by Cahill and Glauber in view of
discussing the problem of expanding an arbitrary operator as an ordered power
series in a and a†, a typical question encountered in quantum field theory,
specially in quantum optics.
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Canonical quantization with POVM or not

I Operator Ms is positive unit trace class for s 6−1 (and only trace class if Re s < 0;
for s = 0, see e.g. 5), i.e., is density operator: quantization has a consistent
probabilistic content, the operator-valued measure

C⊃∆ 7→
∫

∆∈B(C)
D(z)MsD(z)† d2z

π
,

is a normalized positive operator-valued measure.

I Given an elementary quantum energy, say h̄ω and with the temperature

T -dependent s =−coth
h̄ω

2kBT
the density operator quantization is

Boltzmann-Planck (thermal state in Quantum Optics)

ρs =

(
1−e

− h̄ω

kBT

)
∞

∑
n=0

e
− nh̄ω

kBT |en〉〈en| .

I Interestingly, the temperature-dependent operators ρs(z) = D(z)ρs D(z)† defines
a Weyl-Heisenberg covariant family of POVM’s on the phase space C, the null
temperature limit case being the POVM built from standard CS.

5A. Grossmann, Parity operator and quantization of δ -functions, Commun. Math. Phys., 48 (1976);
I. Daubechies, On the distributions corresponding to bounded operators in the Weyl quantization, Commun. Math.
Phys. 75 (1980)
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Variations on the Wigner function

I The Wigner function is (up to a constant factor) the Weyl transform of the
quantum-mechanical density operator. For a particle in one dimension it takes the
form (in units h̄ = 1)

W(q,p) =
1

2π

∫ +∞

−∞

〈
q− y

2

∣∣∣ ρ|q +
y
2

〉
eipy dy .

I Adapting this definition to the present context, and given an operator A, the
corresponding Wigner function is defined as

WA(z) = tr
(

D(z)2PD(z)†A
)
,

I This becomes in the case of Weyl-Wigner quantization

WAϖ

f
= f

(this one-to-one correspondence of the Weyl quantization is related to the
isometry property).
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Variations on the Wigner function (continued)

I In the case of the anti-normal quantization, the above convolution corresponds to
the Husimi transform (when f is the Wigner transform of a quantum pure state).

I In the case of the quantization map f 7→ Aϖ

f based on a general weight function ϖ ,
we get the “lower symbol” f̌ of Aϖ

f

WAϖ

f
(z)≡ f̌ (z) =

∫
C
fs
[
ϖ ϖ̃

]
(ξ −z) f (ξ )

d2ξ

π
=
∫
C

ϖ(ξ )ϖ(−ξ ) fs [t−z f ] (ξ )
d2ξ

π

where (tz0 f )(z) := f (z−z0).

Hence the map f 7→ f̌ is an (Berezin-like) integral transform with kernel
fs
[
ϖ ϖ̃

]
(ξ −z).

I If this kernel is positive, it is a probability distribution and the map f 7→ f̌ is
interpreted as an averaging.

I In general this map A 7→WA is only the dual of the quantization map f 7→ Aϖ

f in
the sense that ∫

C
WA(z)f (z)

d2z
π

= tr(AAϖ

f ) .

I This dual map becomes the inverse of the quantization map only in the case of a
Hilbertian isometry.
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Quantum harmonic oscillator according to ϖ

I For real even ϖ ,

Aϖ

q2 = Q2− ∂z∂z̄ϖ |z=0 +
1
2

(
∂

2
z ϖ

∣∣∣
z=0

+ ∂
2
z̄ ϖ

∣∣∣
z=0

)
,

Aϖ

p2 = P2− ∂z∂z̄ϖ |z=0−
1
2

(
∂

2
z ϖ

∣∣∣
z=0

+ ∂
2
z̄ ϖ

∣∣∣
z=0

)
and so

Aϖ

|z|2 ≡ Aϖ

J = a†a +
1
2
− ∂z∂z̄ϖ |z=0 .

where |z|2(= J) is the energy (or action variable) for the H.O.
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Quantum harmonic oscillator according to ϖ (continued)

I The difference between the ground state energy E0 = 1/2− ∂z∂z̄ϖ |z=0,
and the minimum of the quantum potential energy
Em = [min(Aϖ

q2 ) + min(Aϖ

p2 )]/2 =− ∂z∂z̄ϖ |z=0 is independent of the
particular (regular) quantization chosen, namely E0−Em = 1/2
(experimentally verified in 1925).

I In the exponential Cahill-Glauber case ϖs(z) = es|z|2/2 the above
operators reduce to

Aϖ

|z|2 = a†a +
1−s

2
,Aϖ

q2 = Q2− s
2
, Aϖ

p2 = P2− s
2
.

I It has been proven 6 that these constant shifts in energy are inaccessible
to measurement.

6H. Bergeron, J.P. G., A. Youssef, Are the Weyl and coherent state descriptions physically
equivalent?, Physics Letters A 377 (2013) 598605
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What is the meaning of ϖ?

I To one choice of ϖ corresponds a certain ordering

I From TrD(z) = πδ (2)(z), Mϖ , if
∫

and Tr commute, is unit trace.

I Necessary condition on ϖ(z) for that Mϖ (z) define a normalized Positive
Operator Valued Measure (POVM)

∀z , 0 < 〈z|Mϖ |z〉= fs

[
e−

|ξ |2
2 ϖ(ξ )

]
(z) =

2
π
fs

[
e−

|ξ |2
2

]
∗ fs [ϖ(ξ )](z) .
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Quantizations according to ϖ

I If ϖ is even and real, then

Aϖ
z = a , Aϖ

f (z)
=
(

Aϖ

f (z)

)†
.

I ϖ is isotropic then the quantization is rotational covariant

I If ϖ is real valued and depends on Im (z2) = qp like the Born-Jordan weight

ϖ(z) =
sinqp

qp
, then

Aϖ

f (q) = f (Q) , Aϖ

f (p) = f (P) .

Only one physical constant (∼ h̄), is needed to quantize, but classical singularities
are preserved.

I if |ϖ(z)|= 1 for all z then

tr
((

Aϖ

f
)† Aϖ

f

)
=
∫
C
|f (z)|2 d2z

π
.

f 7→ Aϖ

f is then invertible (the inverse is given by a trace formula), and we have the
trace formula

tr
((

Aϖ

f
)† Aϖ

f

)
=
∫
C

d2z
π
|ϖ(z)|2|fs(z)|2 .

From the invariance of the L2-norm under symplectic transform, we find that
f 7→ Aϖ

f is isometric.
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Final comments

Beyond the freedom (think to analogy with Signal Analysis where different techniques
are complementary) allowed by integral quantization, the advantages of the method
with regard to other quantization procedures in use are of four types.

(i) The minimal amount of constraints imposed to the classical objects to be
quantized.

(ii) Once a choice of (positive) operator-valued measure has been made, which must
be consistent with experiment, there is no ambiguity in the issue, to one classical
object corresponds one and only one quantum object. Of course different choices
are requested to be physically equivalent

(iii) The method produces in essence a regularizing effect, at the exception of certain
choices, like the Weyl-Wigner (i.e. canonical) integral quantization.

(iv) The method, through POVM choices, offers the possibility to take benefit of
probabilistic interpretation on a semi-classical level. As a matter of fact, the
Weyl-Wigner integral quantization does not rest on a POVM.
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A world of mathematical models for one “thing”

I The physical laws are expressed in terms of combinations of
mathematical symbols

I This mathematical language is in constant development since the set of
phenomenons which are accessible to our understanding is constantly
broadening.

I These combinations take place within a mathematical model.

I A model is usually scale dependent. It depends on a ratio of physical
(i.e. measurable) quantities, like lengths, time(s), sizes, impulsions,
actions, energies, etc

I Changing scale for a model amounts to “quantize” or “de-quantize”. One
changes perspective.

I The understanding changes its glasses!
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