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Plan of talk

@ Review of Rieffel’s strict deformation quantization;

© Parametrized strict deformation quantization, properties
and examples;

© Motivation of definition of principal NC principal torus
bundles;

© Review classification of Echterhoff, Nest, Oyono-Oyono;

© Classification via parametrized strict deformation
quantization;

@ Classification of twisted versions;
@ Link with T-duality in String theory.




Rieffel’s strict deformation quantization

We begin by recalling the construction by Rieffel which realizes
the smooth noncommutative torus as a strict deformation
quantization of the smooth functions on a torus T = R"/Z" of
dimension equal to n.

Recall that the Poisson bracket for a,b € C>°(T) is just
da ob
{a,b} = 29”87,379’
where (6;) is a skew symmetric matrix with constant entries.

The action of T on itself is given by translation. The Fourier

transform is an isomorphism between C>°(T) and S(T), taking
the pointwise product on C*>°(T) to the convolution product on

S(T) and taking differentiation with respect to a coordinate
function to multiplication by the dual coordinate.



Noncommutative torus

In particular, the Fourier transform of the Poisson bracket gives
rise to an operation on S(T) denoted the same. For
¢, € S(T), define

{¢,6}(p 2y w(m )v(p1, p2)

P1+p2=
where v is the skew symmetric form on T defined by
v(P1, P2) Zeljp'llij
For i € R, define a skew bicharacter o5 on T by

on(p1, P2) = exp(—mhy(p1, P2))-

Using this, define a new associative product «; on S(T),
W o)) = > v(p1)e(p2)on(pr, p2)-
Pp1+p2=p
This is precisely the smooth noncommutative torus A°.



Noncommutative torus

The norm || - || is defined to be the operator norm for the action
of S(T) on L2(T) given by 4. From this point of view, the norm
completion of A% is just the twisted group C*-algebra,

CH(T, o).

Via the Fourier transform, carry this structure back to C>°(T), to
obtain the smooth noncommutative torus as a strict
deformation quantization of C>°(T), with respect to the
translation action of T.



Strict deformation quantization of T-C*-algebras

Let A be a C*-algebra with a continuous action o« of T. Then we
define the strict deformation quantization of A, denoted Ay as
follows, where 6 is a skew symmetric matrix with constant
entries as before.

We have the direct sum decomposition,

A= B A
a = er?—ax7

where for y € 7’,

A, ={acAlw(a)=x(t)-a VteT}.

Since T acts by x-automorphisms, we have

A A CA, and AL=A 1+  Vxmnel.



Strict deformation quantization of T-C*-algebras

The completion of the direct sum is explained as follows.
The representation theory of T shows that @xe? A isa
T-equivariant dense subspace of A, where T acts on A, as
follows: d:(ay) = x(t)ay forallt € T. Then P _+A, is the
completion in the C*-norm of A.

The product then also decomposes as,

(ab)X: Z ay; by,

X1X2=X

for x1,x2,x € T. The product can be deformed by setting

(@*o b)y = Z 8y, by, €Xp(27ify, x,)

X1X2=X

This is the strict deformation quantization Ay of A, which is
associative because of the skew-symmetry.of 9.



Strict deformation quantization of T-C*-algebras

An important special case when (M, w) is a symplectic
manifold, with a smooth action of T on M preserving the
symplectic form w. If (C5°(M){, }) is the Poisson algebra, then
we can strict deform quantize it with this as choice of A,
generalizing the example of the torus.



C*-bundles over X

We begin by recalling the notion of C*-bundles over X and the
special case of noncommutative principal bundles.

Let X be a locally compact Hausdorff space and let Cy(X)
denote the C*-algebra of continuous functions on X that vanish
at infinity. A C*-bundle A(X) over X in the sense of [ENOQ] is
exactly a Cy(X)-algebra in the sense of Kasparov. That is,
A(X) is a C*-algebra together with a non-degenerate
x-homomorphism

® : Co(X) — ZM(A(X)),

called the structure map, where ZM(A) denotes the center of
the multiplier algebra M(A) of A.



C*-bundles over X

The fibre over x € X is then A(X)x = A(X)/Ix, where
Iy ={®(f) - a ac A(X) and f € Cy(X) such that f(x) = 0},

and the canonical quotient map gx : A(X) — A(X)x is called the
evaluation map at x.

NB. This definition does not require local triviality of the bundle,
or for the fibres of the bundle to be isomorphic.

Let G be a locally compact group. One says that there is a
fibrewise action of G on a C*-bundle A(X) if there is a
homomorphism a : G — Aut(A(X)) which is Cp(X)-linear in
the sense that

ag(P(f)a) = ®(f)(ag(a)), Vg € G, ac A(X), f € Co(X).

That is « induces an action o* on the fibre A(X), for-all x-€ X.



Parametrised strict deformation quantization

Let A(X) be a C*-algebra bundle over X with a fibrewise action
aofatorus T. Leto: X — 22(7', T) be a continuous map,
called a deformation parameter.

Then define the parametrised strict deformation quantization of
A(X), denoted A(X), as follows. We have the direct sum
decomposition,

AX) = B  AX)y
o) = X cron(®)

for x € X, where for x € 7’,

AX)y i={ac AX) | a(@) =x(t)-a Vte T}.



Parametrised strict deformation quantization

Since T acts by x-automorphisms, we have

AX)-AX)y C AX)yy and AX):=AX), 1  Vx.neT.

X

Therefore the spaces A(X), for x € T form a Fell bundle A(X)
over T there is no continuity condition because T is discrete.

The completion of the direct sum is explained as follows. The
representation theory of T shows that EBxe? A(X)y isa
T-equivariant dense subspace of A(X), where T acts on A(X),
as follows: a1(¢, (X)) = x(t)oy(x) forall t € T, x € X. Then
@XUA( )y is the completion in the C*-norm of A(X).



Parametrised strict deformation quantization

The product then also decomposes as,

= > b (X)y(x

X1X2=X

for x1,x2,x € T. The product can be deformed by setting

(¢ %o = > b (X)e(X)o(Xi X1, x2)

X1X2=X

In [HM10], this is the parametrised strict deformation
quantization of the T — C*-bundle A(X), is the C*-algebra
denoted by A(X),, which is associative because of the cocycle
property of o.



Parametrised strict deformation quantization

Theorem (HM09)

Let A(X) be a C*-bundle with a fibrewise action of T. Let
o0 X — 22(7', Z) be two deformation parameters.

Then A(X). is a C*-bundle over X with a fibrewise T -action,
and there is a natural isomorphism,

(A(X)U)a’ = A(X)aa’




Parametrised strict deformation quantization

We next consider a special case of this construction. Consider
a smooth fiber bundle of smooth manifolds,

Y
X.

Suppose there is a fibrewise action of atorus T on Y. That s,
assume that there is an action of T on Y satisfying,

(1)

 —

m(t.y) = n(y), VteT,yeY.

Let o € Cp(X, ZQ(?, T)) be a deformation parameter. Cy(Y) is
a C*-bundle over X, and as above, form the parametrised strict
deformation quantization Cy(Y),.



Parametrised strict deformation quantization

In particular, let Y be a principal G-bundle over X, where G is a
compact Lie group such that rank(G) > 2. (e.g.

G =SU(n), n>3o0r G=U(n), n> 2). Let T be a maximal
torus in G and o € Cp(X, Z2(T,T)) be a deformation
parameter. Then Cy(Y) is a C*-bundle over X, and as above,
form the parametrised strict deformation quantization Co(Y),-



Noncommutative principal torus bundles

Let T denote the torus of dimension n. The authors of [ENOO]
define a noncommutative principal T-bundle (or NCP
T-bundle) over X to be a separable C*-bundle A(X) together
with a fibrewise action o : T — Aut(A(X)) such that there is a
Morita equivalence,

A(X) Ao Tg CO(Xa’C)v

as C*-bundles over X, where K denotes the C*-algebra of
compact operators.

The motivation for calling such C*-bundles A(X) NCP
T-bundles arises from a special case of a theorem of Rieffel,
which states thatif g : Y — X' is a principal T-bundle, then

Co(Y) x T is Morita equivalentto  Cy(X, K). »




Classification by Echterhoff, Nest, and Oyono-Oyono

Noncommutative principal torus bundles A(X) were classified
in [ENOQ] and will be outlined in this section.

By Takai duality A(X) is Morita equivalent to Co(X, ) x T,so0
they note that the NCPT-bundles can be classified by up to
Morita equivalence by the outer equivalence classes £=(X) of
T-actions, and one has the sequence (Echterhoff-Williams)

0 — H'(X,T) — &+(X) — C(X, H¥(T,T)) — 0.

This leads to a classification in terms of a principal torus bundle
g:Y — X, from H'(X, T), and amap o € C(X, H3(T,T)), the
equivalence classes of multipliers on the dual group T.



Classification by Echterhoff, Nest, and Oyono-Oyono

These data define a noncommutative torus bundle by forming
the fixed point algebra

[Co(Y) @5,z C* ()]

with C*(H,) being the bundle of group C*-algebras of the
central extensions of T by Z = HZ(?, T) defined by o(x) at x,
the action of 00(2) on Cy(Y) coming from the composition
ooq:Y — X — Z and that on C*(H,) from the natural action

of a subgroup algebra.

In [HMO09], we are able to give a complete classification of NCP
T-bundles over X via parametrised strict deformation
quantization of principal torus bundles.



Classification of noncommutative principal torus

bundles

Theorem (HMO09)
Given a NCPT-bundle A(X), there is a defining deformation
o€ C(X, 22(7', T)) and a principal torus bundle q : Y — X
such that A(X) is the parametrised strict deformation
quantization of C(Y) with respect to o, that is, there is a
T -isomorphism

AX) = C(Y), ® K.

where K denotes the algebra of compact operators.




Classification of fibrewise smooth noncommutative

principal torus bundles

Proof By the construction given earlier, C(Y), is a
noncommutative principal torus bundle.

Conversely, if A(X) is a fibrewise smooth noncommutative
principal torus bundle, then it defines a o € C(X, Z2(T,T)).
Consider now the deformed algebra A(X)s. It is equivariantly
Morita isomorphic to C(Y) for some principal torus bundle Y
over X, since it is classified by an element in H?(X, 7’). Then by
the property of iterated parametrised deformation quantization,
(A(X)z)s = A(X) is equivariantly Morita isomorphic to C(Y),-.



Classification of twisted noncommutative principal

torus bundles

Suppose that A(X) is a C*-bundle over a locally compact space
X with a fibrewise action of a torus T, and that

A(X) x T = CT(X, Hz), where CT(X, H3) is a continuous trace
algebra with spectrum X and Dixmier-Douady class

Hz € H3(X;Z). We call such C*-bundles, Hz-twisted NCPT
bundles over X.

Our first main result is that any Hz-twisted NCPT bundle A(X)
is equivariantly Morita equivalent to the parametrised
deformation quantization of the continuous trace algebra

CT(Y,q"(Hs))o,

where q : Y — X is a principal torus bundle with Chern class
equal to Hy € H2(X; H'(T;2)), and o € Cy(X,Z%(T,T)) a
defining deformation such that [¢] = H; € H'(X: H3(T: Z)).



Classification of twisted noncommutative principal
torus bundles, K-theory and T-duality

Theorem

In the notation above, (X x T, H; + H> + H3) and the
parametrised strict deformation quantization of (Y, q*(Hs)) with
deformation parameter o, [c] = Hy, are T-dual pairs, where the
1st Chern class ¢i(Y) = H». That is,

CT( Y, q*(H3))U XV CT(X x T,Hy + Ho + H3)

Proof. As before, let V be the vector group that is the universal
covering group of the torus group T, and the action of V on the
spectrum factors through T. As seen yesterday, the continuous
trace algebra CT(X x T, Hy + H») is isomorphic to

IndY (Cy(X, K)), where T is a lattice in V such that T = V/T.



Therefore the crossed product CT(X x T, Hy + Hz) xz Vis
Morita equivalent to Cy(X, K) X, 7’, where as before, the
Pontryagin dual group T acts fibrewise on Co(X, K).

Setting A(X) = Co(X,K) %, T, then itis a C*-bundle over X
with a fibrewise action of T. By Takai duality,

A(X) x T = Co(X, K).

Therefore A(X) is a NCPT-bundle and by the main Theorem in
[HMO09], there is a T-equivariant Morita equivalence,

A(X) ~ Co(Y)o,

where the notation is as in the statement of this Theorem. By
the classification of Hsz-twisted NCPT-bundles,

CT(Y,q"(H3))s @ V= (Co(Y)s x V) X Cy(X) CT(X, H3).



By Takai duality, Co(Y), x V = CT(X x T, H; + Ho). Therefore
CT(Y,q"(H3))s % V = CT(X x T, Hs + Hp + Hs),

proving the result.
Using Connes Thom isomorphism theorem and the result
above, one has

Corollary

The K-theory of CT(Y, q*(Hs)), depends on the deformation
parameter in general. More precisely, in the notation above
[o] = Hy, e1(Y) = He,

Ke(CT(Y,q"(Ha))o) = K*T9MY(X x T, Hj + Ha + Ha),

where the right hand side denotes the twisted K-theory.




Conclusions and an open question

We have seen that parametrised strict deformations of
continuous trace algebras, CT(Y, g*(Hs)), are precisely the
T-duals of CT(X x T, Hy + Ho + Hs), ie trivial torus bundles with
H-flux.

Question Can the T-dual of a general torus bundle with H-flux
be also described in terms of some generalised strict
deformation quantisation? via a spectral sequence?

In relation to this is what Peter mentioned in his talk, namely the
putative invariants of such a strict deformation quantisation are

dH'=0, (d+H'ANH*=0

where H' and H? are certain differential forms on the base X.



