T-duality and parametrized strict deformation quantization

RIMS International Conference on

Noncommutative Geometry and Physics

Japan, 11th November 2010

Mathai Varghese

School of Mathematical Sciences

[HM09]

K.C. Hannabuss and V. Mathai,

Noncommutative principal torus bundles via parametrised strict deformation quantization,

AMS Proceedings of Symposia in Pure Mathematics,

81 (2010) 133-148, [arXiv: 0911.1886]

[HM10]

K.C. Hannabuss and V. Mathai,

Parametrised strict deformation quantization of C*-bundles and Hilbert C*-modules,

14 pages, [arXiv: 1007.4696]

[MR]

V. Mathai and J. Rosenberg, T-duality for torus bundles via noncommutative topology, *Communications in Mathematical Physics*, 253 no. 3 (2005) 705-721.

[ENOO]

S. Echterhoff, R. Nest, and H. Oyono-Oyono, Principal noncommutative torus bundles,

Proc. London Math. Soc. (3) 99, (2009) 1-31.

- Review of Rieffel's strict deformation quantization;
- Parametrized strict deformation quantization, properties and examples;
- Motivation of definition of principal NC principal torus bundles;
- Review classification of Echterhoff, Nest, Oyono-Oyono;
- Classification via parametrized strict deformation quantization;
- Classification of twisted versions;
- Link with T-duality in String theory.

Rieffel's strict deformation quantization

We begin by recalling the construction by Rieffel which realizes the smooth noncommutative torus as a strict deformation quantization of the smooth functions on a torus $T = \mathbf{R}^n / \mathbf{Z}^n$ of dimension equal to *n*.

Recall that the Poisson bracket for $a, b \in C^{\infty}(T)$ is just

$$\{a,b\} = \sum \theta_{ij} \frac{\partial a}{\partial x_i} \frac{\partial b}{\partial x_j},$$

where (θ_{ij}) is a skew symmetric matrix with constant entries.

The action of T on itself is given by translation. The Fourier transform is an isomorphism between $C^{\infty}(T)$ and $S(\hat{T})$, taking the pointwise product on $C^{\infty}(T)$ to the convolution product on $S(\hat{T})$ and taking differentiation with respect to a coordinate function to multiplication by the dual coordinate.

Noncommutative torus

In particular, the Fourier transform of the Poisson bracket gives rise to an operation on $S(\hat{T})$ denoted the same. For $\phi, \psi \in S(\hat{T})$, define

$$\{\psi,\phi\}(p) = -4\pi^2 \sum_{p_1+p_2=p} \psi(p_1)\phi(p_2)\gamma(p_1,p_2)$$

where γ is the skew symmetric form on $\hat{\mathcal{T}}$ defined by

$$\gamma(\boldsymbol{p}_1,\boldsymbol{p}_2)=\sum \theta_{ij}\,\boldsymbol{p}_{1,i}\,\boldsymbol{p}_{2,j}.$$

For $\hbar \in \mathbf{R}$, define a skew bicharacter σ_{\hbar} on \hat{T} by

$$\sigma_{\hbar}(\boldsymbol{\rho}_{1},\boldsymbol{\rho}_{2}) = \exp(-\pi\hbar\gamma(\boldsymbol{\rho}_{1},\boldsymbol{\rho}_{2})).$$

Using this, define a new associative product \star_{\hbar} on $S(\hat{T})$,

$$(\psi \star_{\hbar} \phi)(\boldsymbol{\rho}) = \sum_{\boldsymbol{\rho}_1 + \boldsymbol{\rho}_2 = \boldsymbol{\rho}} \psi(\boldsymbol{\rho}_1) \phi(\boldsymbol{\rho}_2) \sigma_{\hbar}(\boldsymbol{\rho}_1, \boldsymbol{\rho}_2).$$

This is precisely the smooth noncommutative torus $A^{\infty}_{\sigma_b}$.

The norm $|| \cdot ||_{\hbar}$ is defined to be the operator norm for the action of $S(\hat{T})$ on $L^2(\hat{T})$ given by \star_{\hbar} . From this point of view, the norm completion of $A_{\sigma_{\hbar}}^{\infty}$ is just the twisted group C*-algebra, $C^*(\hat{T}, \sigma_{\hbar})$.

Via the Fourier transform, carry this structure back to $C^{\infty}(T)$, to obtain the smooth noncommutative torus as a strict deformation quantization of $C^{\infty}(T)$, with respect to the translation action of T.

Strict deformation quantization of T-C*-algebras

Let *A* be a *C*^{*}-algebra with a continuous action α of *T*. Then we define the strict deformation quantization of *A*, denoted A_{θ} as follows, where θ is a skew symmetric matrix with constant entries as before.

We have the direct sum decomposition,

$$\begin{array}{rcl} \mathbf{A} &\cong & \widehat{\bigoplus}_{\chi\in\widehat{T}}\mathbf{A}_{\chi} \\ \mathbf{a} &= & \sum_{\chi\in\widehat{T}}\mathbf{a}_{\chi}, \end{array}$$

where for $\chi \in \widehat{T}$,

$$\boldsymbol{A}_{\boldsymbol{\chi}} := \left\{ \boldsymbol{a} \in \boldsymbol{A} \mid \alpha_t(\boldsymbol{a}) = \boldsymbol{\chi}(t) \cdot \boldsymbol{a} \quad \forall t \in \boldsymbol{T} \right\}.$$

Since T acts by \star -automorphisms, we have

$$A_{\chi} \cdot A_{\eta} \subseteq A_{\chi\eta}$$
 and $A_{\chi}^* = A_{\chi^{-1}} \quad \forall \chi, \eta \in \widehat{T}.$

Strict deformation quantization of $T-C^*$ -algebras

The completion of the direct sum is explained as follows. The representation theory of *T* shows that $\bigoplus_{\chi \in \widehat{T}} A_{\chi}$ is a *T*-equivariant dense subspace of *A*, where *T* acts on A_{χ} as follows: $\hat{\alpha}_t(a_{\chi}) = \chi(t)a_{\chi}$ for all $t \in T$. Then $\widehat{\bigoplus}_{\chi \in \widehat{T}} A_{\chi}$ is the completion in the *C**-norm of *A*.

The product then also decomposes as,

$$(ab)_{\chi} = \sum_{\chi_1\chi_2=\chi} a_{\chi_1} b_{\chi_2}$$

for $\chi_1, \chi_2, \chi \in \hat{T}$. The product can be deformed by setting

$$(a\star_{\sigma}b)_{\chi}=\sum_{\chi_1\chi_2=\chi}a_{\chi_1}b_{\chi_2}\exp(2\pi i\theta_{\chi_1,\chi_2})$$

This is the strict deformation quantization A_{θ} of A, which is associative because of the skew-symmetry of θ_{ab} is the second structure of the skew-symmetry of θ_{ab} is the skew symmetry of θ_{ab} is the skew symmet

An important special case when (M, ω) is a symplectic manifold, with a smooth action of *T* on *M* preserving the symplectic form ω . If $(C_0^{\infty}(M)\{,\})$ is the Poisson algebra, then we can strict deform quantize it with this as choice of *A*, generalizing the example of the torus. We begin by recalling the notion of C^* -bundles over X and the special case of noncommutative principal bundles.

Let *X* be a locally compact Hausdorff space and let $C_0(X)$ denote the *C**-algebra of continuous functions on *X* that vanish at infinity. A *C**-**bundle** A(X) over *X* in the sense of [ENOO] is exactly a $C_0(X)$ -algebra in the sense of Kasparov. That is, A(X) is a *C**-algebra together with a non-degenerate *-homomorphism

$$\Phi: C_0(X) \to ZM(A(X)),$$

called the **structure map**, where ZM(A) denotes the center of the multiplier algebra M(A) of A.

C^* -bundles over X

The fibre over $x \in X$ is then $A(X)_x = A(X)/I_x$, where

 $I_x = \{\Phi(f) \cdot a; a \in A(X) \text{ and } f \in C_0(X) \text{ such that } f(x) = 0\},\$

and the canonical quotient map $q_x : A(X) \to A(X)_x$ is called the **evaluation map** at *x*.

NB. This definition does *not* require local triviality of the bundle, or for the fibres of the bundle to be isomorphic.

Let *G* be a locally compact group. One says that there is a **fibrewise action** of *G* on a *C*^{*}-bundle A(X) if there is a homomorphism $\alpha : G \longrightarrow Aut(A(X))$ which is $C_0(X)$ -linear in the sense that

 $\alpha_g(\Phi(f)a) = \Phi(f)(\alpha_g(a)), \qquad \forall g \in G, \ a \in A(X), \ f \in C_0(X).$

That is α induces an action α^{x} on the fibre $\mathcal{A}(X)_{x}$ for all $x \in X_{\overline{z}}$

Let A(X) be a C^* -algebra bundle over X with a fibrewise action α of a torus T. Let $\sigma : X \to Z^2(\widehat{T}, \mathbf{T})$ be a continuous map, called a *deformation parameter*.

Then define the *parametrised strict deformation quantization* of A(X), denoted $A(X)_{\sigma}$ as follows. We have the direct sum decomposition,

$$\begin{array}{rcl} \mathbf{A}(\mathbf{X}) &\cong & \widehat{\bigoplus}_{\chi \in \widehat{\mathcal{T}}} \mathbf{A}(\mathbf{X})_{\chi} \\ \phi(\mathbf{x}) &= & \sum_{\chi \in \widehat{\mathcal{T}}} \phi_{\chi}(\mathbf{x}) \end{array}$$

for $x \in X$, where for $\chi \in \widehat{T}$,

$$A(X)_{\chi} := \{ a \in A(X) \mid \alpha_t(a) = \chi(t) \cdot a \quad \forall t \in T \}.$$

<ロト <回ト <注ト <注ト = 注

Since T acts by \star -automorphisms, we have

$$A(X)_{\chi} \cdot A(X)_{\eta} \subseteq A(X)_{\chi\eta} \quad \text{and} \quad A(X)_{\chi}^* = A(X)_{\chi^{-1}} \qquad \forall \, \chi, \eta \in \widehat{T}.$$

Therefore the spaces $A(X)_{\chi}$ for $\chi \in \widehat{T}$ form a Fell bundle A(X) over \widehat{T} ; there is no continuity condition because \widehat{T} is discrete.

The completion of the direct sum is explained as follows. The representation theory of *T* shows that $\bigoplus_{\chi \in \widehat{T}} A(X)_{\chi}$ is a *T*-equivariant dense subspace of A(X), where *T* acts on $A(X)_{\chi}$ as follows: $\hat{\alpha}_t(\phi_{\chi}(x)) = \chi(t)\phi_{\chi}(x)$ for all $t \in T$, $x \in X$. Then $\widehat{\bigoplus}_{\chi \in \widehat{T}} A(X)_{\chi}$ is the completion in the *C**-norm of A(X).

The product then also decomposes as,

$$(\phi\psi)_{\chi}(\mathbf{x}) = \sum_{\chi_1\chi_2=\chi} \phi_{\chi_1}(\mathbf{x})\psi_{\chi_2}(\mathbf{x})$$

for $\chi_1, \chi_2, \chi \in \widehat{T}$. The product can be deformed by setting

$$(\phi \star_{\sigma} \psi)_{\chi}(\mathbf{x}) = \sum_{\chi_1 \chi_2 = \chi} \phi_{\chi_1}(\mathbf{x}) \psi_{\chi_2}(\mathbf{x}) \sigma(\mathbf{x}; \chi_1, \chi_2)$$

In [HM10], this is the parametrised strict deformation quantization of the $T - C^*$ -bundle A(X), is the C^* -algebra denoted by $A(X)_{\sigma}$, which is associative because of the cocycle property of σ .

Theorem (HM09)

Let A(X) be a C^* -bundle with a fibrewise action of T. Let $\sigma, \sigma' : X \longrightarrow Z^2(\widehat{T}, \mathbb{Z})$ be two deformation parameters.

Then $A(X)_{\sigma}$ is a C^{*}-bundle over X with a fibrewise T-action, and there is a natural isomorphism,

 $(A(X)_{\sigma})_{\sigma'}\cong A(X)_{\sigma\sigma'}$

<ロト <部ト <主ト <主ト 三日

We next consider a special case of this construction. Consider a smooth fiber bundle of smooth manifolds,

$$Z \longrightarrow Y \tag{1}$$

$$\downarrow^{\pi}$$

$$X.$$

Suppose there is a fibrewise action of a torus T on Y. That is, assume that there is an action of T on Y satisfying,

$$\pi(t.y) = \pi(y), \quad \forall t \in T, y \in Y.$$

Let $\sigma \in C_b(X, Z^2(\widehat{T}, \mathbf{T}))$ be a deformation parameter. $C_0(Y)$ is a C^* -bundle over X, and as above, form the parametrised strict deformation quantization $C_0(Y)_{\sigma}$. In particular, let *Y* be a principal *G*-bundle over *X*, where *G* is a compact Lie group such that rank(*G*) \geq 2. (e.g. $G = SU(n), n \geq 3$ or $G = U(n), n \geq 2$). Let *T* be a maximal torus in *G* and $\sigma \in C_b(X, Z^2(\widehat{T}, \mathbf{T}))$ be a deformation parameter. Then $C_0(Y)$ is a *C*^{*}-bundle over *X*, and as above, form the parametrised strict deformation quantization $C_0(Y)_{\sigma}$.

Noncommutative principal torus bundles

Let *T* denote the torus of dimension *n*. The authors of [ENOO] define a **noncommutative principal** *T***-bundle** (or **NCP** *T***-bundle**) over *X* to be a separable *C*^{*}-bundle *A*(*X*) together with a fibrewise action $\alpha : T \rightarrow \text{Aut}(A(X))$ such that there is a Morita equivalence,

 $A(X) \rtimes_{\alpha} T \cong C_0(X, \mathcal{K}),$

as C^* -bundles over X, where \mathcal{K} denotes the C^* -algebra of compact operators.

The motivation for calling such C^* -bundles A(X) NCP *T*-bundles arises from a special case of a theorem of Rieffel, which states that if $q: Y \longrightarrow X$ is a principal *T*-bundle, then

 $C_0(Y) \rtimes T$ is Morita equivalent to $C_0(X, \mathcal{K})$.

Noncommutative principal torus bundles A(X) were classified in [ENOO] and will be outlined in this section.

By Takai duality A(X) is Morita equivalent to $C_0(X, \mathcal{K}) \rtimes \hat{T}$, so they note that the NCPT-bundles can be classified by up to Morita equivalence by the outer equivalence classes $\mathcal{E}_{\hat{T}}(X)$ of \hat{T} -actions, and one has the sequence (Echterhoff-Williams)

$$0 \longrightarrow H^1(X,\underline{T}) \longrightarrow \mathcal{E}_{\widehat{T}}(X) \longrightarrow \mathcal{C}(X,H^2(\widehat{T},\mathbf{T})) \longrightarrow 0.$$

This leads to a classification in terms of a principal torus bundle $q: Y \to X$, from $H^1(X, \underline{T})$, and a map $\sigma \in C(X, H^2(\widehat{T}, \mathbf{T}))$, the equivalence classes of multipliers on the dual group \widehat{T} .

These data define a noncommutative torus bundle by forming the fixed point algebra

$$[C_0(Y)\otimes_{C_0(\widehat{Z})} C^*(H_\sigma))]^T$$

with $C^*(H_{\sigma})$ being the bundle of group C^* -algebras of the central extensions of \widehat{T} by $\widehat{Z} := H^2(\widehat{T}, \mathbf{T})$ defined by $\sigma(x)$ at x, the action of $C_0(\widehat{Z})$ on $C_0(Y)$ coming from the composition $\sigma \circ q : Y \to X \to \widehat{Z}$ and that on $C^*(H_{\sigma})$ from the natural action of a subgroup algebra.

In [HM09], we are able to give a complete classification of NCP T-bundles over X via parametrised strict deformation quantization of principal torus bundles.

Classification of noncommutative principal torus bundles

Theorem (HM09)

Given a NCPT-bundle A(X), there is a defining deformation $\sigma \in C(X, Z^2(\hat{T}, \mathbf{T}))$ and a principal torus bundle $q : Y \to X$ such that A(X) is the parametrised strict deformation quantization of C(Y) with respect to σ , that is, there is a *T*-isomorphism

$$A(X)\cong C(Y)_{\sigma}\otimes \mathcal{K}.$$

<ロト <部ト <主ト <主ト 三日

where \mathcal{K} denotes the algebra of compact operators.

Proof By the construction given earlier, $C(Y)_{\sigma}$ is a noncommutative principal torus bundle.

Conversely, if A(X) is a fibrewise smooth noncommutative principal torus bundle, then it defines a $\sigma \in C(X, Z^2(\hat{T}, \mathbf{T}))$. Consider now the deformed algebra $A(X)_{\bar{\sigma}}$. It is equivariantly Morita isomorphic to C(Y) for some principal torus bundle Yover X, since it is classified by an element in $H^2(X, \hat{T})$. Then by the property of iterated parametrised deformation quantization, $(A(X)_{\bar{\sigma}})_{\sigma} \cong A(X)$ is equivariantly Morita isomorphic to $C(Y)_{\sigma}$.

Classification of twisted noncommutative principal torus bundles

Suppose that A(X) is a C^* -bundle over a locally compact space X with a fibrewise action of a torus T, and that $A(X) \rtimes T \cong CT(X, H_3)$, where $CT(X, H_3)$ is a continuous trace algebra with spectrum X and Dixmier-Douady class $H_3 \in H^3(X; \mathbb{Z})$. We call such C^* -bundles, H_3 -twisted NCPT bundles over X.

Our first main result is that any H_3 -twisted NCPT bundle A(X) is equivariantly Morita equivalent to the parametrised deformation quantization of the continuous trace algebra

 $\operatorname{CT}(Y, q^*(H_3))_{\sigma},$

where $q: Y \to X$ is a principal torus bundle with Chern class equal to $H_2 \in H^2(X; H^1(T; \mathbf{Z}))$, and $\sigma \in C_b(X, Z^2(\widehat{T}, \mathbf{T}))$ a defining deformation such that $[\sigma] = H_1 \in H^1(X; H^2(T; \mathbf{Z}))$.

Classification of twisted noncommutative principal torus bundles, K-theory and T-duality

Theorem

In the notation above, $(X \times T, H_1 + H_2 + H_3)$ and the parametrised strict deformation quantization of $(Y, q^*(H_3))$ with deformation parameter σ , $[\sigma] = H_1$, are T-dual pairs, where the 1st Chern class $c_1(Y) = H_2$. That is,

$$\operatorname{CT}(Y, q^*(H_3))_{\sigma} \rtimes V \cong \operatorname{CT}(X \times T, H_1 + H_2 + H_3).$$

Proof. As before, let *V* be the vector group that is the universal covering group of the torus group *T*, and the action of *V* on the spectrum factors through *T*. As seen yesterday, the continuous trace algebra $CT(X \times T, H_1 + H_2)$ is isomorphic to $Ind_{\Gamma}^{V}(C_0(X, \mathcal{K}))$, where Γ is a lattice in *V* such that $T = V/\Gamma$.

Therefore the crossed product $CT(X \times T, H_1 + H_2) \rtimes_{\beta} V$ is Morita equivalent to $C_0(X, \mathcal{K}) \rtimes_{\sigma} \widehat{T}$, where as before, the Pontryagin dual group \widehat{T} acts fibrewise on $C_0(X, \mathcal{K})$. Setting $A(X) = C_0(X, \mathcal{K}) \rtimes_{\sigma} \widehat{T}$, then it is a *C**-bundle over *X* with a fibrewise action of *T*. By Takai duality,

$$A(X) \rtimes T \cong C_0(X, \mathcal{K}).$$

Therefore A(X) is a NCPT-bundle and by the main Theorem in [HM09], there is a *T*-equivariant Morita equivalence,

$$A(X) \sim C_0(Y)_{\sigma},$$

where the notation is as in the statement of this Theorem. By the classification of H_3 -twisted NCPT-bundles,

$$\operatorname{CT}(Y, q^*(H_3))_{\sigma} \rtimes V \cong (C_0(Y)_{\sigma} \rtimes V) \otimes_{C_0(X)} \operatorname{CT}(X, H_3).$$

By Takai duality, $C_0(Y)_{\sigma} \rtimes V \cong CT(X \times T, H_1 + H_2)$. Therefore

 $\operatorname{CT}(Y,q^*(H_3))_{\sigma}\rtimes V\cong \operatorname{CT}(X\times T,H_1+H_2+H_3),$

proving the result.

Using Connes Thom isomorphism theorem and the result above, one has

Corollary

The K-theory of $CT(Y, q^*(H_3))_{\sigma}$ depends on the deformation parameter in general. More precisely, in the notation above $[\sigma] = H_1, c_1(Y) = H_2,$

 $\mathcal{K}_{\bullet}(\mathrm{CT}(Y,q^*(H_3))_{\sigma}) \cong \mathcal{K}^{\bullet+\dim V}(X \times T,H_1+H_2+H_3),$

where the right hand side denotes the twisted K-theory.

Conclusions and an open question

We have seen that parametrised strict deformations of continuous trace algebras, $CT(Y, q^*(H_3))_{\sigma}$ are precisely the T-duals of $CT(X \times T, H_1 + H_2 + H_3)$, ie trivial torus bundles with H-flux.

Question Can the T-dual of a general torus bundle with H-flux be also described in terms of some generalised strict deformation quantisation? via a spectral sequence?

In relation to this is what Peter mentioned in his talk, namely the putative invariants of such a strict deformation quantisation are

$$dH^1=0, \qquad (d+H^1\wedge)H^2=0$$

where H^1 and H^2 are certain differential forms on the base X.