International conference on Noncommutative geometry and Physics RIMS at Kyoto November 8–12 2010

On Moduli space of a quantum Heisenberg manifold

Hyun Ho Lee

Department of Mathematical Science Seoul National University, Korea

hyun.lee7425@gmail.com

Nov. 09, 2010

<ロト <四ト <注入 <注下 <注下 <

ACKNOWLEDGEMENT

I learned this subject and problem from Sooran Kang at GPOTS 08 who provided me a generous introduction. Her approach is somewhat different with mine even if we share the set-up for the Yang-Mills problem.

deformation quantization and non-commutative manifolds

Example:Non-commutative tori

Let \mathbb{T}^n be an ordinary *n*-torus, and let θ be a real skew-symmetric $n \times n$ matrix. Let $A = C^{\infty}(\mathbb{T}^n)$. If we view \mathbb{T} as \mathbb{R}/\mathbb{Z} , then we can define a Poisson bracket on A by

$$\{f,g\} = \sum \theta_{jk} (\partial f / \partial x_j) (\partial g / \partial x_k).$$

As the Lie-group G we will take \mathbb{T}^n , acting on itself by translation. The Fourier transform carries $C^{\infty}(\mathbb{T}^n)$ to $S(\mathbb{Z}^n)$ with convolution, and takes the Poisson bracket to the operation

$$\{\phi,\psi\}=-4\pi^2\sum_{\boldsymbol{q}}\phi(\boldsymbol{q})\psi(\boldsymbol{p}-\boldsymbol{q})\gamma(\boldsymbol{q},\boldsymbol{p}-\boldsymbol{q})$$

where γ is the skew-bilinear form on \mathbb{Z}^n defined by

$$\gamma(p,q)=\sum \theta_{jk}p_jq_j.$$

For any $\hbar \in \mathbb{R}$ we define a skew-bicharacter σ_{\hbar} on \mathbb{Z}^n by

$$\sigma_{\hbar}(\boldsymbol{p},\boldsymbol{q})=e^{-2\pi^{2}\hbar\gamma(\boldsymbol{p},\boldsymbol{q})\boldsymbol{i}},$$

and then define a product $*_{\hbar}$ on $S(\mathbb{Z}^n)$ by

$$(\phi *_{\hbar} \psi)(p) = \sum_{q} \phi(q) \psi(p-q) \sigma_{\hbar}(q,p-q).$$

The involution * is the complex conjugation for all \hbar . We define the operator norm(C^* -norm) for $S(\mathbb{T}^n)$ acting on $L^2(\mathbb{Z}^n)$ by the same formula as defines $*_{\hbar}$.

Then we can verify two important properties:

- For every f ∈ A the function ħ → ||f||_ħ is continuous (C*-bundle condition),
- Sor every f, g ∈ A, ||f *_ħ g − g *_ħ f/iħ − {f,g}||_ħ converges to 0 as ħ goes to 0 (asymtotic Dirac's condition).

Following Rieffel, we call this construction a strict deformation quantization of \mathbb{T}^n . Invariance of the action $G = \mathbb{T}^n$ on "bundles of algebras" can be verified. This is a C^* -algebraic deformation quantization of an ordinary manifold. The algebra corresponding to $\hbar = 1$ is called the non-commutative *n*-torus which can be regarded as a non-commutative differential manifold.

Example:Non-commutative Heisenberg manifolds Let G be the Heisenberg Lie-group. For any non-zero integer c, we can parametrize G as \mathbb{R}^3 with the product given by

$$(x, y, z)(x', y', z') = (x + x', y + y', z + z' + cyx').$$

Let *D* be the discrete subgroup of *G* consisting of elements with integer entries. The $M_c = G/D$ is the Heisenberg manifold on which *G* acts on the left.

The Poisson bracket is given by skew 2-vector fields on $G(\mu\partial_1 + \nu\partial_2) \wedge \partial_3$ for some $\mu, \nu \in \mathbb{R}$. For each $\hbar \in \mathbb{R}$, D_{\hbar} is the space of C^{∞} functions ϕ on $\mathbb{R} \times \mathbb{T} \times \mathbb{Z}$ which satisfy

(a)
$$\phi(x+k,y,p) = e(ckpy)\phi(x,y,z)$$
 for all $k \in \mathbb{Z}$

(b) $\sup_{K} \|p^{k} \frac{\partial^{m+n}}{\partial x^{m} \partial y^{n}} \phi(x, y, p)\| < \infty$ for all $k, m, n \in \mathbb{N}$ and any compact set K of $\mathbb{R} \times \mathbb{T}$

We can give product $*_{\hbar}$ and involution * for each $\hbar \in \mathbb{R}$ as follows;

(c)
$$\phi * \psi(x, y, p) =$$

 $\sum_{q} \phi(x - \hbar(q - p)\mu, y - \hbar(q - p)\nu, q)\psi(x - \hbar q\mu, y - \hbar q\nu, p - q)$
(d) $\phi^*(x, y, p) = \overline{\phi}(x, y, -p)$

with the norm coming from the representation on $L^2(\mathbb{R} \times \mathbb{T} \times \mathbb{Z})$ defined by

$$\phi(f)(x,y,p) = \sum_{q} \phi(x - \hbar(q - 2p)\mu, y - \hbar(q - 2p)\nu, q)f(x,y,p-q)$$

where μ, ν are non-zero real numbers. D_{\hbar} will denote the norm completion also. The algebras D_{\hbar} then provide a strict deformation quantization of M_c .

Classical Yang-Mills theory is concerned with the set of connections (i.e. gauge potentials) on a vector bundle of a smooth manifold. The Yang-Mills functional YM measures the "strength" of the curvature of a connection. The Yang-Mills problem is determining the nature of the set of connections where YM attains its minimum, or more generally the nature of the set of critical points for YM.

Definition

A triple " (A, G, α) ", where G is a locally compact group, A is a C^* -algebra, is called a C^* -dynamical system if $\alpha : G \to \operatorname{Aut}(A)$ is continuous which means the function from G to A: $g \to ||\alpha_g(x)||$ is continuous for each $x \in A$.

Definition (Connes)

It is said that x in A is C^{∞} -vector if and only if $g \to \alpha_g(x)$ from G to the normed space is of C^{∞} . Then $A^{\infty} = \{x \in A | x \text{ is of } C^{\infty} \}$ is norm dense in A. In this case we call A^{∞} the smooth dense subalgebra of A.

Since a C^* -algebra with a smooth dense subalgebra is an analogue of a smooth manifold(recall a strict deformation quantization), finitely generated projective A^{∞} -modules are the appropriate generalizations of vector bundles over the manifold.

Let \mathfrak{g} be the Lie-algebra of (unbounded) derivations of A^{∞} given by the representation δ from the Lie-algebra \mathfrak{g} of G where

$$\delta_X(a) = \lim_{t \to 0} \frac{1}{t} (\alpha_{exp(tX)}(a) - a) \text{ for } X \in \mathfrak{g} \text{ and } a \in A^{\infty}.$$

Definition (Cones, Rieffel)

Given a finitely generated projective module Ξ^{∞} , a connection on Ξ^{∞} is a linear map $\nabla : \Xi^{\infty} \to \Xi^{\infty} \otimes \mathfrak{g}^*$ such that, for all $X \in \mathfrak{g}$, $\xi \in \Xi^{\infty}$ and $x \in A^{\infty}$ one has $\nabla_X(\xi \cdot x) = \nabla_X(\xi) \cdot x + \xi \cdot \delta_X(x)$.

We shall say that ∇ is compatible with the A^{∞} -valued hermitian metric if and only if $\langle \nabla_X(\xi), \eta \rangle_A + \langle \xi, \nabla_X(\eta) \rangle_A = \delta_X(\langle \xi, \eta \rangle_A)$ for all $\xi, \eta \in \Xi^{\infty}$, $X \in \mathfrak{g}$.

Definition

Let ∇ be a connection on Ξ^{∞} , the curvature of ∇ is the element Θ of $End_{A^{\infty}}(\Xi^{\infty}) \otimes \Lambda^{2}(\mathfrak{g})^{*}$ given by

$$\Theta_{\nabla}(X,Y) = \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]}$$

for all $X, Y \in \mathfrak{g}$.

The classical Yang-Mills functional on a principal bundle with structure group G, base M, connection ∇ , and curvature (Yang-Mills field tensor) K is

$$\mathrm{YM}(\nabla) = \int |\mathcal{K}|^2 d\mathrm{vol}_{\mathcal{M}},$$

To get an analogue of this functional, we need a bilinear form and an integration. Given alternating bilinear forms Ψ and Φ we let

$$\{\Phi,\Psi\}_E = \sum_{i < j} \Phi(Z_i, Z_j) \Psi(Z_i, Z_j)$$

where $E = End_A(\Xi)$.

We assume given a faithful trace τ on A, which is invariant under the action of \mathfrak{g} . Then τ determines a canonical faithful trace τ_E on E. Thus for compatible connections ∇ we define the Yang-Mills functional YM by

$$YM(\nabla) = -\tau_E(\{\Theta_{\nabla}, \Theta_{\nabla}\}).$$

following Connes and Rieffel.

This (non-commutative) Yang-Mills functional is invariant under the unitary group of E which will be denoted by U(E) as the classical one does under the gauge groups. Thus we can define the moduli space by {compatible connections YM attains its minimum}/U(E).

This (topological) space was motivated to give an answer about how to associate to a non-commutative algebra an ordinary manifold which would be its "manifold shadow"

Non-commutative torus case:

Since the Lie-algebra of \mathbb{T}^n is Abelian, the analysis of Yang-Mills problem in this case is not much complicated. In fact, Connes and Rieffel studied Yang-Mills for the non-commutative 2-torus and classified the moduli space for Ξ^d as $(\mathbb{T}^2)^d / \Sigma_d$ where Σ_d is the group of permutations of dobjects and Ξ is a module which is not a multiple of any other module. Non-commutative Heisenberg manifold case:

We define non-commutative or quantum Heisenberg manifolds as $D^c_{\mu\nu}$. Now we fix one set $\{\mu, \nu\}$ and call it a quantum Heisenberg manifold. As far as I know, no one has been able to classify the moduli space for this case. However, the ground-breaking work about some critical points of Yang-Mills functional on a module $\Xi^{\infty} = S(\mathbb{R} \times \mathbb{T})$ was done by Sooran Kang in 2009. This depends on Abadie's description on a quantum Heisenberg manifold which gives (strong) Morita equivalence of $D^c_{\mu\nu}$ via Ξ^{∞} and an idea of Kang introducing "multiplication type" elements in End(Ξ^{∞}).

Yang-Mills for non-commutative manifolds

After reparametrization of Heisenberg manifold by introducing a positive integer c, the Lie algebra of the (reparametrized) Heisenberg group has an orthonornal basis consisting of

$$X = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, Z = \begin{pmatrix} 0 & 0 & 1/c \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Define a linear map $\nabla^0 : \Xi \to \Xi \otimes \mathfrak{g}^*$ as follows: For computational purposes the easiest way to define it is in terms of an orthonormal basis for \mathfrak{g} .

$$(\nabla_X^0 f)(x, y) = -\frac{\partial}{\partial x} f(x, y), \qquad (1)$$

$$(\nabla_Y^0 f)(x, y) = -\frac{\partial}{\partial y} f(x, y) + \frac{\pi c i}{2\mu} x^2 f(x, y), \qquad (2)$$

$$(\nabla_Z^0 f)(x, y) = \frac{\pi i x}{\mu} f(x, y)$$
(3)

for $f \in \Xi$.

H. Lee (SNU)

Yang-Mills for non-commutative manifolds

The representation δ of L as a Lie algebra of derivations on $D^{c}_{\mu\nu}$ is given by

$$\delta_{X}(\phi)(x, y, p) = -\frac{\partial}{\partial x}\phi(x, y, p)$$

$$\delta_{Y}(\phi)(x, y, p) = -\frac{\partial}{\partial y}\phi(x, y, p) + 2\pi i c p(x - p\mu)\phi(x, y, p)$$

$$\delta_{Z}(\phi)(x, y, p) = 2\pi i p \phi(x, y, p)$$

Theorem

The linear map $\nabla^0 : \Xi \to \Xi \otimes \mathfrak{g}^*$ satisfying (1),(2),(3) is a compatible connection.

Theorem

The connection $\nabla^0 : \Xi^{\infty} \to \Xi^{\infty} \otimes \mathfrak{g}^*$ satisfying (1), (2), and (3) is a minimum of the Yang-Mills functional for the quantum Heisenberg manifold D^c_{\hbar} .

H. Lee (SNU)

From the Morita equivalence, we know that $\text{End}(\Xi)$ is isomorphic to $E^c_{\mu\nu}$. Note that the multiplicative structure of $E^c_{\mu\nu}$ is given by

$$\psi_1 * \psi_2(x, y, k) = \sum_{l} \psi_1(x, y, l) \psi_2(x + l, y, k - l)$$
(4)

for $\psi_1, \psi_2 \in E^c_{\mu\nu}$. The left action of $E^c_{\mu\nu}$ on Ξ is given by

$$(\psi \cdot f)(x, y) = \sum_{k \in \mathbb{Z}} \bar{\psi}(x, y, k) f(x + k, y)$$
(5)

For a function $G \in C^{\infty}$, define a **multiplication** – **type** element **G** in $E^{c}_{\mu\nu}$ by

$$\mathbf{G}(x,y,p)=G(x,y)\delta_0(p).$$

Theorem (Kang 2009)

G is skew-symmetric if and only if **G** acts on Ξ^{∞} as a multiplication operator, i.e.

$$(\mathbf{G}\cdot f)(x,y) = -G(x,y)f(x,y)$$

for $f \in \Xi^{\infty}$.

Yang-Mills for non-commutative manifolds

Then we perturb ∇^0 by a skew-symmetric linear map whose range belongs to the set of **multiplication** – **type** elements, and generate a family of critical points of the Yang-Mills functional as follows.

Theorem (H. Lee)

Let $\nabla = \nabla^0 + \omega$ be a compatible connection where ω is a linear map from the Heisenberg Lie-algebra g to $E^c_{\mu\nu}$, whose range is the set of "multiplication type" skew-symmetric elements. Set $\omega(Z_i) = \mathbf{G_i}$ for i = 1, 2, 3 where $\mathbf{G_i}(x, y, k) = G_i(x, y)\delta_0(k)$. Then ∇ is a critical point of the Yang-Mills functional if and only if G_1 , G_2 , and G_3 satisfy the following equations

$$\begin{split} \frac{\partial}{\partial y}G_1 &- \frac{\partial}{\partial x}G_2 + cG_3 = c_1i \quad \text{for some } c_1 \in \mathbb{R} \\ &\frac{\partial^2 G_3}{\partial x^2} + \frac{\partial^2 G_3}{\partial y^2} = cc_1i \end{split}$$

Furthermore, such a critical point including ∇^0 is a minimum of the Yang-Mills functional if $c_1 = 0$. Then we can show the following theorem.

Theorem

Any two different minimum points of the type $\nabla^0 + \omega$ where ω is the linear map from g to $E^c_{\mu\nu}$, whose range is the set of "multiplication type" skew-symmetric elements, are not in the same orbit under the action of U(E). In particular, the moduli space $MC(\Xi^{\infty})/U(E)$ contains uncountably many points.