
Noncommutative Nonunital Index Theory

This talk is about work in progress with Gayral,

Rennie and Sukochev motivated by index theory on

non-compact manifolds, in particular, theorems of

Gromov-Lawson type, also applications to pseudo-

Riemannian manifolds, generalisations of Atiyah’s L2

index theorem and foliations of non-compact mani-

folds.

Specifically: is there a good notion of spectral triple

for nonunital algebras that will lead to new index

theorems on noncompact manifolds via a nonunital

version of the local index formula in noncommutative

geometry? Our aim is to avoid the use of local units

(i.e. compact support assumptions).

Tasks: (i) to explain how to define index pairings in

terms of spectral triples in the nonunital situation.

(ii) to extend the local index formula in noncommu-

tative geometry to the nonunital case.

(iii) to allow for the case when the spectral triple is

semifinite.
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Part I: Kasparov picture.

Let (N , τ) be a semifinite von Neumann algebra, τ ,
a semifinite normal faithful trace. We denote by
K(N , τ) the ideal of τ-compact operators in N . A
nonunital Fréchet sub-∗-algebra A of N is called a
pre-C∗-algebra if it is stable under the holomorphic
functional calculus. This means that its minimal uni-
talization A∼ := A⊕C is stable under the (ordinary)
holomorphic functional calculus in the minimal uni-
talization of its C∗-completion.

Definition 1 A nonunital semifinite spectral triple
(A,H,D), relative to (N , τ), is given by a Hilbert
space H, a pre-C∗-algebra A ⊂ N acting on H, and
a densely defined unbounded self-adjoint operator D
affiliated to N such that we firstly have a semifinite
unbounded Kasparov module (recall that this means:
1) da := [D, a] is densely defined and extends to a
bounded operator in N for all a ∈ A,
2) a(1 +D2)−1/2 ∈ K(N , τ) for all a ∈ A)
(A,H,D) is even if there is a Z2-grading such that
A is even and D is odd. Otherwise we say that
(A,H,D) is odd.

2



Remarks. ‘Nonunital’ is really referring to the case
where (1 + D2)−1 is not compact so that even if A
has a unit it cannot be the unit of N .

δ is the unbounded derivation given by δ(T ) := [|D|, T ],
T ∈ N .

Definition 2 Let (A,H,D) be a nonunital semifinite
spectral triple, relative to (N , τ). We say (A,H,D) is
QCk if for all b ∈ A∪ [D,A] we have for all 0 ≤ j ≤ k,
that the operator δj(b) ∈ N . We say that (A,H,D)
is QC∞ if it is QCk for all k ∈ N.

The Kasparov class of a spectral triple

We follow ideas of Kaad, Nest and Rennie (2008)
that are related to older results of Connes-Cuntz
(1987). Let (A,H,D be a nonunital semifinite spec-
tral triple relative to (N , τ). Set FD = D(1+D2)−1/2.
Then for all a ∈ A and ϕ ∈ C0(R) the following op-
erators are τ-compact

[FD, a], aϕ(D).

Regarding KN as a right KN C∗-module via (b1|b2) :=
b∗1b2, we see immediately that left multiplication by
FD on KN gives FD ∈ EndKN (KN ).
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Left multiplication by a ∈ A, the C∗-completion of

A, gives a representation of A as adjointable endo-

morphisms of KN and [FD, a] ∈ KN = End0
KN (KN ),

the compact endomorphisms, for all a ∈ A.

Since a(F2
D − 1) ∈ KN and FD = F ∗D by construction,

we obtain a Kasparov module (A(KN )KN , FD) with

class [(KN , FD)] ∈ KKj(A,KN ), where j is 0 iff our

spectral triple was Z2-graded.

Using the Kasparov product we now have a well-

defined map

· ⊗A [(KN , FD)] : Kj(A)→ K0(KN )

To make the Kasparov product explicit we need to

choose a representative with F2 = 1(=: IdX).

I will explain how to do this later.
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Suppose that e and f are projections in a (matrix al-

gebra over the minimal unitization A∼) and suppose

also that we have a class [e]− [f ] ∈ K0(A).

For brevity write B for KN acting on our Kasparov

module on the right and, AXB for the Kasparov mod-

ule (A(KN )KN , FD). We represent elements a+λIdA∼

on X as a+ λIdX, λ ∈ C.

If F2 = 1 we claim:

eF+e : e1+γ
2 X → e1−γ

2 X is Fredholm, with eF−e being

an inverse up to compacts.

In this case ([e]− [f ])⊗A [(AXB, F )] is given by

[Index(eF+e)]− [Index(fF+f)]

= [ker eF+e]−[coker eF+e]−[ker fF+f ]+[coker fF+f ],

and the individual terms are the classes of finite pro-

jective modules.
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Similarly, in the odd case

[u]⊗A [(AXB, F )] = [Index(
1 + F

2
u

1 + F

2
−

1− F
2

)]

∈ K0(B),

where [u] ∈ K1(A).

Writing (1 + F )/2 = P for the positive spectral pro-

jection of F , we have

[u]⊗A [(AXB, F )] = [Index(PuP )] ∈ K0(B),

and both kerPuP and cokerPuP are finite projective

B-modules. A parametrix of PuP is given by Pu∗P .

Fredholm modules: numerical index pairing

A semifinite pre-Fredholm module for a ∗-algebra

A relative to (N , τ) is a pair (H, F ) where A is (con-

tinuously) represented in N and F is a self-adjoint

operator in N satisfying:

1. a(1− F2) ∈ KN , and
2. [F, a] ∈ KN for a ∈ A.
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Summability:

if [F, a] ∈ Lp+1(N , τ) for a ∈ A, we say that (H, F ) is

p + 1-summable. The spectral dimension of such a

module is the infimum of those n such that [F, a] ∈
Ln(N , τ) for all a ∈ A.

In the spectral triple version this is the requirement

a(1 +D2)−n/2 ∈ L1(N , τ) for all n > p.

Lemma Given a semifinite finitely summable spec-

tral triple (A,H,D), with spectral dimension p, then

setting FD := D(1 + D2)−1/2 yields, a semifinite

bpc+ 1-summable pre-Fredholm module for A.

So given a pre-Fredholm module (H, F ) relative to

(N , τ) we obtain a Kasparov module (KN , F ), just

as we did for a spectral triple. Also given (A,H,D)

relative to (N , τ), the following diagram commutes

(A,H,D) → (KN , FD)
↓ ↗

(FD,H)
.
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Thus we have a single well-defined Kasparov class
arising from either the spectral triple or the associ-
ated pre-Fredholm module. Now we show how to
obtain a representative of this class with F2 = 1, so
simplifying the index pairing.

Definition. Let (A,H,D) be a semifinite spectral
triple relative to (N , τ). For any µ > 0, define the
‘double’ of (A,H,D) to be the semifinite spectral
‘triple’

(A,H2,Dµ,M2(N ), τ ⊗Tr2),

with H2 = H⊕H and the action of A and Dµ given
by

Dµ :=

(
D µ
µ −D

)
, a 7→

(
a 0
0 0

)
, ∀a ∈ A.

If (A,H,D) is even and graded by γ then the double
is even and graded by γ ⊕−γ.

Dµ always is invertible, and Fµ = Dµ|Dµ|−1 has square
1.

Lemma. The KK-classes associated with (A,H,D)
and (A,H2,Dµ) coincide. A representative of this
class is (K2

N , Fµ) with Fµ = Dµ|Dµ|−1.
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Corollary. Let (A,H,D) be a nonunital semifinite

spectral triple which is finitely summable, with spec-

tral dimension p. Then the same is true for the dou-

ble (A,H2,Dµ,M2(N ), τ⊗Tr2) and (K2
N , Fµ) is a bpc+

1-summable semifinite Fredholm module. Moreover

the K0(KN )-valued index pairings defined by the two

spectral triples and the semifinite Fredholm module

all agree: for x ∈ K∗(A) of the appropriate parity

and µ > 0

x⊗A [(A,H,D)] = x⊗A
[(
A,H2,Dµ,M2(N ), τ ⊗Tr2

)]
= x⊗A [(K2

N , Fµ)] .

The τ-finite operators FN ⊂ KN are stable under the

holomorphic functional calculus, and so K0(KN ) =

K0(FN ). Thus we can always represent elements of

K0(KN ) by classes [e] − [f ] with e, f ∈ F∼N where ∼
denotes the one-point unitization. Thus the trace

τ defines a homomorphism τ∗ : K0(KN ) → R thus

we can define a numerical index from the Fredholm

module.
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Compatibility of the Kasparov product, numer-

ical index and Chern character

Definition Let (H, F ) be a Fredholm module relative

to N , τ . We define the ‘conditional trace’ τ ′ by

τ ′(T ) = 1
2τ(F (FT + TF )),

provided FT + TF ∈ L1(N ).

We will use the (b, B) normalisation, and so make

the following definition.

Definition Let (H, F ) be a semifinite n+1-summable

Fredholm module for the algebra A relative to (N , τ),

and suppose the parity of the Fredholm module is the

same as the parity of n. Then we define the Chern

character [ChF ] to be the cyclic cohomology class of

the single term (b, B)-cocycle defined by

ChnF (a0, a1, . . . , an) :=


Γ(n2+1)

n! τ ′(γa0[F, a1] · · · [F, an]), n even

√
2i

Γ(n2+1)
n! τ ′(a0[F, a1] · · · [F, an]), n odd

, a0, ..., an ∈ A.
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If e ∈ A∼ is a projection we define Ch0(e) = e ∈ A∼
and

Ch2k(e) = (−1)k
(2k)!

k!
(e−1/2)⊗e⊗· · ·⊗e ∈ (A∼)⊗2k+1.

If u ∈ A∼ is a unitary then we define

Ch2k+1(u) = (−1)k k!u∗⊗u⊗· · ·⊗u∗⊗u ∈ (A∼)⊗2k+2.

Importantly, if both e, f ∈ Mk(A∼) and [e] − [f ] ∈
K0(A) then Ch(e)− Ch(f) defines a class in the re-
duced cyclic homology. This follows since K0(A) =
ker(q∗ : K0(A∼) → K0(C)) where q : A∼ → C is the
quotient map, and this implies that q(e) = q(f) ∈
C = A∼/A.

Proposition Let (A,H,D) be a nonunital semifinite
spectral triple which is finitely summable with spec-
tral dimension p ≥ 1. Let [(K2

N , Fµ)] ∈ KKj(A,KN )
be the Kasparov module associated to the double of
(A,H,D) (j = 0 if the spectral triple is Z2-graded
and j = 1 otherwise). Then for x ∈ Kj(A) we have

〈x, (A,H,D)〉 = τ∗
(
x⊗A[(K2

N , Fµ)]
)

= cj Ch
bpc
F

(
Chbpc(x)

)
.

where the pairing on the left is the numerical index
pairing , c0 = 1 and c1 = −(2iπ)−1/2.
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Part II: The local index formula for semifinite

nonunital spectral triples.

Definitions. (i) For any positive number s > 0, we

define the weight ϕs on N by

ϕs(T ) := τ
(
(1 +D2)−s/4T (1 +D2)−s/4

)
.

(ii) Let

Bp = Bp(D) :=
⋂
s>p

(
dom(ϕs)

1/2 ∩ (dom(ϕs)
1/2)∗

)
.

(iii) Let (A,H,D) be a spectral triple relative to

(N , τ). Then we say that (A,H,D) is smoothly

summable if (A,H,D) is finitely summable with spec-

tral dimension p and for all j ∈ N,

δj(A) ∪ δj([D,A]) ⊂ (Bp)2.

A. The resolvent and residue cocycles and other

cochains.

Start with (A,H,D), a nonunital, semifinite, smoothly

summable spectral triple, with spectral dimension

p ≥ 1 and parity P. (P = 0 for an even spectral

triple and P = 1 for odd triples.)
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We also let N := b(p+P + 1)/2c and M := 2N −P,

the greatest integer of parity P in [0, p+ 1]. In par-

ticular, M = p when p is an integer of parity P. The

grading degree allows us to define a graded commu-

tator by

[S, T ]± := ST − (−1)deg(S) deg(T )TS .

In the following we are working with the double of a

given spectral triple. The trace on M2(N ) is τ ◦Tr2.

The residue cocycle. For a multi-index k ∈ Nm,

we define

α(k)−1 := k1! · · · km!(k1 +1)(k1 +k2 +2) · · · (|k|+m),

and we let σn,j be the non-negative rational numbers

defined by the identities

n−1∏
j=0

(z + j + 1
2) =

n∑
j=0

zj σn,j, P = 1,

n−1∏
j=0

(z + j) =
n∑

j=1

zjσn,j, P = 0.
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Definition. Let (A,H,D) be a QC∞ finitely summable
nonunital spectral triple of spectral dimension p. We
say that the spectral dimension is isolated, if for any
element b ∈ N , of the form

b = a0 da
(k1)
1 · · · da(km)

m (1+D2)−|k|−m/2, a0, · · · , am ∈ A,
the zeta function ζb(z) := τ

(
b(1 + D2)−z), has an-

alytic continuation to a deleted neighbourhood of
z = (1− p)/2. In this case, we define the numbers

τj(b) := resz=(1−p)/2 z
j ζb(z).

Definition. Assume that (A,H,D) has isolated spec-
tral dimension. For m = P mod 2, with τj and for a
multi-index k setting h = |k|+ (m − P)/2, the m-th
component of the residue cocycle φm : A∼⊗A⊗m →
C is defined by

φm(a0, · · · , am) =

(
√

2iπ)P
M−m∑
|k|=0

(−1)|k|α(k)

h∑
j=A

σh,j τj−A

(
γa0 da

(k1)
1 · · · da(km)

m (1 +D2)−|k|−m/2
)
.
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By definition of isolated spectral dimension, we see
that for m > 0 the components of the residue cocycle
take finite values on A∼ ⊗ A⊗m. (There is a slight
issue with the zeroth term in the even case but it
still works)

The resolvent cocycle. Initially we do not assume
that our spectral triple (A,H,D) has isolated spec-
tral dimension. We must however use the double,
so there exists µ > 0 such that D2 ≥ µ. We let
Du := D|D|−u for u ∈ [0,1] (which is well defined pre-
cisely because |D| is invertible) and du(a) := [Du, a].
Note that this derivation interpolates between the
two natural notions of differential in quantised cal-
culus, that is d0(a) = da = [D, a] and d1(a) = [F, a].
We also set Ḋu := −Du log |D|, the formal derivative
of Du with respect to the parameter u. We finally
introduce the short-hand notations:

Rs,t,u(λ) := (λ− (t+ s2 +D2
u))−1 , (1)

Rs,t(λ) := Rs,t,0(λ) , Rs,u(λ) := Rs,0,u(λ) (2)

Rs(λ) := Rs,1,0(λ)

The range of the parameters is 0 < <(λ) < µ/2,
s ∈ R and t, u ∈ [0,1]. For a multi-index k ∈ Nm+1,
we set |k| := k0 + k1 + · · ·+ km.
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Definition. For a ∈ (0, µ/4), let ` be the vertical

line ` = {a + iv : v ∈ R}. Given m ∈ N, s ∈ R+,

r ∈ C and operators A0, ..., Am ∈ OPki, such that

|k| − 2m < 2<(r), we define

〈A0, · · · , Am〉m,r,s,t,u :=

1

2πi
τ

(
γ
∫
`
λ−r−p/2A0Rs,t,u(λ) · · ·AmRs,t,u(λ) dλ

)
,

Here γ is the Z2-grading in the even case and the

identity operator in the odd case. When |k|−2m−1 <

2<(r), we set

〈〈A0, · · · , Am〉〉m,s,r,t,u :=

m∑
j=0

(−1)deg(Aj)〈A0, · · · , Aj,D, Aj+1, · · · , Am〉m+1,s,r,t,u .

We now state the definition of the resolvent cocycle

in terms of the expectations 〈·, . . . , ·〉m,r,s,t,u.
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Definition. For m ∈ N and m ≡ P mod 2, we intro-

duce the constants ηm by

ηm =
(
−
√

2i
)P

2m+1Γ(m/2 + 1)

Γ(m+ 1)
.

Then for t ∈ [0,1] and <(r) > (1 − m)/2, the m-

th component of the resolvent cocycles φrm, φ
r
m,t :

A∼ ⊗A⊗m → C are defined by φrm := φrm,1 and

φrm,t(a0, . . . , am) := ηm

∫ ∞
0

sm〈a0, da1, . . . , dam〉m,r,s,t,0 ds ,

Definition. For t, u ∈ [0,1] and <(r) > (1 −m)/2,

the m-th component, m = A,A + 2,M + 1, of the

transgression cochains Φr
m,t,u : A ⊗ A⊗m → C are

defined by

Φr
m,t,u(a0, . . . , am)

:= ηm+1

∫ ∞
0

sm+1〈〈a0, du(a1), . . . , du(am)〉〉m,r,s,t,u ds.

By specialising the parameters t, u to 1, 0 respec-

tively we define Φr
m := Φr

m,1,0, Φr
m,u := Φm,1,u, and

Φr
m,t = Φr

m,t,0.
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The parameter t is used to pass from the resolvent

cocycle to the transgression cocycle. The parameter

u gives a homotopy from the transgression cocycle

to the Chern character as per the Connes-Moscovici-

Higson argument.

Theorem (1) In the (b, B)-bicomplex with coeffi-

cients in the set of holomorphic functions on a right

half plane <(r) > 1/2, the resolvent cocycle (φrm)Mm=P

is cohomologous to (r − (1 − p)/2)−1ChMF , modulo

cochains with values in the set of holomorphic func-

tions on a right half plane containing the critical

point r = (1− p)/2.

(2) If moreover, the spectral triple (A,H,D) has iso-

lated spectral dimension, then the residue cocycle

(φm)Mm=P is cohomologous to the Chern character

ChMF .

B. The local index formula

Setting X = PuP , P = (1+F )/2 and u ∈ A∼ unitary

for an odd triple, and X = pF+p, F+ = 1
4(1−γ)F (1+

γ), p ∈ A∼ a projection, and with x standing for u or

p depending on the context, we can summarize our

results as follows.
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NB: one may eliminate the doubled spectral triple
and the claims follow with the original spectral triple.

More precisely, the double is only needed for the
transgression argument where invertibility of D is es-
sential. There is a passage back to the undoubled
picture both at the Fredholm module and residue
cocycle levels.

Theorem (1) The Chern character in cyclic homol-
ogy computes the numerical index pairing, so

Indexτ(X) = cPChMF
(
ChM(x)

)
,

cP = 1 if P = 0, cP =
−1√
2πi

if P = 1.

(2) The index can also be computed with the resol-
vent cocycle via

Indexτ(X) = cPresr=(p−1)/2

M∑
m=P

φrm
(
Chm(x)

)
,

and in particular
∑M
m=P φ

r
m(Chm(x)) analytically con-

tinues to a deleted neighborhood of the critical point
r = (1 − p)/2 with at worst a simple pole at that
point.
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(3) If moreover the triple (A,H,D) has isolated spec-
tral dimension, then the index can also be computed
with the residue cocycle, via

Indexτ(X) = cP
M∑

m=P
φm

(
Chm(x)

)
.

Application: Index theorems for Dirac type op-
erators on manifolds of bounded geometry.
For a manifold of bounded geometry the asymptotic
expansion of the heat kernel for small time is identi-
cal to that for compact manifolds. Consequently the
pole structure for the zeta functions appearing in the
local index formula is identical to the compact case
and we can use the argument of Ponge, for exam-
ple, to obtain a local formula for the index of Dirac
type operators which is similar to the relative index
theorem of Gromov-Lawson. There is an L2 index
version as well.
Future work.
(i) NCG for pseudo-Riemannian manifolds.
(ii) Noncommutative applications: index theorems
of Lesch-Phillips-Raeburn type for cross products by
real actions.
(iii) Other noncommutative situations (beyond the
Moyal plane).
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