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Abstract 1

We make use of Tomita-Takesaki modular theory in order to
reconstruct non-commutative spectral geometries (formally similar
to spectral triples) from suitable states over (categories of)
operator algebras and further elaborate on the utility of such a
formalism in an algebraic theory of quantum gravity, where
space-time is spectrally reconstructed a posteriori from (partial)
observables and states in a covariant quantum theory. Some
relations with A.Carey-J.Phillips-A.Rennie modular spectral triples
and with (loop) quantum gravity will be described.
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Abstract 2
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Outline

I Mathematical Preliminaries
I Review of Tomita-Takesaki Modular Theory
I Review of A. Connes’ Non-commutative Geometry
I Modular Non-commutative Geometry

I Motivations from Physics
I Spectral and Quantum Space-time
I Modular Theory in Quantum Gravity

* Modular Algebraic Quantum Gravity

* 1) Construction of Modular Spectral Geometries
* 2) Physical Meaning of Modular Spectral Geometries
* 5) Connections with Loop Quantum Gravity
? 6) Foundations of Quantum Physics

Paolo Bertozzini Non-commutative Geometries via Modular Theory



Introduction
Mathematical Preliminaries.

Motivations from Physics
Modular Algebraic Quantum Gravity

Introduction
Outline
Ideology

Ideology

* space-time should be spectrally reconstructed a posteriori
from a basic operational theory of observables and states;

* A.Connes’ non-commutative geometry provides the natural
environment where to attempt an implementation of the
spectral reconstruction of space-time;

* Tomita-Takesaki modular theory should be the main tool to
achieve the previous goals, associating to operational data,
spectral non-commutative geometries.

* . . . (relationalism via categorical covariance).
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• Tomita-Takesaki Modular Theory
Modular Theory
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Operator Algebras 1 – C*-algebras

A complex unital algebra A is a vector space over C with an
associative unital bilinear multiplication.1

An involution on A is a conjugate linear map ∗ : A→ A such that
(a∗)∗ = a and (ab)∗ = b∗a∗, for all a, b ∈ A.

An involutive complex unital algebra is A called a C*-algebra if A

is a Banach space with a norm a 7→ ‖a‖ such that
‖ab‖ ≤ ‖a‖ · ‖b‖ and ‖a∗a‖ = ‖a‖2, for all a, b ∈ A.

Notable examples are the algebras of continuous complex valued
functions C (X ; C) on a compact topological space with the “sup
norm” and the algebras of linear bounded operators B(H) on a
given Hilbert space H.

1A is Abelian (commutative) if ab = ba, for all a, b ∈ A.
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Operator Algebras 2 – Von Neumann Algebras

A von Neumann algebra M⊂ B(H) is a C*-algebra acting on
the Hilbert space H that is closed under the weak-operator
topology: An

n→∞−−−→ A iff 〈ξ | Anη〉
n→∞−−−→ 〈ξ | Aη〉, ∀ξ, η ∈ H,

or equivalently under the σ-weak topology:
An

n→∞−−−→ A iff for all sequences (ξk), (ζk) in H such that∑+∞
k=1 ‖ξk‖2 < +∞ and

∑+∞
k=1 ‖ζk‖2 < +∞ we have∑+∞

k=1〈ξk | Anζk〉
n→+∞−−−−→

∑+∞
k=1〈ξk | Aζk〉.

The pre-dual M∗ of a von Neumann algebra M is the set of all
σ-weakly continuous functionals on M. It is a Banach subspace of
the dual M∗. The von Neumann algebra M is always the dual of
M∗. By a theorem of S.Sakai, a C*-algebra A is isomorphic to a
von Neumann algebra M if and only if it is a dual of a Banach
space.
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Gel’fand Năımark Segal Representation

A state ω over a unital C*-algebra A is a linear function
ω : A→ C that is positive ω(x∗x) ≥ 0 for all x ∈ A and
normalized ω(1A) = 1.

To every state ω over a unital C*-algebra A we can associate its
Gel’fand-Năımark-Segal representation i.e. a unital
∗-homomorphism πω : A→ B(Hω) over a Hilbert space Hω with a
norm one vector ξω such that ω(x) = 〈ξω | πω(x)ξω〉 for all x ∈ A.
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Dynamical Systems 1

A C*-dynamical system (A, α) is a C*-algebra A equipped with
a group homomorphism α : G → Aut(A) that is strongly
continuous i.e. g 7→ ‖αg (x)‖ is a continuous map for all x ∈ A.

Similarly a von Neumann dynamical system (M, α) is a von
Neumann algebra acting on the Hilbert space H equipped with a
group homomorphism α : G → Aut(M) that is weakly continuous
i.e. g 7→ 〈ξ | αg (x)η〉 is continuous for all x ∈M and all ξ, η ∈ H.
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Dynamical Systems 2

For a one-parameter (C* or von Neumann) dynamical system
(A, α), with α : R→ Aut(A), an element x ∈ A is α-analytic if
there exists a holomorphic extension of the map t 7→ αt(x) to an
open horizontal strip {z ∈ C | | Im z | < r}, with r > 0, in the
complex plane.

The set of α-analytic elements is always α-invariant (i.e. for all x
analytic, α(x) is analytic) ∗-subalgebra of A that is norm dense in
the C* case and weakly dense in the von Neumann case.
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Kubo Martin Schwinger States

A state ω on a one-parameter C*-dynamical system (A, α) is a
(α, β)-KMS state, for β ∈ R, if for all pairs of elements x , y in a
norm dense α-invariant ∗-subalgebra of α-analytic elements of A

we have ω(xαiβ(y)) = ω(yx).

In the case of a von Neumann dynamical system (M, α), a
(α, β)-KMS state must be normal2 and should satisfy the above
property for all pairs of elements in a weakly dense α-invariant
∗-subalgebra of α-analytic elements of M.

2ω is faithful if ω(x) = 0⇒ x = 0; it is normal if for every increasing
bounded net of positive elements xλ → x , we have ω(xλ)→ ω(x).
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Modular Theory 1

The modular theory of von Neumann algebras has been created
by M.Tomita in 1967 and perfectioned by M.Takesaki around
1970. It is a very deep theory that, to every von Neumann algebra
M⊂ B(H) acting on a Hilbert space H, and to every vector
ξ ∈ H that is cyclic i.e.

(Mξ) = H

and separating i.e. for A ∈M,

Aξ = 0⇒ A = 0,

associates:
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Modular Theory 2

1) a one parameter unitary group t 7→ ∆it
ξ ∈ B(H)

2) and a conjugate-linear isometry Jξ : H → H such that:

∆it
ξM∆−it

ξ =M, ∀t ∈ R,

JξMJξ =M′,
Jξ ◦ Jξ = IdH, Jξ ◦∆ξ = ∆−1

ξ ◦ Jξ,

where the commutant M′ of M is defined by:

M′ := {A′ ∈ B(H) | [A′,A]− = 0, ∀A ∈M}.
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Modular Theory 3

More generally, given

I a von Neumann algebra M and

I a faithful normal state3 (more generally for a faithful normal
semi-finite weight) ω on the algebra M,

the modular theory allows to create:

• a one parameter group of ∗-automorphisms of the algebra M,

σω : t 7→ σωt ∈ Aut(M), with t ∈ R,

such that:

3ω is faithful if ω(x) = 0⇒ x = 0; it is normal if for every increasing
bounded net of positive elements xλ → x , we have ω(xλ)→ ω(x).
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Modular Theory 4

I in the Gel’fand-Năımark-Segal representation πω induced by
the weight ω, on the Hilbert space Hω, the automorphism
group σω is implemented by a unitary one parameter group
t 7→ ∆it

ω ∈ B(H) :

πω(σωt (x)) = ∆it
ωπω(x)∆−it

ω , ∀x ∈M, ∀t ∈ R;

I there is a conjugate-linear isometry Jω : H → H, with
J2
ω = IdHω and Jω∆ω = ∆−1

ω Jω, whose adjoint action
implements a conjugate-linear ∗-isomorphism
γω : πω(M)→ πω(M)′, between πω(M) and its commutant:

γω(πω(x)) = Jωπω(x)Jω, ∀x ∈M.
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Modular Theory 5

The operators Jω and ∆ω are called respectively the modular
conjugation operator and the modular operator induced by the
state (weight) ω.
We will call “modular generator” the operator

Kω := log ∆ω

i.e the self-adjoint generator of the unitary one parameter group

t 7→ ∆it = e iKωt .
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Modular Theory 6
The modular automorphism group associated with ω is the only
one parameter automorphism group that satisfies the
Kubo-Martin-Schwinger KMS-condition with respect to the state
ω, at inverse temperature β = −1, i.e.

ω(σωt (x)) = ω(x), ∀x ∈M

and for all x , y ∈M, there exists a function Fx ,y : R× [0, β]→ C
such that:

Fx ,y is holomorphic on R×]0, β[,

Fx ,y is bounded continuous on R× [0, β],

Fx ,y (t) = ω(σωt (y)x), t ∈ R,
Fx ,y (iβ + t) = ω(xσωt (y)), t ∈ R.

nc-geometry
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Modular Theory 7

A weight ω on a C*-algebra A is a map ω : A+ → [0,+∞] such
that ω(x + y) = ω(x) + ω(y) and ω(αx) = αω(x), for all
x , y ∈ A+ and α ∈ R+. A trace is a weight that, for all x ∈ A,
satisfies ω(x∗x) = ω(xx∗).

The usual GNS-representation associated to states admits a
similar formulation in the case of weights. To every weight ω on
the C*-algebra A there is a triple (Hω, πω, ηω), where Hω is a
Hilbert space, πω is a ∗-representation of A in B(Hω) and
ηω : Lω → Hω is a linear map with dense image defined on the left
ideal Lω := {x ∈ A | ω(x∗x) < +∞}, such that
πω(x)ηω(z) = ηω(xz) and ω(y∗xz) = 〈ηω(y) | πω(x)ηω(z)〉Hω for
all x ∈ A and all y , z ∈ Lω.
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Modular Theory 8

A weight is faithful if ω(x) = 0 implies x = 0. A weight on a von
Neumann algebra M is normal if for every increasing bounded net
in M+ with xλ → x ∈M+ we have ω(xλ)→ ω(x) and it is
semi-finite if the linear span of the cone
Mω+ := {x ∈M+ ω(x) < +∞} is dense in the σ-weak operator
topology in M.
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Modular Theory 9

Tomita-Takesaki modular theory can be extended to the case of
normal semi-finite faithful weights on a von Neumann algebra and
the formulation is essentially identical to the one already described
in case of states.

A von Neumann algebra M is semi-finite if and only if it admits a
normal semi-finite faithful trace τ . In this case for every normal
semi-finite faithful weight ω, the modular automorphism group
t 7→ σωt is inner i.e. there exists a positive invertible operator h
affiliated4 to M such that σωt (x) = hitxh−it for all t ∈ R and
x ∈M.

4This means that all the spectral projections of h are contained in M.
Paolo Bertozzini Non-commutative Geometries via Modular Theory
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Connes-Radon-Nikodym Theorem – Part 1

Let φ be a normal semi-finite faithful weight on the von Neumann
algebra M. For every other normal semi-finite faithful weight ψ on
M, there exists a strongly continuous family t 7→ ut of unitaries in
M such that for all x ∈M and all t, s ∈ R:

σψt (x) = utσ
φ
t (x)u∗t , ut+s = utσ

φ
t (us).

Furthermore, defining σψ,φt (x) := utσ
φ
t (x) = σψt (x)ut , there exists

a unique such family, denoted by t 7→ (Dφ : Dφ)t for all t ∈ R,
and called the Connes-Radon-Nikodym derivative of ψ with
respect to φ, that satisfies the following variant of the
KMS-condition: there exists a bounded continuous function on
R× [0, 1] analytic on R×]0, 1[ such that for all x , y ∈ Lφ ∩ L∗ψ and

for all t ∈ R, f (t) = ψ(σψ,φt (x)y) and f (t + i) = φ(yσψ,φt (x)).

Paolo Bertozzini Non-commutative Geometries via Modular Theory
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Connes-Radon-Nikodym Theorem – Part 2

If t 7→ ut is a strongly continuous family of unitaries in M such
that ut+s = utσ

φ
t (us), for all t, s ∈ R, there exists a unique normal

semi-finite faithful weight ψ on M such that (Dψ : Dφ)t = ut , for
all t ∈ R.

The Connes-Radon-Nikodym derivatives satisfy the following
properties for all normal semi-finite faithful weights ω1, ω2, ω3 on
M and for all t ∈ R:

(Dω1 : Dω2)t · (Dω2 : Dω3)t = (Dω1 : Dω3)t ,

(Dω1 : Dω2)∗t = (Dω2 : Dω1)t .
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Connes Spatial Derivative Theorem

Let M be a von Neumann algebra on the Hilbert space H and M′
its commutant. For any normal semi-finite faithful weight ω on M
and any normal semi-finite faithful weight ω′ on M′, there exists a
positive operator ∆(ω|ω′), the Connes’ spatial derivative of ω
with respect to ω′ such that: ∆(ω′|ω) = ∆(ω|ω′)−1 and ∀t ∈ R,

σωt (x) = ∆(ω|ω′)itx∆−it(ω|ω′) ∀x ∈M,

σω
′
−t(y) = ∆(ω|ω′)ity∆(ω|ω′)−it ∀y ∈M′.

Furthermore, if ω1 and ω2 are normal semi-finite faithful weights
on M we also have

∆(ω2|ω′)it = (Dω2 : Dω1)t∆(ω1|ω′)it , ∀t ∈ R.
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Conditional Expectations

A conditional expectation Φ : A→ B from a unital C*-algebra
A onto a unital C*-subalgebra B is a completely positive map5

such that Φ(b) = b, Φ(x + y) = Φ(x) + Φ(y),
Φ(b1xb2) = b1Φ(x)b2, for all b, b1, b2 ∈ B and all x , y ∈ A.

By a theorem of J.Tomiyama, Φ is a conditional expectation if and
only if Φ is a projection of norm one onto a subalgebra.

A conditional expectation is a generalization of the notion of state
that appears as long as we allow values to be taken in an arbitrary
C*-algebra in place of the usual complex numbers C.

5This means that for all n ∈ N, Φ(n) : Mn(A)→ Mn(B) is positive, where
Mn(A) denotes the unital C*-algebra of n × n A-valued matrices and Φ(n) is
obtained applying Φ to every entry.
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Takesaki Conditional Expectation Theorem 1

Conditional expectations and modular theory are related by this
result by M.Takesaki.

Theorem
Let N be a von Neumann subalgebra of the von Neumann algebra
M and let ω be a normal semi-finite faithful weight on the von
Neumann algebra M such that ω|N is semi-finite. The von
Neumann algebra N is modularly stable i.e. σωt (N ) = N for all
t ∈ R, if and only if there exists a conditional expectation
Φ :M→N onto N such that ω ◦ Φ = ω.

Such conditional expectation is unique and normal.
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Operator Valued Weights

In the same way as weights are an “unbounded” version of states,
we also have an “unbounded” version of conditional expectations.
Here the role of real R or positive real numbers R+ as possible
values of a state, respectively weight, is taken by a von Neumann
algebra N and its positive part N+ and the set R̂+ := [0,+∞] of
extended positive reals is replaced by N̂+, the extended positive
cone of N , defined as the set of lower semi-continuous maps
m :M∗+ → [0,+∞] such that m(φ+ ψ) = m(φ) + m(ψ),
m(αφ) = αm(φ), ∀φ, ψ ∈M∗+, α ∈ R+.

An operator valued weight from the von Neumann algebra M to
the von Neumann algebra N is a map Φ :M+ → N̂+ taking
values in the extended positive cone of N such that:
Φ(x + y) = Φ(x) + Φ(y), Φ(αx) = αΦ(x) and Φ(u∗xu) = Φ(x),
∀x , y ∈M+, α ∈ R+, u ∈ N .
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Takesaki Operator Valued Weight Theorem

With these definitions, Takesaki’s conditional expectation theorem
can be generalized as follows.

Theorem
The existence of a normal semi-finite faithful operator valued
weight Φ onto a subalgebra N of the von Neumann algebra M is
equivalent to the existence of a pair of normal semi-finite faithful
weights ω on N and ω̃ on M such that σωt (x) = σeω

t (x) for all
x ∈ N . There is a unique such Φ with the property ω̃ = Φ ◦ ω.

Paolo Bertozzini Non-commutative Geometries via Modular Theory



Introduction
Mathematical Preliminaries.

Motivations from Physics
Modular Algebraic Quantum Gravity

Tomita-Takesaki Modular Theory
Non-commutative Geometry
Modular Non-commutative Geometry

Modular Theory for Operator Valued Weights

I For every normal semi-finite faithful operator valued weight Θ from
M to N , and for every normal semi-finite faithful weight φ on N ,
the restriction of the modular one-parameter group t 7→ σφ◦Θt to the
relative commutant M∩N ′ is independent from the choice of φ
and defines the modular group t 7→ σΘ

t of the operator valued
weight.

I Similarly, for every pair of normal semi-finite faithful operator valued
weights Θ,Ξ from M to N , for every normal semi-finite faithful
weight φ on N , [Dφ ◦Θ : Dφ ◦ Ξ]t is independent of the choice of
φ and defines the cocycle derivative of Θ relative to Ξ.

I To every normal semi-finite faithful weight Θ from M to N
corresponds a unique normal semi-finite faithful weight Θ′ from N ′
to M′ such that σΘ

t = σΘ′

−t . Under such bijective correspondence
[DΘ : DΞ]t = [DΞ′ : DΘ′]−t .
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Connes-Takesaki Duality and
Falcone Takesaki Non-commutative Flow of Weights 1

Let M be a von Neumann algebra. There exist a canonical
one-parameter W*-dynamical system, the Falcone- Takesaki
non-commutative flow of weights of M, (M̃, θ) and a

canonical normal ∗-morphism ι :M→ M̃ such that:

I the image of the canonical isomorphism coincides with the
fixed points algebra of the dynamical system i.e. ι(M) = M̃θ,

I for every faithful semi-finite normal weight φ on M there is a
canonical isomorphism of the W*-dynamical system (M̃, θ)
with the W*-dynamical system (W ∗(M, σφ), σ̂φ) induced by
the dual action of σφ on the W*-covariance algebra of
(M, σφ),
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Connes-Takesaki Duality and
Falcone Takesaki Non-commutative Flow of Weights 2

I there is a canonical operator valued weight Θ from M̃ onto
ι(M), given for all x ∈ M̃+ by Θ(x) =

∫
θt(x) dt, such that,

for every faithful semi-finite normal weight φ on M, the dual
faithful semi-finite normal weight φ̃ := φ ◦Θ on M̃ induces an

inner modular automorphism group i.e. σ
eφ
t = Ad

e
ikφt with

generator kφ affiliated to M̃,

I there is a canonical faithful semi-finite normal trace τ on M̃
that is rescaling the one-parameter group θ i.e. τ ◦ θt = e−tτ ,
for all t ∈ R and for all faithful semi-finite normal weights φ
on M we have that τ(x) = φ̃(e−kφ/2xe−kφ/2), ∀x ∈ M̃+,
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Connes-Takesaki Duality and
Falcone Takesaki Non-commutative Flow of Weights 3

I for all faithful semi-finite normal weights φ on M, we have
that the W*-dynamical system (W ∗(M̃, θ), θ̂) induced by the

dual action of θ on the W*-covariance algebra W ∗(M̃, θ) of

(M̃, θ) is canonically isomorphic with the W*-dynamical
system (M⊗B(L2(R)), σφ ⊗ ρ), where ρt := Adλ−t with
(λtξ)(s) := ξ(s − t) the usual left regular action of R on
L2(R).
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Non-commutative Geometry 1

Non-commutative geometry, elaborated by A.Connes starting
approximately from 1980, is the name of a very fast developing
mathematical theory that is making use of operator algebras to
find algebraic generalizations of most of the structures currently
available in mathematics: measurable, topological, differential,
metric etc.

The fundamental idea, implicitly used in A.Connes’
non-commutative geometry is a powerful extension of R.Decartes’
analytic geometry:
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Non-commutative Geometry 2

I to “trade” “geometrical spaces” X of points with their
Abelian algebras of (say complex valued) functions f : X → C,

I to “translate” the geometrical properties of spaces into
algebraic properties of the associated (commutative) algebras

I to “spectrally reconstruct”, in the commutative case, the
original geometric space X as a derived entity (the spectrum
of the algebra)

I to define a non-commutative space (topological, measurable,
differential, metric, . . . ) as the “dual” of a non-commutative
algebra that satisfies the suitable algebraic axioms

The existence of dualities between categories of “geometrical
spaces” and categories “constructed from Abelian algebras” is the
starting point of any generalization of geometry to the
non-commutative situation.
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Non-commutative Geometry 3

Here are some examples:

I Hilbert: between algebraic sets and finitely generated
algebras over an algebraically closed field.

I Stone: between totally disconnected compact Hausdorff
topological spaces and Boolean algebras.

I Gel’fand-Năımark: between the category of continuous maps
of compact Hausdorff topological spaces and the category of
unital involutive homomorphisms of unital commutative
C*-algebras.

I Halmos-von Neumann: between the category of measure
spaces and the category of commutative von Neumann
algebras.
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Non-commutative Geometry 4

I Serre-Swan (equivalence): between the category of
finite-dimensional locally trivial vector bundles over a compact
Hausdorff topological space and the category of finite
projective modules over a commutative unital C*-algebra.

I Takahashi: between the category of Hilbert bundles on
(different) compact Hausdorff spaces and the category of
Hilbert C*-modules over (different) commutative unital
C*-algebras.

For “suitable categories of manifolds” the most appropriate
candidate objects for a duality are A.Connes’ spectral triples
. . . and possibly some variants of them . . .
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Connes Spectral Triples 1
A (compact) spectral triple (A,H,D) is given by:

I a unital pre-C*-algebra A (usually closed under holomorphic
functional calculus);

I a (faithful) representation π : A→ B(H) of A on the Hilbert
space H;

I a one-parameter group of of unitaries whose generator D, the
Dirac operator, is such that

I the domain Dom(D) is invariant under all the operators π(a),
with a ∈ A,

I all the commutators [D, π(a)]− := D ◦ π(a)− π(a) ◦ D,
defined on Dom(D), can be extended to bounded linear
operators on H,

I the resolvent (D − µI )−1 is compact for all µ /∈ Sp(D).

Several additional technical conditions should be imposed on a
spectral triple in order to formulate “reconstruction results”.

Other Spectral Geometries Examples and Connes’ Reconstruction Theorem
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Connes Spectral Triples 2

I A spectral triple is called even if there exists a grading
operator, i.e. a bounded self-adjoint operator Γ ∈ B(H) such
that:

Γ2 = IdH; [Γ, π(a)]− = 0, ∀a ∈ A; [Γ,D]+ = 0,

where [x , y ]+ := xy + yx is the anticommutator of x , y .
A spectral triple that is not even is called odd.
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Connes Spectral Triples 3

I A spectral triple is n-dimensional iff there exists an integer n
such that the Dixmier trace of |D|−n is finite nonzero.

I A spectral triple is θ-summable if exp(−tD2) is a trace-class
operator for all t > 0.

I A spectral triple is finite if H∞ := ∩∞k=1Dom Dk is a finite
projective A-bimodule and absolutely continuous if there
exists an Hermitian form (ξ, η) 7→ (ξ | η) on H∞ such that, for
all a ∈ A, 〈ξ | π(a)η〉 is the Dixmier trace of π(a)(ξ | η)|D|−n.
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Connes Spectral Triples 4

I A spectral triple is regular if the function

Ξx : t 7→ exp(it|D|)x exp(−it|D|)

is regular, i.e. Ξx ∈ C∞(R,B(H)),6

for every x ∈ ΩD(A), where7

ΩD(A) := span{π(a0)[D, π(a1)]− · · · [D, π(an)]− | n ∈ N,
a0, . . . , an ∈ A} .

6This condition is equivalent to π(a), [D, π(a)]− ∈ ∩∞m=1Dom δm, for all
a ∈ A, where δ is the derivation given by δ(x) := [|D|, x ]−.

7We assume that for n = 0 the term in the formula simply reduces to π(a0).
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Connes Spectral Triples 5

I An n-dimensional spectral triple is said to be orientable if in
the non-commutative Clifford algebra ΩD(A) there is a

volume element
∑m

j=1 π(a
(j)
0 )[D, π(a

(j)
1 )]− · · · [D, π(a

(j)
n )]−

that coincides with the grading operator Γ in the even case or
the identity operator in the odd case.8

8In the following, in order to simplify the discussion, we will always refer to
a “grading operator” Γ that actually coincides with the grading operator in the
even case and that is by definition the identity operator in the odd case.
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Connes Spectral Triples 6

I A spectral triple is said to have real structure if there exists
an antiunitary operator J : H → H such that:

[π(a), Jπ(b∗)J−1]− = 0, ∀a, b ∈ A,

[ [D, π(a)]−, Jπ(b∗)J−1]− = 0, ∀a, b ∈ A,

J2 = ±IdH, [J,D]± = 0 and, in the even case, [J, Γ]± = 0,

where the choice of ± in the last three formulas depends on
the “dimension” n of the spectral triple modulo 8 in
accordance to the following table:

n 0 1 2 3 4 5 6 7

J2 = ±IdH + + − − − − + +

[J,D]± = 0 − + − − − + − −
[J, Γ]± = 0 − + − +
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Connes Spectral Triples 7

I a spectral triple (A,H,D) satisfies Poincaré duality if the
C*-module completion of H∞ is a Morita equivalence
bimodule between (the norm completions of) A and ΩD(A).9

I A spectral triple will be called Abelian or commutative
whenever A is Abelian.

I A spectral triple is irreducible if there is no non-trivial closed
subspace in H that is invariant for π(A),D, J, Γ.

9A.Connes formulated this requirement in a different form: “A real spectral
triple is said to satisfy Poincaré duality if its fundamental class in the
KR-homology of A⊗Aop induces (via Kasparov intersection product) an
isomorphism between the K -theory K•(A) and the K -homology K•(A) of A”.
See A.Rennie-J.Varilly arXiv:math.OA/0610418, arXiv:math.OA/0703719

for some details on the equivalence of these statements.
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Connes Spectral Triples 8

Given an orientable compact Riemannian spin m-dimensional
differentiable manifold M, with a given complex spinor bundle
S(M), a given spinorial charge conjugation CM and a given volume
form µM , define by

I AM := C∞(M; C) the algebra of complex valued regular
functions on the differentiable manifold M,

I HM :=L2(M; S(M)) the Hilbert space of “square integrable”
sections of the given spinor bundle S(M) of the manifold M
i.e. the completion of the space Γ∞(M; S(M)) of smooth
sections of the spinor bundle S(M) equipped with the inner
product 〈σ | τ〉 :=

∫
M〈σ(p) | τ(p)〉p dµM , where 〈 | 〉p, with

p ∈ M, is the unique inner product on Sp(M) compatible with
the Clifford action and the Clifford product.
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Connes Spectral Triples 9

I DM the Atiyah-Singer Dirac operator i.e. the closure of the
operator that on Γ∞(M; S(M)) is obtained by “contracting”
with the Clifford multiplication, the unique spinorial covariant
derivative ∇S(M) (induced on Γ∞(M; S(M)) by the
Levi-Civita covariant derivative of M);

I JM the unique antilinear unitary extension JM : HM → HM of
the operator determined by the spinorial charge conjugation
CM by (JMσ)(p) := CM(σ(p)) for σ ∈ Γ∞(M; S(M)), p ∈ M;

I ΓM the unique unitary extension on HM of the operator given
by fiberwise grading on Sp(M), with p ∈ M.10

10The grading is actually the identity in odd dimension.
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Connes, Rennie-Varilly Theorem 1

Theorem (Connes)

The data (AM ,HM ,DM) define an Abelian regular finite
m-dimensional spectral triple that is real, with real structure JM ,
orientable, with grading ΓM , and that satisfies Poincaré duality.
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Connes, Rennie-Varilly Theorem 2

Theorem (Connes, Rennie-Varilly)

Let (A,H,D) be an irreducible Abelian real (with real structure J
and grading Γ) strongly regular11 m-dimensional finite absolutely
continuous orientable spectral triple, with totally antisymmetric
Hochschild cocycle in the last m entries and satisfying Poincaré
duality.
The spectrum of (the norm closure of) A can be endowed, with
the structure of an m-dimensional connected compact spin
Riemannian manifold M with an irreducible complex spinor bundle
S(M), a charge conjugation JM and a grading ΓM such that:
A ' C∞(M; C), H ' L2(M, S(M)), D ' DM , J ' JM , Γ ' ΓM .

11In the sense described in A.Connes arXiv:0810.2088v1.
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Antonescu Christensen Triples for AF C*-algebras

Among the spectral triples that are “purely quantal”, we mention
the following construction.12

Given a filtration of unital finite dimensional C*-algebras
A0 := C1A ⊂ A1 ⊂ · · · ⊂ An ⊂ An+1 ⊂ · · ·
and a faithful state ω on the inductive limit of the filtration
A := (∪+∞

n=1An)− with GNS representation (πω,Hω, ξω), denote by
Pn ∈ B(Hω) the othogonal projection onto πω(An)ξω, by
En := Pn − Pn−1 (we assume E0 := P0) and by θn the continuous
projection of A onto An (that satisfies θn(a)ξω = Pnaξω). For any
sequence (βn) such that

∑+∞
n=1 βn < +∞ and any sequence (γn)

such that ‖θn(a)− θn−1(a)‖ ≤ γn‖Enaξω‖ for all a ∈ A, there is a
family of spectral triples (A,Hω,D(αn)), indexed by a sequence of

positive real numbers (αn) := (γn/βn), with D(αn) :=
∑+∞

n=1 αnEn.

12E.Christensen, C.Ivan, arXiv:math.OA/0309044.
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Other Spectral Geometries 1

Several other variants for the axioms of spectral triples have been
considered or proposed:

I non-compact spectral triples,13 see the talk by A.Carey . . .

I spectral triples for quantum groups,14

I Lorentzian spectral triples,15

13V.Gayral, J.M.Gracia-Bondia, B.Iochum, T.Schüker, J.C.Varilly,
hep-th/0307241.

14L.Dabrowski, G.Landi, A.Sitarz, W.van Suijlekom, J.Varilly,
math.QA/0411609.

15A.Strohmaier, math-ph/0110001;
M.Paschke, A.Sitarz math-ph/0611029;
M.Borris, R.Verch arXiv:0812.0786;
A.Rennie, in preparation.
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Other Spectral Geometries 2

I non-commutative Riemannian manifolds and
non-commutative phase-spaces16;
non-commutative Riemannian geometries17 (Here the
basic “commutative example” is the triple
(C∞(M), L2(Λ•(M)), d + d∗) for a Riemannian manifold M),

I “von Neumann” semi-finite and modular spectral
triples.18,19 that are of paramount importance here.

16J.Fröhlich, O.Grandjean, A.Recknagel, hep-th/9612205; mat-ph/9807006.
17S.Lord, Riemannian Geometries, math-ph/0010037;

S.Lord, A.Rennie, J.Varilly, in preparation.
18M-T.Benameur, T.Fack, math.KT/0012233.
19See for example: M-T.Benameur, A.Carey, J.Phillips, A.Rennie,

F.Sukochev, K.Wojciechowski, math.OA/0512454, A.Carey, J.Phillips,
A.Rennie, arXiv:0707.3853, arXiv:0801.4605, Semi-finite Non-commutative
Geometry and Some Applications ESI preprint 2061 (2008).

Paolo Bertozzini Non-commutative Geometries via Modular Theory



Introduction
Mathematical Preliminaries.

Motivations from Physics
Modular Algebraic Quantum Gravity

Tomita-Takesaki Modular Theory
Non-commutative Geometry
Modular Non-commutative Geometry

• Modular Non-commutative
Geometry

Paolo Bertozzini Non-commutative Geometries via Modular Theory



Introduction
Mathematical Preliminaries.

Motivations from Physics
Modular Algebraic Quantum Gravity

Tomita-Takesaki Modular Theory
Non-commutative Geometry
Modular Non-commutative Geometry

Semi-finite Spectral Triples
A semi-finite spectral triple (A,H,D) relative to a normal
semi-finite faithful trace τ on a semi-finite von Neumann algebra
N, is given by:

I a faithful representation π : A→ N ⊂ B(H) of a unital
∗-algebra A inside a semi-finite von Neumann algebra
N ⊂ B(H) acting on the Hilbert space H,

I a (non-necessarily bounded) self-adjoint operator D on the
Hilbert space H such that

I the domain Dom(D) ⊂ H of D is invariant under all the
elements π(x) ∈ π(A),

I the operators [D, π(x)]− defined on Dom(D) can be extended
to bounded operators in the von Neumann algebra N,

I for all µ /∈ Sp(D), the resolvent (D − µI )−1 is a τ -compact
operator in N i.e. it is in the norm closure of the ideal
generated by all the projections p = p2 = p∗ ∈ N with
τ(p) < +∞.
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Modular Spectral Triples (after Carey-Phillips-Rennie)
A modular spectral triple (A,Hω,D) relative to a semi-finite von
Neumann algebra N and a faithful α-KMS-state ω on the
∗-algebra A is given by:

I a faithful representation of A in N ⊂ B(Hω) where (πω,Hω, ξω) is
the GNS-representation of (A, ω);

I a faithful normal semi-finite weight φ on N whose modular
authomorphism group σφ is inner in N and such that
σφ(πω(x)) = πω(α(x)) for all x ∈ A;

I φ restrict to a faithful semi-finite trace τ := φ|
Nσφ on the fixed

point algebra Nσφ ⊂ N;

I a self-adjoint operator D on Hω (with domain invariant under all
the πω(x), for x ∈ A) such that for all x ∈ A, [D, πτ (x)]− extends
to a bounded operator in N and for µ in the resolvent set of D, for

all f ∈ πω(A)σ
φ

, f (D − µI )−1 is a τ -compact operator relative to

the semi-finite trace τ on N σφ

. Motivations from Physics
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Modular Theory and Antonescu Christensen AF Triples 1

Let A be an AF C*-algebra, acting on the Hilbert space H,
A0 ⊂ A1 ⊂ · · · ⊂ An ⊂ An+1 ⊂ · · · ⊂ A a filtration of A by unital
inclusions of finite dimensional C*-algebras.
Let ξ ∈ H be a cyclic and separating vector for the von Neumann
algebra R := A′′ and denote by ∆ξ, Jξ and (σξt )t∈R the
modular/conjugation operators and modular group relative to the
pair (R, ξ). For any x ∈ R, define20 πn(x) ∈ An by πn(x)ξ = Pnxξ.

Proposition

The following conditions are equivalent:

a) πn : R→ An is a 〈ξ | ·ξ〉-invariant conditional expectation.

b) σξt (An) = An, t ∈ R.

Furthermore, ∆it
ξ Pn = Pn∆it

ξ , t ∈ R and JξPn = PnJξ.

20See R.Longo, Pac. J. Math 75 (1978) 199-205.
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Modular Theory and Antonescu Christensen AF Triples 2

Proposition

If the filtration of the AF C*-algebra is modularly stable, for any
choice of the sequence (αn) satisfying the Antonescu-Christensen conditions ,
the corresponding Dirac operator is a modular invariant, i.e.:

∆it
ξ D∆−it

ξ = D, ∀t ∈ R, and furthermore, JξD = DJξ.

Therefore, in the non-tracial case, spectral triples associated to
filtrations that are stable under the modular group have a
non-trivial group of automorphisms
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Modular Theory and Antonescu Christensen AF Triples 3

We now provide some explicit example of AF-algebras whose
filtration is stable under a non-trivial modular group.

Example (Power’s factors - part 1)

For every n ∈ N0, let An := M2(C)⊗ · · · ⊗M2(C) be the tensor
product of n copies of M2(C) and A0 := C.
Define the unital inclusion ιn : An → An+1 by ιn : x 7→ x ⊗ 1M2(C).
For every n ∈ N, let φn : M2(C)→ C be a faithful state and
consider the (automatically faithful) infinite tensor product state
ω := φ1 ⊗ · · · ⊗ φn ⊗ · · · on the inductive limit C*-algebra
A := ⊗∞j=1M2(C). Let M be the von Neumann algebra obtained
as the weak closure of A in the GNS-representation of ω. We
continue to denote with the same symbol the (automatically
faithful) normal extension of ω to M.
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Modular Theory and Antonescu Christensen AF Triples 4

Example (Powers Factors - continuation)

If σω denotes the modular group of M, we have that
σωt (x1 ⊗ · · · ⊗ xn ⊗ 1⊗ · · · ) = σφ1

t (x1)⊗ · · · ⊗ σφn
t (xn)⊗ 1⊗ · · · .

The choice of

φj(x) := tr

[
λ 0
0 1− λ

]
x , j = 1, . . . , n, λ ∈]0, 1/2[,

gives rise to the so called Power’s factor that is a factor of type
IIIµ with µ := λ/(1− λ).

Corollary

The Antonescu-Christensen Dirac operators associated to the
natural filtration of the Powers factors are modular invariant.
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Modular Theory and Antonescu Christensen AF Triples 5

Since, for modular filtrations of an AF C*-algebra, the modular
generator Kω and the Dirac operators of Antonescu-Christensen
commute, it is natural to ask if there are sitations where it is
possible to assume D = Kω or a proportionality between them.

Of course, it is already clear from the definition that every
Antonescu-Christensen Dirac operator has a positive spectrum
(since by construction αn > 0), and hence the previous question
should be interpreted in a “loose way” allowing some freedom for
some (significant) alteration of the constructions.

Paolo Bertozzini Non-commutative Geometries via Modular Theory



Introduction
Mathematical Preliminaries.

Motivations from Physics
Modular Algebraic Quantum Gravity

Tomita-Takesaki Modular Theory
Non-commutative Geometry
Modular Non-commutative Geometry

Tensorial Spectral Symmetrization 1

Given a “Dirac ket” spectral triple (A,H,D), consider its
associated “Dirac bra” spectral triple (A,H′,D ′), where:

I H′ denotes the Hilbert space dual of H,

I the operator D ′ is given by D ′ := Λ ◦ D ◦ Λ−1, with
Λ : H → H′ the usual conjugate-linear Riesz isomorphism,

I the ∗-algebra A is represented on H′ via the faithful
representation π′(x) := Λ ◦ π(x) ◦ Λ−1, for all x ∈ A.
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Tensorial Spectral Symmetrization 2
The tensor product Hilbert space H⊗H′, is equipped with a
conjugate-linear “flip operator” J defined on homogeneous tensors
by J(ξ ⊗ η) := Λ−1(η)⊗ Λ(ξ), and carries two commuting
representations of A given, for all x ∈ A, ξ ∈ H and η ∈ H′ by:

π(x)(ξ ⊗ η) := (π(x)ξ)⊗ η
π′(x)(ξ ⊗ η) := ξ ⊗ (π′(x)η) = Jπ(x)J(ξ ⊗ η).

We can define on H⊗H′ a new Dirac operator

K := D ⊗ I − I ⊗ D ′

(remember that D ′ := Λ ◦ D ◦ Λ−1) obtaining a new spectral triple

(A,H⊗H′,K ).
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Motivations from Physics

I Which indications we have that non-commutative geometry is
going to be useful in quantum gravity?

I Which indications we have that modular theory is going to be
important in quantum gravity?

I Is there a direct physical link between the two?

I What is the physical meaning of modular non-commutative
geometries?

Algebraic Modular Quantum Gravity
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Non-commutative Space-Time 1

There are 4 main reasons to look beyond classical space-time in
physics:

1) Quantum effects (Heisenberg uncertainty principle), coupled
to the general relativistic effect of the stress-energy tensor on
the curvature of space-time (Einstein equation), entail that at
very small scales the space-time manifold structure might be
“unphysical”. (B.Riemann, A.Einstein,
S.Doplicher-K.Fredenhagen-J.Roberts21).

21S.Doplicher, K.Fredenhagen, J.Roberts, The Structure of Spacetime at the
Planck Scale and Quantum Fields, Commun. Math. Phys., 172, 187 (1995),
hep-th/0303037.
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Non-commutative Space-Time 2

2) Modification to the short scale structure of space-time might
help to resolve the problems of “ultraviolet divergences” in
QFT (W.Heisenberg, H.Snyder22 and many others) and of
“singularities” in General Relativity.

3) The quest to extend Einstein’s geometrical interpretation of
gravity to other interactions via a Kaluza-Klein scheme.

4) Already in general relativity space-time is not a fundamental
a-priori entity, but is determined a-posteriori from
events/interaction that are relationally obtained from
observable quantities.

22H.Snyder, Quantized Spacetime, Phys. Rev., 71, 38-41 (1947).
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Non-commutative Space-Time 3
There are 4 main reasons why the introduction of non-commutative
space-time in physics might answer the previous requests:

1) In general relativity space-time is (in part) “dynamical” and in
quantum physics dynamical degrees of freedom are described
via non-commutative algebras of observables

2) In non-commutative geometry, the notion of point become
“fuzzy”

3) A.Connes’ view of the standard model in particle physics as a
“classical” non-commutative geometry of space-time (with
spectral triples)23

4) In non-commutative geometry, space is already recasted in a
spectral form appropriate for reconstruction from observables.

23A.Connes, Essay on Physics and Noncommutative Geometry, in: The
Interface of Mathematics and Particle Physics, ed. D.Quillen, Clarendon Press,
(1990). Modular Algebraic Quantum Gravity back
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Spectral Space-Time 1

By “spectral space-time” we mean the idea that space-time
(commutative or not) has to be “reconstructed a posteriori”, in a
spectral way, from other operationally defined degrees of freedom
(geometrical or not). The origin of this “pregeometrical
philosophy” is not clear:

I Space-time as a “relational” a posteriori entity originate from
G.W. Leibnitz, G. Berkeley, E. Mach.
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Spectral Space-Time 2

I Pregeometrical speculations date as back as Pythagoras, but
in their modern form, they start with J.A. Wheeler’s
“pregeometry”24,25 and “it from bit”26 proposals.

I R. Geroch 27 has been the first to suggest a “shift” from
space-time to algebras of functions over it, in order to address
the problems of singularities in general relativity.

24J.A. Wheeler, Pregeometry: Motivations and Prospects, in: Quantum
Theory and Gravitation, ed. A. Marlov, Academic Press (1980).

25D. Meschini, M. Lehto, J. Piilonen, Geometry, Pregeometry and Beyond,
Stud. Hist. Philos. Mod. Phys., 36, 435-464 (2005), gr-qc/0411053.

26J.A. Wheeler, It from Bit, Sakharov Memorial Lectures on Physics, vol. 2,
Nova Science (1992).

27R. Geroch, Einstein Algebras, Commun. Math. Phys., 26, 271-275 (1972).
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Spectral Space-Time 3

I R. Feynman-F. Dyson proof of Maxwell equations, from
non-relativistic QM of a free particle, indicates that essential
information about the underlying space-time is already
contained in the algebra of observables of the system28.

I The “reconstruction” of (classical Minkowski) space-time
from suitable states over the observable algebra in algebraic
quantum field theory has been considered by S. Doplicher29,
A. Ocneanu30, U. Bannier31.

28An argument recently revised and extended to non-commutative
configuration spaces by
T. Kopf-M. Paschke arXiv:math-ph/0301040,0708.0388

29S. Doplicher, private conversation, Rome, April 1995.
30As reported in: A. Jadczyk, Algebras Symmetries, Spaces, in: Quantum

Groups, H. D. Doebner, J. D. Hennig ed., Springer (1990).
31U. Bannier, Intrinsic Algebraic Characterization of Space-Time Structure,

Int. J. Theor. Phys., 33, 1797-1809 (1994).
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I Extremely important rigorous results on the “reconstruction of
classical Minkowski space-time” from the vacuum state in
algebraic quantum field theory, via Tomita-Takesaki modular
theory, have been obtained in the “geometric modular action”
program by D. Buchholz-S. Summers32,33,34.

32D. Buchholz, O. Dreyer, M. Florig, S. Summers, Geometric Modular
Action and Spacetime Symmetry Groups, Rev. Math. Phys., 12, 475-560
(2000), math-ph/9805026.

33S. Summers, Yet More Ado About Nothing: The Remarkable Relativistic
Vacuum State, arXiv:0802.1854v1

34S. J. Summers, R. K. White, On Deriving Space-Time from Quantum
Observables and States, hep-th/0304179.

Paolo Bertozzini Non-commutative Geometries via Modular Theory



Introduction
Mathematical Preliminaries.

Motivations from Physics
Modular Algebraic Quantum Gravity

Quantum and Spectral Space-Time
Quantum Gravity via Non-commutative Geometry
Modular Theory in Physics

Spectral Space-Time 5

I Tomita-Takesaki modular theory is also used in the “modular
localization program” by R. Brunetti-D. Guido-R. Longo35. In
this context a reconstruction of space-time has been
conjectured by N. Pinamonti36.

35R. Brunetti, D. Guido, R. Longo, Modular Localization and Wigner
Particles, arXiv:math-ph/0203021.

36N. Pinamonti, On Localization of Position Operators in Möbius covariant
Theories, math-ph/0610070.
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Spectral Space-Time 6

I That non-commutative geometry provides a suitable
environment for the implementation of spectral reconstruction
of space-time from states and observables in quantum physics
has been my research motivation since 1990 and it is still an
open work in progress37.

I The idea that space-time might be spectrally reconstructed,
via non-commutative geometry, from Tomita-Takesaki
modular theory applied to the algebra of physical observables
was elaborated in 1995 by myself and independently by
R. Longo. Since then, this conjecture is the main subject and
goal of our investigation38.

37P.B., Hypercovariant Theories and Spectral Space-time (2001).
38P.B., Modular Spectral Triples in Non-commutative Geometry and Physics,

Research Report, Thai Research Fund, (2005).
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Quantum Gravity via NCG 1

It is often claimed that NCG provides the right mathematics (a
kind of quantum version of Riemannian geometry) for a
mathematically sound theory of quantum gravity, 39,40.
Among the available approaches to quantum gravity via NCG:

I J. Madore’s “derivation based approach”41;

I S. Majid’s “quantum group approach”42.

39L. Smolin, Three Roads to Quantum Gravity, Weidenfeld & Nicolson
(2000).

40P. Martinetti, What Kind of Noncommutative Geometry for Quantum
Gravity?, Mod. Phys. Lett., A20, 1315 (2005), gr-qc/0501022.

41J. Madore, An Introduction to Non-commutative Geometry and its
Physical Applications, Cambridge University Press (1999).

42S. Majid, Hopf Algebras for Physics at the Planck Scale, J. Classical and
Quantum Gravity, 5, 1587-1606 (1988). S. Majid, Algebraic Approach to
Quantum Gravity I,II,III, arXiv:hep-th/0604130, arXiv:hep-th/0604182,
http://philsci-archive.pitt.edu/archive/00003345.
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Quantum Gravity via NCG 2
Current applications of NCG to quantum gravity have been limited
to some example or to attempts to make use of its mathematical
framework “inside” some already established theories such as
“strings” or “loops”. Among these, we mention:

I the interesting examples studied by C. Rovelli43 and
F. Besard44;

I the applications to string theory in the work by
A. Connes-M. Douglas-A. Schwarz45 and more recently in the
works by V.Mathai and collaborators on T -duality,46

43C. Rovelli, Spectral Noncommutative Geometry and Quantization: a
Simple Example, Phys. Rev. Lett., 83, 1079-1083 (1999), gr-qc/9904029.

44F. Besnard, Canonical Quantization and Spectral Action, a Nice Example,
gr-qc/0702049.

45A. Connes, M. Douglas, A. Schwarz, Noncommutative Geometry and
Matrix Theory: Compactification on Tori, hep-th/9711162.

46arXiv:0708.2648, arXiv:0911.1886, arXiv:1007.4696
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Quantum Gravity via NCG 3
I the links between loop quantum gravity (spin networks),

quantum information and NCG described by
F. Girelli-E. Livine47.

I the intriguing interrelations with loop quantum gravity in the
works by J. Aastrup-J. Grimstrum-R. Nest48,49,50 and in the
recent paper by D.Denicola-M.Marcolli-A.-Z.Al Yasri51

47F. Girelli, E. Livine, Reconstructing Quantum Geometry from Quantum
Information: Spin Networks as Harmonic Oscillators, Class. Quant. Grav., 22,
3295-3314 (2005), gr-qc/0501075.

48J. Aastrup, J. Grimstrup, Spectral Triples of Holonomy Loops,
arXiv:hep-th/0503246.

49J. Aastrup, J. Grimstrup, Intersecting Connes Noncommutative Geometry
with Quantum Gravity, hep-th/0601127.

50J. Aastrup, J. Grimstrup, R. Nest, On Spectral Triples in Quantum Gravity
I-II, arXiv:0802.1783v1, arXiv:0802.1784v1.

51D.Denicola-M.Marcolli-A.-Z.Al Yasri Spin Foams and Non-commutative
Geometry arXiv:1005.1057.
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Unfortunately, with the only notable exception of two programs
partially outlined in

I M. Paschke, An Essay on the Spectral Action and its Relation
to Quantum Gravity, in: Quantum Gravity, Mathematical
Models and Experimental Bounds, Birkäuser (2007),

I A. Connes, M. Marcolli, Noncommutative Geometry Quantum
Fields and Motives, July 2007,

a foundational approach to quantum physics based on A. Connes’
NCG has never been proposed.
The obstacles are both technical and conceptual.
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Modular Theory in Physics

Modular theory in physics is “equilibrium quantum statistical
mechanics”.

I R.Kubo and P.Martin-J.Schwinger introduced the KMS
condition as a characterization of equilibrium states.

I R.Haag-N.Hugenoltz-M.Winnink and M.Takesaki reformulated
the KMS condition in algebraic quantum mechanics and
related it with Tomita modular theory.
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Modular Theory in QG 1

There are some important areas of research that are somehow
connected to the problems of quantum gravity and that seem to
suggest a more prominent role of Tomita-Takesaki modular theory
in quantum physics (and in particular in the physics of gravity):

I Since the work of J.Bekenstein on black holes entropy,
S.Hawking on black holes radiation and W.Unruh on
vacuum thermalization for accelarated observers, it has been
conjectured the existence of a deep connection between
gravity (equivalence principle), thermal physics (hence
Tomita-Takesaki and KMS-states) and quantum field theory;
this idea has not been fully exploited so far.
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Modular Theory in QG 2

I Starting from the works of J.Bisognano-E.Wichmann52,
G.Sewell53 and more recently, H.-J.Borchers54, there is
mounting evidence that Tomita-Takesaki modular theory
should play a fundamental role in the “spectral
reconstruction” of the space-time information from the
algebraic setting of states and observables.

52Bisognano J., Wichmann E. (1975). On the Duality Condition for
Hermitian Scalar Fields, J. Math. Phys. 16, 985-1007.
Bisognano J., Wichmann E. (1976). On the Duality Condition for Quantum
Fields, J. Math. Phys. 17, 303-321.

53Sewell G. (1982). Quantum Fields on Manifolds: PCT and Gravitationally
Induced Thermal States, Ann. Phys. 141, 201.

54Borchers H.-J. (1992). The CPT-theorem in Two-dimensional Theories of
Local Observables, Comm. Math. Phys. 143, 315-322.
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Modular Theory in QG 3

I Some of the most interesting results in this direction have
been obtained so far in H.Araki-R.Haag-D.Kastler algebraic
quantum field theory:

I in the theory of “half-sided modular inclusions” and modular
intersections (see H.-J.Borchers55 and references therein,
H.Araki-L.Zsido56);

55Borchers H.-J. (2000). On Revolutionizing Quantum Field Theory,
J. Math. Phys. 41, 3604-3673.

56Araki, H., Zsido, L. (2005). Extension of the Structure Theorem of
Borchers and its Application to Half-sided Modular Inclusions,
Rev. Math. Phys. 17, n. 5, 491-543.
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Modular Theory in QG 4

I I in the “geometric modular action” program (see
D.Buchholz-S.J.Summers57,
D.Buchholz-M.Florig-S.J.Summers58,
D.Buchholz-O.Dreyer-M.Florig-S.J.Summers59,
S.Summers-R.White60;

57Buchholz D., Summers S.J. (1993). An Algebraic Characterization of
Vacuum States in Minkowski Space, Commun. Math. Phys. 155, 449-458.
Buchholz D., Summers S.J., An Algebraic Characterization of Vacuum States
in Minkowski Space. III. Reflection Maps. arXiv:math-ph/0309023.

58Buchholz D., Florig M., Summers S.J. (1999). An Algebraic
Characterization of Vacuum States in Minkowski Space II: Continuity Aspects,
Lett. Math. Phys. 49, 337-350.

59Buchholz D., Dreyer O., Florig M., Summers S.J. (2000). Geometric
Modular Action and Spacetime Symmetry Groups, Rev. Math. Phys. 12,
475-560.

60Summers S., White R., On Deriving Space-Time from Quantum
Observables and States, arXiv:hep-th/0304179.
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Modular Theory in QG 5

I I in “modular nuclearity” (see for details R.Haag61 and, for
recent applications to the “form factor program”,
D.Buchholz-G.Lechner62);

61Haag R. (1996). Local Quantum Physics, Springer.
62Buchholz D., Lechner G., Modular Nuclearity and Localization,

arXiv:math-ph/0402072.
Lechner G., Polarization-Free Quantum Fields and Interaction
arXiv:hep-th/0303062.
On the Existence of Local Observables in Theories With a Factorizing
S-Matrix, arXiv:math-ph/0405062.
Towards the construction of quantum field theories from a factorizing S-matrix
arXiv:hep-th/0502184.
Construction of Quantum Field Theories with Factorizing S-Matrices,
arXiv:math-ph/0601022.
On the Construction of Quantum Field Theories with Factorizing S-Matrices,
arXiv:math-ph/0611050.
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Modular Theory in QG 6

I I in the “modular localization program” (see
B.Schroer-H.-W.Wiesbrock63, R.Brunetti-D.Guido-R.Longo64,
J.Mund-B.Schroer-J.Yngvanson65 and N.Pinamonti66.

63Schroer B., (1997). Wigner Representation Theory of the Poincaré Group,
Localization, Statistics and the S-Matrix, Nucl. Phys. B499, 519-546.
Schroer B. (1999). Modular Wedge Localization and the d = 1 + 1 Form
Factor Program, Ann. Phys. 275, 190-223. Schroer B., Wiesbrock H.-W.
(2000). Modular Theory and Geometry, Rev. Math. Phys. 12, 139-158.
Schroer B., Wiesbrock H.-W. (2000). Modular Constructions of Quantum Field
Theories with Interactions, Rev. Math. Phys. 12, 301-326.

64Brunetti R., Guido D., Longo R., Modular Localization and Wigner
Particles, arXiv:math-ph/0203021.

65Mund J., Schroer B., Yngvason J., String-localized Quantum Fields and
Modular Localization, arXiv:math-ph/0511042.

66Pinamonti N., On Localization and Position Operators in Möbius Covariant
Theories, arXiv:math-ph/0610070, 25 October 2006.
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Modular Theory in QG 7

I Starting with the construction of cyclic cocycles from
supersymmetric quantum field theories by
A.Jaffe-A.Lesniewski-K.Osterwalder67, there has always been
a constant interest in the possible deep structural relationship
between supersymmetry, modular theory of type III von
Neumann algebras and non-commutative geometry (see
D. Kastler68 and A.Jaffe-O.Stoytchev69).

67Jaffe A., Lesniewski A., Osterwalder K. (1988). Quantum K -theory I: The
Chern Character, Commun. Math. Phys. 118, 1-14.
Jaffe A., Lesniewski A., Osterwalder K. (1989). On Super-KMS Functionals
and Entire Cyclic Cohomology, K-theory 2, 675-682.

68Kastler D. (1989). Cyclic Cocycles from Graded KMS functionals,
Commun. Math. Phys. 121(2), 345-350.

69Jaffe A., Stoytchev O. (1991). The Modular Group and Super-KMS
Functionals, in: Differential geometric methods in theoretical physics, Lecture
Notes in Phys. 375, 382-384, Springer.
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Modular Theory in QG 8

I Some deep results by R.Longo70 established a bridge between
the theory of superselections sectors and cyclic cocycles
obtained by super-KMS states. The recent work by
D.Buchholz-H.Grundling71 opens finally a way to construct
super-KMS functionals (and probably spectral triples) in
algebraic quantum field theory.

70Longo R., Notes for a Quantum Index Theorem, arXiv:math/0003082.
71Buchholz D., Grundling H., Algebraic Supersymmetry: a Case Study,

arXiv:math-ph/0604044.
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Modular Theory in QG 9

I In the context of C.Rovelli “thermal time hypothesis”72 in
quantum gravity, A.Connes-C.Rovelli73 (see also
P.Martinetti-C.Rovelli74 and P.Martinetti75) have been using
Tomita-Takesaki modular theory in order to induce a
macroscopic time evolution for a relativistic quantum system.

72Rovelli C. (2004). Quantum Gravity, Cambridge University Press.
73Connes A., Rovelli C. (1994). Von Neumann Algebra Automorphisms and

Time-Thermodynamic Relation in General Covariant Quantum Theories,
Class. Quant. Grav. 11, 2899-2918.

74Martinetti P., Rovelli C. (2003). Diamond’s Temperature: Unruh Effect for
Bounded Trajectories and Thermal Time Hypothesis, Class. Quant. Grav. 20,
4919-4932.

75Martinetti P., A Brief Remark on Unruh Effect and Causality,
arXiv:gr-qc/0401116.
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Modular Theory in QG 10

I A.Connes-M.Marcolli76 with the “cooling procedure” are
proposing to examine the operator algebra of observables of a
quantum gravitational system, via modular theory, at
“different temperatures” in order to extract by “symmetry
breaking” an emerging geometry.

I This point of view is further elaborated in the recent work by
D.Denicola-M.Marcolli-A.Z.al Yasri77 where it is applied to
specific algebras obtained by the kinematic of spin foams.

back

76Connes A., Marcolli M., Noncommutative Geometry, Quantum Fields and
Motives, (preliminary version) July 2007.

77Spin Foams and Non-commutative Geometry arXiv:1005.1057.
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I The idea that space-time might be spectrally reconstructed,
via non-commutative geometry, from Tomita-Takesaki
modular theory applied to the algebra of physical observables
was elaborated in 1995 by one of the authors (P.B.) and
independently (motivated by the possibility to obtain cyclic
cocycles in algebraic quantum field theory from modular
theory) by R.Longo. Since then this conjecture is still the
main subject and motivation of our investigation78.

78Bertozzini P. (2001). Spectral Space-Time and Hypercovariant Theories,
unpublished.
Bertozzini P., Conti R., Lewkeeratiyutkul W. (2005). Modular Spectral Triples
in Non-commutative Geometry and Physics, Research Report, Thai Research
Fund, Bangkok.
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Modular Theory in QG 12

Similar speculations on the interplay between modular theory and
(some aspects of) space-time geometry have been suggested by
S.Lord 79 and by M.Paschke-R.Verch80.

I Roberto Conti has raised the somehow puzzling question
whether it is possible to reinterpret the one parameter group
of modular automorphisms as a renormalization (semi-)group
in physics. The connection with P.Cartier’s idea of a
“universal Galois group”81, currently developed by
A.Connes-M.Marcolli, is extremely intriguing.

79Lord S., Riemannian Geometries, arXiv:math-ph/0010037.
80Paschke M., Verch R., Local Covariant Quantum Field Theory over

Spectral Geometries, arXiv:gr-qc/0405057.
81Cartier P. (2001). A Mad Day’s Work: from Grothendieck to Connes and

Kontsevich, The Evolution of Concepts of Space and Symmetry,
Bull. Amer. Math. Soc. 38 n. 4, 389-408.
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Modular Algebraic Quantum Gravity 1

We propose82 a “thermal” reconstruction of “quantum realities”
(quantum space-time-matter), via Tomita-Takesaki modular
theory, starting from suitable “event states” on “categories” of
abstract operator algebras describing “partial physical observables”.

The fundamental input of the project is the recognition that
Tomita-Takesaki modular theory (the “heart” of equilibrium
quantum statistical mechanics) can be reinterpreted as a way to
associate non-commutative spectral geometries (axiomatically
similar to A.Connes’ spectral triples) to appropriate states over the
algebras of observables of a physical system.

82P.B., R.Conti, W.Lewkeeratiyutkul, Modular Algebraic Quantum Gravity,
work in progress.
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Modular Algebraic Quantum Gravity 2

In this way, for every “observer” (specified by an algebra of “partial
observables”), a different quantum geometry naturally emerges,
induced by each possible “covariant kinematic” (specified by an
“event state”). These “virtual realities” interrelate with each other
via a “categorical covariance principle” replacing the usual
diffeomorphisms group of general relativity.

In our opinion this provides a new solid approach to the
formulation of an algebraic (modular) theory of quantum gravity,
and to the foundations of quantum physics, in which (quantum)
space-time is reconstructed a posteriori.
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Construction of Modular Spectral Geometries 1

I We make use of Tomita-Takesaki modular theory of operator
algebras to associate non-commutative geometrical objects
(only formally similar to A. Connes’ spectral-triples) to
suitable states over C*-algebras.

I In the same direction we also stress the close connection of
these “spectral geometries” to the modular spectral triples
introduced by A.Carey, J.Phillips, A.Rennie, F.Sukochev.
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Construction of Modular Spectral Geometries 2

I Let ω be a faithful KMS-state over the C*-algebra A. By
definition there exists a unique one parameter automorphism
group t 7→ σωt that satisfies the KMS-condition at inverse
temperature β = 1.

I We consider the GNS-representation (πω,Hω, ξω) induced by
the state ω and note that ξω is cyclic and separating for the
von Neumann algebra πω(A)′′ ⊂ B(Hω).

I By Tomita-Takesaki theorem, there is a unique one-parameter
unitary group t 7→ ∆it

ω such that

πω(σωt (x)) = ∆it
ωπω(x)∆−it

ω , ∀t ∈ R.

Let Kω := log ∆ω be the modular generator and Jω the
modular involution determined by ξω on Hω.
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Construction of Modular Spectral Geometries 3

I Define Aω := {x ∈ A | [Kω, πω(x)]− ∈ πω(A)′′} and note that
Aω is a ∗-algebra and that Aωξω is a core for the operator Kω.

I By Tomita-Takesaki we have [[Kω, πω(x)]−, Jωπω(y)Jω]− = 0

I We define the modular spectral geometry associated to the
pair (A, ω) to be:

(Aω,Hω, ξω,Kω, Jω).

When N := πω(A)′′ is a semifinite von Neumann algebra, taking
D := Kω, this structure seems strictly related to the notion of

modular spectral triple introduced by A.Carey-J.Phillips-A.Rennie.
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Construction of Modular Spectral Geometries 4

Despite the superficial similarity between modular spectral
geometries and real spectral triples, there are some radical
differences:

I The modular generator Kω has a spectrum Sp(Kω) that is a
symmetric set under reflection in R and can often be
continuous, a situation that reminds of “propagation” and
that does not have much in common with the usual first-order
elliptic Dirac operators that appear in the definition of
A.Connes’ spectral triples.

I There is no grading anticommuting with Kω; although a
natural grading is clearly present via the spectral
decomposition of Kω into a positive and negative component,
such grading always commutes with the modular generator.

Paolo Bertozzini Non-commutative Geometries via Modular Theory



Introduction
Mathematical Preliminaries.

Motivations from Physics
Modular Algebraic Quantum Gravity

Introduction
Modular Spectral Geometries
Connection with Other Approaches to Quantum Geometry
Foundations of Quantum Theory.

Construction of Modular Spectral Geometries 5

I The resolvent properties of Kω do not seem to fit immediately
with the requirements of index theory, although we expect
that in the case of periodic modular flows the index theory
developed by A.Carey-J.Phillips-A.Rennie-F.Suchocev for
modular spectral triples will apply.

I Contrary to the situation typical of A.Connes spectral triples,
the ∗-algebra Aω is stable under the one-parameter group
generated by Kω that coincides with t 7→ σωt .
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Construction of Modular Spectral Geometries 6

The attribute “geometry” attached to such an algebraic gadget is
justified by presence of natural structures related to differentiability
and integral calculus:

I there is an intrinsic notion of smoothness provided by the
modularly stable filtration
A∞ω ⊂ · · ·An+1

ω ⊂ An
ω ⊂ · · ·A0

ω ⊂ A of ∗-algebras given, for
r ∈ N ∪ {+∞}, by Ar

ω := {x ∈ A | [t 7→ σωt (x)] ∈ C r (R; A)},
with C r (R; A) denoting the family of A-valued r -times
continuously differentiable functions.
Via the faithful representation πω we get a filtration
πω(A)∞ ⊂ · · ·πω(A)n+1 ⊂ πω(A)n ⊂ · · ·πω(A)0 ⊂ πω(A) of
smooth operators on the Hilbert space Hω, where
πω(A)r := {x ∈ A | [t 7→ ∆it

ωπω(x)∆−it
ω ] ∈ C r (R;B(Hω))}.
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Construction of Modular Spectral Geometries 7

I Defining δmω (x) := [Kω, πω(x)]−, the operator Kω seems to
satisfy a variant of A.Connes’ regularity condition:
πω(x), [Kω, πω(x)]− ∈ ∩+∞

m=1 Dom(δmω ).

I There is already a perfectly natural notion of integration
available via the β-KMS state ω so that we can define∫

x dω := ω(x), for all x ∈ A and more generally, for all
x ∈ πω(A)′′,

∫
x dω := 〈ξω | xξω〉.

I Note that from the above definition, for the purpose of
integration, the order-one operator Kω plays a role similar to
the Laplacian D2 in the case of spectral triples.
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Construction of Modular Spectral Geometries 8

By A.Connes-M.Takesaki duality and T.Falcone-M.Takesaki
non-commutative flow of weights, we obtain some relation
between modular spectral geometries and a semi-finite version of
them resulting in structures resembling “modular spectral triples”
by A.Carey and collaborators and that deserve a careful study in
order to identify their physical significance.

I Define Mω := πω(A)′′. Note that Mω is canonically

embedded in a semi-finite von Neumann algebra M̃ω,
isomorphic to the crossed product Mω oσω R, and hence Mω

is identified with the algebra of fixed points M̃bσω
ω for the dual

action s 7→ σ̂ωs on M̃ω.
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Construction of Modular Spectral Geometries 9

I There is an operator-valued weight Ξω from M̃ω to Mω

under which the weight ω get lifted to M̃ω as ω̃ := ω ◦ Ξω
and Mω inside M̃ω is modularly stable under the modular
group t 7→ σeω

t of ω̃ on M̃ω.

I The modular group t 7→ σeω
t is inner in M̃ω with generator kω

affiliated to M̃ω.

I There is a natural trace on M̃ω defined by
τω(z) := ω̃(ω−1/2zω−1/2), for all z ∈ M̃ω, where
ω−1 := exp(−kω). Furthemore, the natural trace rescales
under the action of s 7→ σ̂ωs i..e. τω ◦ σ̂ωs = e−sτ .
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Relation with Modular Spectral Triples 1

I Consider the von Neumann algebras, on the Hilbert space Hω,
Mω := {x ∈Mω | σωt (x) = x , ∀t ∈ R},
usually called the centralizer of ω, and
Nω := {πω(x)∆it

ω | x ∈ A, t ∈ R}′′ =Mω ∨ {∆it
ω | t ∈ R}′′.

We have Mω ⊂Mω ⊂ Nω.
Note that Mω =Mω ∩ {∆it

ω | t ∈ R}′ and therefore
(Mω)′ = (Mω)′ ∨ {∆it

ω | t ∈ R}′′.
I Passing to the commutant von Neumann algebras we obtain
N ′ω ⊂M′ω ⊂ (Mω)′ and, since γω(Mω) =M′ω, one has
γω((Mω)′) = Nω.
Being (anti-isomorphic to) the commutant of a (semi-)finite
von Neumann algebra, Nω is semi-finite (see Takesaki
corollary V.2.23).
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Relation with Modular Spectral Triples 2

I The state ω on Mω restricts, to a trace on Mω (see Takesaki
theorem VIII.2.6).

I Since Mω is modularly stable under σω, by Takesaki theorem

there is a unique conditional expectation Φω :Mω →Mω

such that ω = ω|Mω ◦Φω and via the conjugate-linear map γω
we obtain a unique conditional expectation Φγω :M′ω → N ′ω
given, for all x ∈M′ω, by Φγω : x 7→ γω ◦ Φω ◦ γω(x).

I Making use of modular theory for operator valued weights , we can now
associate to the conditional expectation Φγω :M′ω → N ′ω a
dual faithful semi-finite normal operator valued weight
Θω : Nω+ → M̂ω+.
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Relation with Modular Spectral Triples 3

I The operator-valued weight Θω can be used to lift the state ω
on Mω to a faithful normal semi-finite weight φω on Nω such
that φω := ω ◦Θω.
By Takesaki operator valued weight theorem we have that σφωt (x) = σωt (x)
for all x ∈Mω and for all t ∈ R.

I Using the definition of Θω and the properties of spatial
derivatives (see Connes spatial derivative theorem ), we verify that the
modular group induced by the weight φω on the semi-finite
von Neumann algebra Nω is given, for all x ∈ Nω, by
σφω(x) = ∆it

ωx∆−it
ω .

I The map defined for all x ∈ Nω by

τω(x) := φω(∆
−1/2
ω x∆

−1/2
ω ) is a faithful semi-finite normal

trace (see Takesaki theorem VIII.3.14).
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Relation with Modular Spectral Triples 4
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Relation with Modular Spectral Triples 5

The following results relate modular spectral geometries with
modular spectral triples:

Theorem
Let (Aω,Hω, ξω,Kω, Jω) be the modular spectral geometry
associated to the pair (A, ω), where ω is an α-KMS-state over the
C*-algebra A. Suppose that Kω has compact resolvent with
respect to the canonical trace τω on the von Neumann algebra Nω
and that the extended weight φω : Nω+ → [0,+∞] is strictly
semi-finite.83 The data (Aω,Hω,Kω) canonically provide a
modular spectral triple, relative to the von Neumann algebra Nω
and to the α-KMS-state ω, according to
A.Carey-J.Phillips-A.Rennie.

83By a strictly semi-finite weight φ : N+ → [0,+∞] we mean a weight φ
whose restriction to its centralizer is semi-finite.
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Relation with Modular Spectral Triples 6 – Proof 1

I Aω := {x ∈ A | [Kω, x ]− ∈Mω} is a ∗-algebra that is
α-invariant inside the C*-algebra A.

I ω is an α-KMS state on A and Hω is the Hilbert space of the
GNS-representation (πω,Hω, ξω) of (A, ω).

I The GNS representation πω is a covariant representation for
the one-parameter group α : t 7→ αt of automorphisms of A

that is implemented on Hω by the modular one-parameter
group t 7→ e iKωt i.e. πω(αt(x)) = e iKωtπω(x)e−iKωt , for all
x ∈ A and t ∈ R.

I The modular generator Kω is affiliated to Nω and induces an
inner one-parameter automorphism group of Nω that
coincides with the modular group of the semi-finite normal
faithful weight φω := ω ◦Θω.
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Relation with Modular Spectral Triples 7 – Proof 2

I Since σφω |Mω = σω, we have
σφω(πω(x)) = σω(πω(x)) = πω(α(x)), for all x ∈ A.

I Since ∆
−1/2
ω ∈ Nω, from τω(z) := φω(∆

−1/2
ω z∆

−1/2
ω ), we

have φω(z) = τω(∆
1/2
ω z∆

1/2
ω ), for all z ∈ Nω.

By assumption, φω|Nσφω is a semi-finite trace.

I The operators [Kω, πω(x)]−, for all x ∈ Aω extend to
operators in Mω ⊂ Nω. Since π(Aω)ξω is a core for the
operator Kω that is invariant for all the bounded operators
πω(x) with x ∈ Aω, we have that Dom(Kω) is invariant under
all πω(x), for x ∈ Aω.

I The hypothesis on the τω-compactness of the resolvent of Kω

concludes the proof.
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Relation with Modular Spectral Triples 8

Proposition

If (A,Hω,D) is a modular spectral triple relative to a semi-finite
von Neumann algebra N ⊂ B(Hω) and an α-KMS state ω on A

whose Dirac operator D concides with the modular generator Kω

of the modular one-parameter group t 7→ ∆it
ω on Hω, the uniquely

dermined data (Aω,Hω, ξω,D, Jω) provide the modular spectral
geometry associated to the pair (A, α).

I Since, all the interesting examples of modular spectral triples
available for now are equipped with a Dirac operator that is
proportional to the modular generator Kω, the proposition
above says that modular spectral triples are “essentially”
specific modular spectral geometries.
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Physical Meaning of Modular SG 1

I We are trying to develope84 an “event interpretation” of the
formalism of states and observables in algebraic quantum
physics that is in line with C. Isham’s “history projection
operator theory” 85 and/or C. Rovelli’s “relativistic quantum
theory”86.

I We would like to conjecture that Tomita-Takesaki theorem
plays a role of quantum Einstein equation: it associates to a
state ω of the physical system a suitable non-commutative
geometry.

84P.B., Algebraic Formalism for Rovelli Quantum Theory, in preparation.
85See for example C. Isham, Quantum Logic and the Histories Approach to

Quantum Theory, J. Math. Phys., 35, 2157-2185 (1994), gr-qc/9308006.
86C. Rovelli, Quantum Gravity, Section 5.2, Cambridge (2004).
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Physical Meaning of Modular SG 2
We are aware that, in the context of Rovelli thermal time
hypothesis, the modular automorphism group has been proposed as
a way to recover a notion of “classical time”. We point out that:

I Every self-adjoint operator (including the Dirac operator !) is
the generator of a one parameter group of unitaries.

I The usual interpretation of KMS-states as equilibrium states
for the modular one-parameter group and hence the
association of Tomita theory with a time evolution is based on
non-relativistic quantum theory. A fully covariant
interpretation of the modular group might be possible, where
the evolution parameter is a “scalar” moreover a covariant
“thermal space-time hypothesis” should be viable.

I Tomita-Takesaki theory carry information on the deep
quantum structure of the observables while the thermal time
hypothesis mainly requires non-pure “statistical” states.
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Physical Meaning of Modular SG 3

The data (A,Hω,Kω) look essentially as those in Rovelli
relativistic quantum theory with:

I A as the algebra of partial observables,

I the modular generator Kω as the dynamical constraint,

I the fixed point algebra Aσω as the algebra of complete
observables: x ∈ Aσω ⇔ [Kω, πω(x)]− = 0.

The Hilbert space Hω is “too big” to be identified with the space
of kinematical states (Rovelli ’s boundary space?): the
representation πω is not necessarily irreducible (the commutant
πω(A)′ is isomorphic to πω(A)′′). Some “kind of polarization” in
Hω is needed to recover the kinematical Hilbert space.
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Physical Meaning of Modular SG 4

It is not immediately clear what kind of “nc-geometry” is described
by the modular spectral geometries (Aω,Hω,Kω, Jω) reconstructed
from Tomita-Takesaki, but they seem to be geometries related to
the “phase space” of the physical system.
In order to obtain information on the geometry of “configuration
space” it is necessary to identify “non-commutative Cartan
subalgebras of coordinates” B ⊂ A that allow to reconstruct the
algebra of observables A as a “crossed product”87.
To exploit this, a theory of crossed products of spectral triples
should be developed.
Takesaki duality in modular theory should be relevant in this
context.

87See the important results in J. Renault, Cartan Subalgebras in C*-algebras,
arXiv:0803.2284v1 and R. Exel, Noncommutative Cartan Subalgebras of
C*-algebras, arXiv:0806.4143v1.
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Categories of Modular Spectral Geometries 1

I Making contact with our current research project on
“categorical non-commutative geometry” and possibly with
other projects in categorical quantum gravity88,89, we will
generalize the diffeomorphism covariance group of general
relativity in a categorical context and use it to “indentify” the
degrees of freedom related to the spatio-temporal structure of
the physical system.

88J. Baez, Higher-Dimensional Algebra and Planck-Scale Physics,
arXiv:gr-qc/9902017; J. Baez, Quantum Quandaries: a Category Theoretic
Perspective, arXiv:quant-ph/0404040.

89L. Crane, Categorical Geometry and the Mathematical Foundations of
Quantum Gravity, gr-qc/0602120; L. Crane, What is the Mathematical
Structure of Quantum Spacetime, arXiv:0706.4452.
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Categories of Modular Spectral Geometries 2

Let ω be just a state over a C*-algebra of observables C.
Consider the family A(ω,C) of C*-subalgebras A of C such that ω
is a KMS-state when restricted to A.
Consider the family M(ω,C) of Hilbert C*-bimodules M over pairs
of algebras in A(ω,C) whose linking C*-category is KMS for the
state ω.
The family M(ω,C) becomes an involutive category under
involution and tensor product of bimodules.
We have a tautological Fell bundle over the *-category M(ω,C)
whose total space is the disjoint union of the bimodules in M(ω,C)
and the projection functor assign to every x ∈M the base point M.
The modular geometry over this Fell bundle and over its
“convolution algebra” are under investigation (as an example of
bivariant spectral geometry).
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Categories of Modular Spectral Geometries 3

In AQFT a quantum field theory is defined as a functor from a
category of “geometries” (usually globally hyperbolic Lorentzian
manifolds) to the category of *-homomorphisms of unital
C*-algebras (localized observables).90

In our context it seems more appropriate to “reverse the functor”:
to every state over a unital C*-algebra we associate a functor from
the category A(ω,C) with “suitable inclusions of algebras” to a
category of modular spectral geometries.

90R. Brunetti, K. Fredenhagen, R. Verch, The Generally Covariant Locality
Principle - A New Paradigm for Local Quantum Physics,
Commun. Math. Phys., 237, 31-68 (2003), math-ph/0112041.
R. Brunetti, M. Porrmann, G. Ruzzi, General Covariance in Algebraic Quantum
Field Theory, math-ph/0512059.
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Finding the Macroscopic Geometry 1

Tomita-Takesaki modular flow is trivial for commutative algebras:
it is impossible to recover classical geometries in this way.

One possibility is to try to obtain macroscopic “emergent” classical
geometries via some form of “coarse graning”:

I “decoherence/einselection”91,92

I “coherent states”93,94

91H.D.Zeh, Roots and Fruits of Decoherence, quant-ph/0512078.
92W.H.Zurek, Decoherence, Einselection and the Quantum Origin of the

Classical, quant-ph/0105127.
93B.Hall, The Segal-Bargmann “Coherent State” Transform for Compact Lie

groups, J. Funct. Anal. 122 (1994) 103-151
94J.R.Klauder, On the Role of Coherent States in Quantum Foundations,

arXiv:1008.4307v1.
Paolo Bertozzini Non-commutative Geometries via Modular Theory



Introduction
Mathematical Preliminaries.

Motivations from Physics
Modular Algebraic Quantum Gravity

Introduction
Modular Spectral Geometries
Connection with Other Approaches to Quantum Geometry
Foundations of Quantum Theory.

Finding the Macroscopic Geometry 2

I “emergence/noiseless subsystems”95,96

I or the “cooling” procedure developed by
A.Connes-K.Consani-M.Marcolli97,

Since the obstacles here are the essentially the same of those
encountered in obtaining classical mechanics as a limit of quantum
mechanics, other interesting possibilities are still open:

95T.Konopka, F.Markopoulou, Constrained Mechanics and Noiseless
Subsystems, gr-qc/0601028; F.Markopoulou, Towards Gravity form the
Quantum, hep-th/0604120.

96O.Dreyer, Emergent Probabilities in Quantum Mechanics,
quant-ph/0603202.; O.Dreyer, Emergent General Relativity, gr-qc/0604075.

97A.Connes, M.Marcolli, Noncommutative Geometry, Quantum Fields and
Motives, 2008; A.Connes, K.Consani, M.Marcolli, Noncommutative Geometry
and Motives: the Thermodynamics of Endomotives, math.QA/0512138.
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Finding the Macroscopic Geometry 3

I classical geometries from algebraic “superselection theory”98

I “macro-observables subalgebras”99

I classical/quantum representations of observable algebras 100

and of “Poisson-Rinehart algebras”.101

98K.Fredenhagen, Observables, Superselection Sectors and Gauge Groups,
NATO Adv. Sci. Inst. Ser. B Phys., 295 (1992) 177-194.

99M.Requardt, An Alternative to Decoherence by Environment and the
Appearance of a Classical World, arXiv:1009.1220v1.

100D.Mauro, A New Quantization Map, arXiv:quant-ph/0305063v1.
101G.Morchio, F.Strocchi, The Noncommutative Poisson Algebra of Classical

and Quantum Mechanics, arXiv:0805.2870v1;
G.Morchio, F.Strocchi, Classical and Quantum Mechanics from the Universal
Poisson-Rinehart Algebra of a Manifold, arXiv:0901.0870v1.
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Links with the Aastrup Grimstrup Nest Spectral Triples 1

As a first tentative step in the direction of the construction of
spectral triples for loop quantum gravity by J.Aastrup,
J.Grimstrup, M.Paschke, R.Nest, we give an alternative family of
spectral triples in loop quantum gravity that arise from a direct
application of C.Antonescu-E.Christensen’s construction of spectral
triples for AF C*-algebras.

These new spectral triples depend on the choice of a countable
filtration of graphs and on the choice of a sequence of positive real
numbers and, although very similar to
J.Aastrup-J.Grimstrup-R.Nest triples, they still differ from them
because of the following notable points:
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Links with the Aastrup Grimstrup Nest Spectral Triples 2

I the Hilbert spaces on which these spectral triples naturally live
are identified with subspaces of the kinematical Hilbert space
of usual loop quantum gravity, without the need of resorting
to tensorization with a continuous part and a matricial part,

I their construction does not depend on the arbitrary choices of
Riemannian structures on Lie groups and of Dirac operators
on the Clifford bundle of such classical manifolds: their Dirac
operators, coming directly from the
C.Antonescu-E.Christensen’s recipe for spectral triples for AF
C*-algebras, seem to be completely quantal,

I they appear to be spectral triples and not semi-finite spectral
triples.
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Links with the Aastrup Grimstrup Nest Spectral Triples 3

I Consider a family of finite oriented graphs Γ that is directed
by inclusion

I Let G be a compact Lie group (usually SU(2) in loop
quantum gravity)

I The kinematical Hilbert space of loop quantum gravity is an
inductive limit of the net of Hilbert spaces
Γ 7→ HΓ := L2(G Γ1 , µΓ)

I For any given countable chain of inclusions of finite oriented
graphs Γ0 ⊂ Γ1 ⊂ · · · ⊂ Γn ⊂ · · · , the net of C*-algebras
AΓ1 ⊂ AΓ2 ⊂ · · · ⊂ AΓn ⊂ · · · , generated by the holonomies
associated to the respective graphs, form a filtration of finite
dimensional C*-algebras with inductive limit A(Γn) ⊂ A a
C*-subalgebra of the algebra A generated by holonomies
acting on the inductive limit Hilbert space H(Γn) ⊂ H.
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Links with the Aastrup Grimstrup Nest Spectral Triples 4

I The same applies to the partial observable algebras of
holonomies and fluxes FΓ that are irreducibly reprensented on
the respective kinematical Hilbert spaces

An immediate application of C.Antonescu-E.Christensen
construction of spectral triples for AF C*-algebras provides:

Theorem
For every given countable inclusion Γ0 ⊂ Γ1 ⊂ · · · ⊂ Γn ⊂ · · · of
finite oriented graphs there is a family of spectral triples
(F(Γn),H(Γn),D(Γn),(αn)) depending on the choice of the filtration of
graphs (Γn) and on a sequence of positive real numbers (αn) as
in Antonescu Christensen construction .
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Modular Theory in Covariant Quantum Theories 1

Exactly as in quantum statistical mechanics (where KMS-states
and modular theory subsume the theory of Gibbs equilibrium states
extending it to systems with infinite degrees of freedom), in a
general covariant quantum theory (with truncated degrees of
freedom) the dynamical constraint can be specified by the choice
of a KMS-state.

I The C*-algebra F of partial observables (generated by fluxes
and holonomies) in loop quantum gravity is irreducibly
represented on the kinematical Hilbert space GNS-Hilbert
space Kφ of the covariant Fock vacuum φ.
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Modular Theory in Covariant Quantum Theories 2

I Consider the case of a theory with finite (truncated) degrees
of freedom. Let H be the self adjoint dynamical constraint.
The state ωβ(x) := τ(ρβx), where τ is the canonical trace on
B(Kφ) and ρβ := e−βH/τ(e−βH) is a density operator, is the
unique Gibbs KMS state at inverse temperature β with
respect to the one-parameter group t 7→ Ade itH .

I On the Liouville Koopman von Neumann Hilbert space
Kφ ⊗K∗φ the algebra F is already represented in standard form

and the “covariant vacuum” vector ξω := ρ
−1/2
ω is cyclic

separating and generates a modular one parameter group with
generator H ⊗ I − I ⊗ (ΛφHΛ−1

φ ).
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Modular Theory in Covariant Quantum Theories 2

I As a corollary this implies that if the algebra of partial
observables F if an AF C*-algebra, the Dirac operator
obtained by C.Antonescu-E.Christensen construction
(F,Hφ,D(Γn),(αn)), via the process of tensorial symmetrization

, can be determined (modulo a global multiplication
constant) by the specification of a KMS state ω, by imposing
the equation D(Γn),(αn) ⊗ I − I ⊗ (ΛφD(Γn),(αn)Λ−1

φ ) = Kω on
the space Hφ ⊗H∗φ. Again, at this “toy model” level, the
specification of a KMS-states essentially determines a
non-commutative geometry on the algebra of observables.
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Connection with Other Approaches to Quantum Geometry

I Possible reproduction of quantum geometries already defined
in the context of S.Doplicher-J.Roberts-K.Fredenhagen
models102 deserves to be investigated.

I Important connections of these ideas to “quantum
information theory” and “quantum computation” are also
under consideration103.

102S.Doplicher, K.Fredenhagen, J.Roberts, The Structure of Spacetime at the
Planck Scale and Quantum Fields, Commun. Math. Phys., 172, 187 (1995),
hep-th/0303037.

103P.B., Hypercovariant Theories and Spectral Space-time, unpublished
(2001).
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Foundations of Quantum Theory 1

Quantum Theory is notoriously plagued by unresolved conceptual
problems:

I the problem of measurement

I the problem of time for covariant quantum theories

I conflicts with classical determinism

I no satisfactory operational/axiomatic foundation exists so far

Despite the recurrent claims of a need for a theory that supersedes,
modifies or extends quantum theory (hidden variables, several
alternative interpretations, collapse of wave function, deterministic
derivations of quantum theory), in our view, the problems stem
form the fact that quantum theory still now is essentially an
incomplete theory, incapable of “standing on its own feet”:
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Foundations of Quantum Theory 2

I In all the current formulations of quantum theory, the basic
degrees of freedom of a theory are specifically introduced “by
hand” and make always reference to a classical underlying
geometry:

* Dirac canonical quantization via imposition of CCR for pairs of
conjugated classical variables,

* Weyl quantization from classical phase-spaces
* second quantization from symplectic spaces
* deformation quantization from Poisson manifolds or algebras

I “unhealthy” usage of classical notions of space-time manifolds
are usually recognized as responsible for the problems of
divergences in Quantum Field Theory, but the attempted
cures simply try to substitute “by hand” classical geometries
with non-commutative conterparts instead of:
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Foundations of Quantum Theory 3

I looking for an intrinsic characterization of degrees of
freedom (space-time) “within Quantum Theory” itself.

Notable exceptions in this direction:

* attempts to spectrally reconstruct space-time via operational data
(states-observables) in AQFT: U.Bannier, S.J.Summers-R.White,104

* efforts in information theoretical foundation of quantum theory:
J.A.Wheeler [“it from bit”], C.Rovelli [quant-ph/9609002v2],
J.Bub-R.Clifton-H.Halvorson [quant-ph/0211089v2],
A.Grimbaum [quant-ph/0306079v2, /0410071v1, /0509104v2],
G.M.D’Ariano [arXiv:0807.4383v5],

* R.Haag’s “quantum events” [Local Quantum Physics, Sec.VII],

* C.Rovelli’s relational/relativistic quantum theory [QG, Sec.5.6.4].
104U.Bannier, Internat. J. Theor. Phys. 33 (1994) 1797-1809;

S.J.Summers-R.White, Commun. Math. Phys. 237 (2003) 203-220.
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Foundations of Quantum Theory 4.

Our main ideological stand on the issue is that:105

* space-time should be spectrally reconstructed a posteriori
from a basic operational theory of observables and states;

* A.Connes’ non-commutative geometry provides the natural
environment where to attempt an implementation of the
spectral reconstruction of space-time;

* Tomita-Takesaki modular theory should be the main tool to
achieve the previous goals, associating to operational data,
spectral non-commutative geometries.

105For related ideas on the reconstruction of space-time via purely quantum
theoretical constructs see C.Rovelli-F.Vidotto [arXiv:0905.2983] and C.Rovelli
[Quantum Gravity, Sec.5.6.4].
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Foundations of Quantum Theory 5.

Contrary to most of the proposals for fundamental theories in
physics,106 our approach (if ever successful) will only provide an
absolutely general operational formalism to model information
acquisition and communication/interaction between quantum
observers (described via certain categories of algebras of operators)
and to extract from that some geometrical data in the form of a
non-commutative geometry of the system.

Notable development in this same ideological direction can be
found in the work of R.P.Kostecki.107

106that are usually of an ontological character, postulating basic microscopic
degrees of freedom and their dynamics with the goal to explain known
macroscopic behaviour

107Ryszard Pawe l Kostecki, Quantum Theory as Inductive Inference,
arXiv:1009.2423v2.
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