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Arnold non displaceability conjecture has been solved for long. See Chaperon,
Conley–Zehnder, Hofer, Laudenbach–Sikorav, etc. .
Consider a compact manifold M and a Hamiltonian isotopy Φ = {ϕt}t∈I , that
is, the ϕt : T ∗M −→ T ∗M are symplectomorphisms and ∂

∂t
Φ is the Hamiltomian

vector field of a time dependant function f defined on T ∗M. Then
ϕt(T

∗
MM) ∩ T ∗

MM 6= ∅ for all t ∈ I .
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Recently Tamarkin gave a totally new proof using the microlocal theory of
sheaves of Kashiwara-S. However, the microlocal theory of sheaves is
associated with the homogeneous symplectic structure of the cotangent bundle
T ∗M and Tamarkin had to develop a non homogeneous microlocal theory of
sheaves by adding a variable, which makes his proofs really intricated.
Here, we do the contrary, which is much simpler. We transform the geometrical
problems on T ∗M viewed as a symplectic manifold to problem on Ṫ ∗(M × R)
(the cotangent bundle minus the zero section) viewed as a homogeneous
symplectic manifold.
The main tool is a theorem of quantization of homogeneous Hamiltonian
isotopy in the framework of sheaves.
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Non displaceability (homogeneous symplectic version)

Consider a manifold M, a map ψ : M −→ R and assume dψ(x) 6= 0 for all
x ∈ M. Set Λψ = {(x ; dψ(x)); x ∈ M} ⊂ T ∗M.
Let N be a compact non empty manifold (eventually with boundary or even
corners). Among other results of non-displaceability, we shall prove:

Theorem Let {ϕt}t∈I be a homogeneous symplectic isotopy.
Then ϕt(T

∗
NM) ∩ Λψ 6= ∅ for all t ∈ I .

Moreover, assume that for some t0 ∈ I the intersection ϕt0(T
∗
NM) ∩ Λψ is

transversal. Then

#(ϕt0(T
∗
NM) ∩ Λψ) ≥

X
j

bj(N).
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487–490 France (1982).

, Microlocal study of sheaves, Astérisque 128 Soc. Math. France
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Microsupport

We work (for simplicity) over a field k. We denote by Db(kM) the bounded
derived category of sheaves of k-modules on M.
For a locally closed subset Z of M, we denote by kZ the constant sheaf with
stalk k on Z , extended by 0 on M \ Z .

Definition (Microsupport or singular support of a sheaf, K-S 81.)
Let F ∈ Db(kM) and let p ∈ T ∗M. One says that p /∈ SS(F ) if there exists an
open neighborhood U of p such that for any x0 ∈ M and any real C 1-function
ϕ on M defined in a neighborhood of x0 with (x0; dϕ(x0)) ∈ U, one has
RΓ{x ;ϕ(x)≥ϕ(x0)}(F )x0 ' 0.
In other words, p /∈ SS(F ) if the sheaf F has no cohomology supported by
“half-spaces” whose conormals are contained in a neighborhood of p.
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• The microsupport is R+-conic, that is, invariant by the action of R+ on
T ∗M.

• SS(F ) ∩ T ∗
MM = πM(SS(F )) = Supp(F ).

• The microsupport is additive: if F1 −→ F2 −→ F3
+1−−→ is a distinguished

triangle in Db(kM), then SS(Fi ) ⊂ SS(Fj) ∪ SS(Fk) for all i , j , k ∈ {1, 2, 3}
with j 6= k.

• The microsupport is involutive (i.e., co-isotropic).
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Examples

Example

(i) If F is a non-zero local system on M and M is connected, then
SS(F ) = T ∗

MM, the zero-section.
(ii) If N is a closed submanifold of M and F = kN , then SS(F ) = T ∗

NM, the
conormal bundle to N in M.
(iii) Let ϕ be a C 1-function such that dϕ(x) 6= 0 whenever ϕ(x) = 0. Let
U = {x ∈ M;ϕ(x) > 0} and let Z = {x ∈ M;ϕ(x) ≥ 0}. Then

SS(kU) = U ×M T ∗
MM ∪ {(x ;λdϕ(x));ϕ(x) = 0, λ ≤ 0},

SS(kZ ) = Z ×M T ∗
MM ∪ {(x ;λdϕ(x));ϕ(x) = 0, λ ≥ 0}.
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Operations

Let f : M −→ N be a morphism of real manifolds. To f are associated the
diagrams

TM

τM

��

f ′ // M ×N TN

��

fτ // TN

τN

��
M M

f // N.

T ∗M

πM

��

M ×N T ∗N

��

fdoo fπ // T ∗N

πN

��
M M

f // N.
Let ΛM ⊂ T ∗M be a closed R+-conic subset. Then fπ is proper on f −1

d ΛM if
and only if f is proper on ΛM ∩ T ∗

MM.
Let ΛN ⊂ T ∗N be a closed R+-conic subset. Then fd is proper on f −1

π ΛN if and
only if f −1

π ΛN ∩ f −1
d T ∗

MM ⊂ M ×N T ∗
NN. In this case, one says that f is

non-characteristic for ΛN .
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Operations

Let f : M −→ N be a morphism of manifolds, and recall the maps:

T ∗M
fd←− M ×N T ∗N

fπ−→ T ∗N.
Theorem Let F ∈ Db(kM) and let G ∈ Db(kN).

(i) (The stationary phase lemma.)
Assume that f is proper on Supp(F ). Then SS(Rf∗F ) ⊂ fπf

−1
d SS(F ).

(ii) Assume that f is non-characteristic for SS(G). Then
SS(f −1G) ⊂ fd f

−1
π SS(G).
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The Morse lemma

Theorem (The Morse lemma for sheaves.)
Let F ∈ Db(kM), let ψ : M −→ R be a function of class C 1 and assume that ψ is
proper on Supp(F ). For t ∈ R, set Mt = ψ−1(]−∞, t[). Let a < b in R and
assume that dϕ(x) /∈ SS(F ) for a ≤ ψ(x) < b. Then the restriction morphism
RΓ(Mb; F ) −→ RΓ(Ma; F ) is an isomorphism.

Proof Consider G = Rψ∗F ∈ Db(kR). Then SS(G) ∩ {(t; dt); t ∈ [a, b[} = ∅.
Then RΓ(]−∞, b[; G) −→ RΓ(]−∞, a[; G) is an isomorphism by the definition
of the micro-support.
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Morse inequalities

For E a bounded complex of k-vector spaces with finite-dimensional
cohomology, one sets

bj(E) = dim H j(E), b∗l (E) = (−1)l
X
j≤l

(−1)jbj(E).

Consider a map ψ : M −→ R of class C 2 and define Λψ as above.
Let F ∈ Db(kM) with compact support. Assume Λψ ∩ SS(F ) is finite, say
{p1, . . . , pN}, and, setting xi = π(pi ), Vi := (RΓ{ψ(x)≥ψ(xi )}(M; F ))xi , also
assume that the cohomologies of the Vi ’s are finite-dimensional k-vector
spaces. Set

bj(F ) = dim H j(RΓ(M; F )).

Then the Morse inequalities for sheaves are stated as:

b∗l (F ) ≤
NX

i=1

b∗l (Vi ). (1)
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Morse inequalities: idea of the proof.

Set G = Rψ∗F . Then G ∈ Db(kR) has compact support and we are reduced to
prove the result when M = R, ψ(t) = t.
Set {t1, . . . , tL} = ψ({x1, . . . , xN}), the critical values of ψ w.r.t. SS(F ). Then
SS(G) ∩ {(t, dt)} is contained in the set {(t1; dt), . . . , (tL; dt)}.

Set
Ij =]−∞, tj [ and Zj =]−∞, tj ]. The proof uses the isomorphisms
RΓ(Ij+1; G) ∼−−→ RΓ(Zj ; G) and the distinguished triangles

(RΓt≥tj (G))tj −→ RΓ(Zj ; G) −→ RΓ(Ij ; G)
+1−→ .
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Kernels

Let Mi (i = 1, 2, 3) be manifolds. We set
Mij := Mi ×Mj , (1 ≤ i , j ≤ 3), M123 = M1 ×M2 ×M3.
qi : Mij −→ Mi or qi : M123 −→ Mi , qij : M123 −→ Mij . pi : T ∗Mij −→ T ∗Mi or
pi : T ∗M123 −→ T ∗Mi , pij : T ∗M123 −→ T ∗Mij ,
p12a : the composition of p12 and the antipodal map on T ∗M2.
We consider the operation of convolution of kernels:

◦ : Db(kM12)× Db(kM23) −→ Db(kM13)

(K1,K2) 7→ K1 ◦K2 := Rq13!(q
−1
12 K1 ⊗ q−1

23 K2).

Assume that8>><>>:
(i) q13 is proper on q−1

12 Supp(K1) ∩ q−1
23 Supp(K2),

(ii) p12a
−1SS(K1) ∩ p23

−1SS(K2) ∩ (T ∗
M1

M1 × T ∗M2 × T ∗
M3

M3)

⊂ T ∗
M1×M2×M3

(M1 ×M2 ×M3).

Then

SS(K1 ◦K2) ⊂ p13(p
−1
12aSS(K1) ∩ p−1

23 SS(K2)).
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Hamiltonian isotopies

Consider Φ = {ϕt}t∈I : Ṫ ∗M × I −→ Ṫ ∗M such that ϕt is a homogeneous
symplectic isomorphism for each t ∈ I and ϕ0 = idṪ∗M .
Then Φ is a Hamiltonian isotopy and there exists a conic Lagrangian
submanifold Λ of Ṫ ∗M × Ṫ ∗M × T ∗I whose projection is the graph of Φ in
Ṫ ∗M × Ṫ ∗M × I . Moreover, the set Λ ∪ T ∗

M×M×I (M ×M × I ) is closed in
T ∗(M ×M × I ) and for any t ∈ I the inclusion it : M ×M −→ M ×M × I is
non-characteristic for Λ and the graph of ϕt is Λt = Λ ◦T ∗

t I .
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Main theorem

For K ∈ Dlb(kM×M×I ) and t0 ∈ I , we set

Kt0 := K ◦ kt0 ' K |t=t0 .

Theorem
We consider Φ: Ṫ ∗M × I −→ Ṫ ∗M as above. Then there exists
K ∈ Dlb(kM×M×I ) satisfying

(a) SS(K) ⊂ Λ ∪ T ∗
M×M×I (M ×M × I ),

(b) K0 ' k∆.

Moreover:

(i) both projections Supp(K) ⇒ M × I are proper,

(ii) Kt ◦K−1
t ' K−1

t ◦Kt ' k∆ for all t ∈ I ,

(iii) such a K satisfying the conditions (a) and (b) above is unique up to a
unique isomorphism,
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Sketch of proof

Unicity. Assume K1 and K2 satisfy (a) and (b) and set L = K−1
2 ◦K1. Then

SS(L) ⊂ T ∗M × T ∗M × T ∗
I I . Therefore L ' q−1Rq∗L where

q : M ×M × I −→ M ×M is the projection. Since L|t=0 ' k∆, the result follows.

Existence. It decomposes into several steps, using the unicity.
(i) First we reduce to the case where the isotopy is the identity outside of a
”conically compact” subset of Ṫ ∗M.
(ii) Next, again by using the unicity, we reduce to proving the result in a
neighborhood of t = 0.
(iii) Then we construct a contact transform θ which interchanges the conormal
to the diagonal with the conormal to a tubular neighborhood of the diagonal
and show that one can find an invertible kernel L associated to θ.
(iv) By using θ and L we are reduced to quantize in a neighborhood of t = 0 a
Lagrangian manifold Λ ⊂ Ṫ ∗(M ×M)× T ∗I such that Λ0 is the conormal to a
tubular neighborhood of the diagonal, which is straightforward.



Introduction Microlocal theory of sheaves Quantization of Hamiltonian isotopies Applications

Non displaceability

Consider
a homogeneous Hamiltonian isotopy Φ = {ϕt}t∈I : Ṫ ∗M × I −→ Ṫ ∗M,
Λ ⊂ Ṫ ∗(M ×M × I ) the conic Lagrangian submanifold associated to Φ,
K ∈ Db(kM×M×I ) the quantization of Φ.
Let F0 ∈ Db(kM) with compact support.
Set:

F = K ◦F0 ∈ Db(kM×I ),

Ft0 = F |{t=t0} ' Kt0 ◦F0 ∈ Db(kM) for t0 ∈ I .

Lemma
(i) We have isomorphisms RΓ(M; Ft) ' RΓ(M; F0) for all t ∈ I .
(ii) SS(Ft) ⊂ ϕt(SS(F0) ∩ Ṫ ∗M) ∪ T ∗

MM.
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Non displaceability

We consider a C 2-map ψ : M −→ R and we assume that the differential dψ(x)
never vanishes. Hence

Λψ := {(x ; dψ(x)); x ∈ M} ⊂ Ṫ ∗M.

Theorem We consider Φ = {ϕt}t∈I , ψ : M −→ R and F0 ∈ Db(kM). We assume
RΓ(M; F0) 6= 0. Then for any t ∈ I , ϕt(SS(F0) ∩ Ṫ ∗M) ∩ Λψ 6= ∅.
Proof Let us assume that the conclusion of the theorem is false for some t ∈ I .
We deduce Λψ ∩ SS(Ft) = ∅. Since Supp(Ft) is compact we may find a, b ∈ R
such that ψ(Supp(Ft)) ⊂]a, b[. Then the Morse lemma for sheaves gives

RΓ(]−∞, b[; Rψ∗Ft) ∼−−→ RΓ(]−∞, a[; Rψ∗Ft) ' 0.

This contradicts the isomorphism RΓ(M; Ft) ' RΓ(M; F0) 6= 0.
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Non displaceability: Morse inequalities

Theorem Let Φ = {ϕt}t∈I , F0 and ψ : M −→ R be as above. Set

S0 = SS(F0) ∩ Ṫ ∗M.

Let t0 ∈ I . Assume that Λψ ∩ ϕt0(S0) is contained in Λψ ∩ ϕt0(S0,reg) and the
intersection is finite and transversal. Then

#
`
ϕt0(S0) ∩ Λψ

´
≥

X
j

bj(F0).
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Positive isotopies

Let Φ = {ϕt}t∈I : Ṫ ∗M × I −→ Ṫ ∗M be a homogeneous Hamiltonian isotopy,
let Λ ⊂ Ṫ ∗M × Ṫ ∗M × T ∗I be the associated Lagrangian manifold and let

f = 〈αM , ∂Φ/∂t〉.

Definition (Y. Eliashberg, S. Kim and L. Polterovich.) The isotopy Φ is said to
be non-negative if 〈αM ,Hf 〉 ≥ 0 or equivalently, if Λ ⊂ {τ ≤ 0}..

Let K ∈ Db(kM×M×I ) be the quantization of Φ and let F0 ∈ Db(kM) with
compact support. Set:

F = K ◦F0 ∈ Db(kM×I ),

Ft0 = F |{t=t0} ' Kt0 ◦F0 ∈ Db(kM) for t0 ∈ I .

Lemma
(i) For a ≤ b, we have natural morphisms Fa −→ Fb which induce the
isomorphisms RΓ(M; Fa) ' RΓ(M; Fb).
(ii) SS(Ft) ⊂ ϕt(SS(F0 ∩ Ṫ ∗M) ∪ T ∗

MM.
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Positive isotopies

The next theorem generalizes previous results of Chernov and S. Nemirovski
and V. Colin, E. Ferrand and P. Pushkar.
Theorem
Let M be a connected and non-compact manifold and let Φ: Ṫ ∗M × I −→ Ṫ ∗M
be a non-negative homogeneous Hamiltonian isotopy. Assume that [0, 1] ⊂ I
and that there exists two compact connected submanifolds X and Y of M such
that ϕ1(Ṫ

∗
XM) = Ṫ ∗

Y M. Then X = Y .
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