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Motivation

• New background independent approach of quantum gravity is required

• Random matrix model admits large N-limit with Feynman graphs of genus
g = 0 (the planar graphs). Matrix model may be considered as quantum
gravity in two dimensions D = 2 with the following topological
expression

∫ √
−gR ≡ 4πχ, χ = 2− 2g = V − L + F . The amplitude of a

Feynman graph G will be A(G ) = λVNχ

• The matrices are dual to the triangles on which the vertices are the triangles,
the lines are the sides and the faces are vertices. This leads to dynamical
triangulation of the spacetime.

• For a general structure, high dimensions quantum gravity as a generalization
of matrices may be described by tensor, the large N-limit exist and the
Feynman graphs are the melon with Gurau number ω = 0. The computation
of the amplitude is not simple ! ! ! !

• Group field theory comes from spin foams, dynamical triangulation and loop
quantum gravity. These theories are combined with random tensor models :
leads to tensorial group field theory
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Definition of the model

In the context of TGFT, we consider the pair of complex fields ϕ and ϕ̄ which
takes values of d-copies of arbitrary group G :

ϕ, ϕ̄ : G d → C (1)

The particular case is G = U(1) the Abelian compact Lie group. The model we
will be mainly considering here is a tensorial ϕ4-theory on U(1)×5. Namely,

S [ϕ̄, ϕ] =

∫
U(1)5

dg ϕ̄(g)(−∆ + m2)ϕ(g)

+
λ

2

5∑
c=1

∫
U(1)20

dg dg′ dh dh′ ϕ̄(g)ϕ(g′)ϕ̄(h)ϕ(h′)Kc(g, g′,h,h′)

(2)

where ∆ =
∑5
`=1 ∆` and ∆` is the Laplace-Beltrami operator on U(1) acting on

colour-` indices, bold variables stand for 5-dimensional variables
(g = (g1, . . . , g5)), and Kc is the vertex.
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Symmetry of the model

Figure – The ϕ4 vertex in the large N-limit

The above diagram called melon in invariant under the symmetry group U(N),
N →∞. This symmetry implies the existence of some relations between
correlation function called Ward-Takahashi identities which are considered as the
quantum equivalent of the Noether theorem.
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Definition of the model

The statistical physics description of the model is encoded in the partition
function :

Z[J̄, J] =

∫
DϕDϕ̄e−S[ϕ̄,ϕ]+Jϕ̄+ϕJ̄ = eW [J̄,J], (3)

where J̄ and J represent the sources and W [J̄, J] is the generating functional for
the connected Green’s functions. Then the N-point connected Green functions
take the form

GN(g1, · · · , g2N) =
∂W(J̄, J)

∂J1∂J̄1 · · · ∂JN∂J̄N

∣∣∣
J=J̄=0

. (4)

Now let ϕclass denote the classical field defined by the expectation value of ϕ in
the presence of sources J,J̄ :

ϕclass = 〈ϕ〉 =
δW [J̄, J]

δJ̄
, ϕ̄class = 〈ϕ̄〉 =

δW [J̄, J]

δJ
. (5)
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Definition of the model

Then the 1PI effective action Γ1PI is given by the Legendre transform of W [J̄, J] as

Γ1PI = −W [J̄, J] +

∫
(Jϕ̄class + ϕclass J̄). (6)

For the rest we consider only the Fourier transform of the fields ϕ and ϕ̄ denoted
respectively by T~p and T̄~p, ~p ∈ Zd written as (for ~g ∈ U(1)d , gj = e iθj ) :

ϕ(~θ ) =
∑
~p∈Zd

T~p e
i
∑d

j=1 θjpj , ϕ̄(~θ ) =
∑
~p∈Zd

T̄~p e
−i

∑d
j=1 θjpj . (7)

without all confusion we set ϕclass ≡ M and ϕ̄class ≡ M̄ in the Fourier modes.
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RG description

Microscopic theories

Γ

RG flow

Full theory space

Effective physics
(IR)

(UV)

S1

S2
S3

Figure – Renormalisation group from UV to IR
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Wetterich flow equation

The Wetterich equation is a functional integro-differential equation for the
effective action Γ, now taking into account the quantum fluctuations caracterized
by the parameter s, and called average effective action denoted by Γs ,
−∞ < s < +∞. It is the Legendre transformation of the standard free energy
Ws = lnZs :

Γs [M, M̄] = 〈J̄,M〉+ 〈M̄, J〉 −Ws [J, J̄]− Rs [M, M̄] (8)

where Rs [M, M̄] := Tr(MrsM̄) and rs is called the IR regulator. The appearance of
this regulator rs is introduced as new parameter function, which controls the scale
fluctuation from IR to UV such that

lim
s→−∞

rs = 0, lim
s→+∞

rs =∞. (9)

This definition ensures that Γs satisfies the boundary conditions
Γs=ln Λ = S , Γs=−∞ = Γ, where Λ is the UV cutoff.
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Wetterich flow equation

The fields M and M̄ are the mean values of T and T̄ respectively and are given by

M =
∂W
∂J̄

, M̄ =
∂W
∂J

(10)

where W :=Ws=−∞. In general the regulator rs is chosen to be

rs = Z (s)k2f
(
~p 2

k2

)
, k = es , and such that the conditions (9) is well satified. Let

Γ
(2)
s is the second order partial derivative of Γs with respect to the mean fields M

and M̄, the Wetterich equation is then given by

∂sΓs = Tr ∂s rs(Γ(2)
s + rs)−1 (11)

The average effective action is chosen to be of the form

Γs = Z (s)
∑
~p∈Zd

T~p(~p 2 + e2sm̄2(s))T̄~p +
∑
n

Z (s)
n
2 λ̄nVn(T , T̄ ) (12)

10 / 21



Tensorial group field theory and FRG
Effective vertex expansion

Conclusion

Wetterich flow equation

In the case of quartic melonic interaction and by taking the standard modified
Litim’s regulator :

rs(~p ) = Z (s)(e2s − ~p 2)Θ(e2s − ~p 2) (13)

the Wetterich equation can be solved analytically and the phase diagram may be
given. The flow equations are

ṁ2 = −2dλI2(0)

Ż (s) = −2λI ′2(q = 0)

λ̇ = 4λ2I3(0)

In(q) =
∑

~p∈Z(d−1)

ṙs
(Z (s)~p 2 + Zq2 + m2 + rs)n

. (14)

with the renormalization condition

m2(s) = Γ(2)
s (~p = ~0), λ(s) =

1

4
Γ(4)
s (~0,~0,~0,~0), (15)

Z :=
d

d~p 2
Γ(2)(~p = ~0 ) , η :=

1

Z

∂Z

∂s
.. (16)
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Wetterich flow equation

Explicitly using the integral representation of the above sum and with d = 5,
η = Ż/Z we get

In(0) =
π2e6s−2ns

6Z (s)n−1(m̄2 + 1)n
(η + 6), I ′n(0) = − π2e4s−2ns

2Z (s)n−1(m̄2 + 1)n
(η + 4). (17)

In term of dimensionless parameter λ = Z 2λ̄, m2 = e2sZm̄2 the system (14)
becomes {

βm = −(2 + η)m̄2 − 2d λ̄ π2

(1+m̄2)2

(
1 + η

6

)
,

βλ = −2ηλ̄+ 4λ̄2 π2

(1+m̄2)3

(
1 + η

6

)
,

(18)

where βm := ˙̄m2, βλ = ˙̄λ and :

η :=
4λ̄π2

(1 + m̄2)2 − λ̄π2
. (19)
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Wetterich flow equation

The solutions of the system (18) is given analytically :

p± =
(
m̄2
± = −23∓

√
34

33
, λ̄± =

328∓ 8
√

34

11979π2

)
. (20)

Numerically

p+ = (−0.52, 0.0028), p− = (−0.87, 0.0036). (21)

Apart from the fact that we have a singularity line around the point m̄2 = −1 in
the flow equation (14), another second singularity arise from the anomalous
dimension denominator, and corresponds to a line of singularity, with equation :

Ω(m̄, λ̄) := (m̄2 + 1)2 − π2λ̄ = 0 (22)

This line of singularity splits the two dimensional phase space of the truncated
theory into two connected regions characterized by the sign of the function Ω.
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Diagram representation given the structure equation

Melons are the trees in the intermediate field representation

−Γ4 =


∞∑
n=1


G

G


n

=
−4Zλr

1−

G

G

=
−4Zλr

1 + 2ZλrAs
, As =

∑
~p⊥

[Gs(~p⊥)]2 =
∑
~p⊥

1

[Γ
(2)
s (~p⊥) + rs(~p⊥)]2

(23)

~p⊥ := (0, p1, · · · , pd) and G−1
s (~p ) = Z−∞~p

2 + m2 + rs(~p )− Σs(~p ) .
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Flow equations using the EVE

Let us consider the flow equation for Γ̇(2), obtained from (11) deriving with
respect to M and M̄ :

Γ̇(2)(~p ) = −
∑
~q

Γ
(4)
~p,~p,~q,~q G

2
s (~q )ṙs(~q ) , (24)

where we discard all the odd contributions, vanishing in the symmetric phase.
Deriving on both sides with respect to p2

1 , and setting ~p = ~0, we get :

Ż = −
∑
~q

Γ
(4) ′
~0,~0,~q,~q

G 2
s (~q )ṙs(~q )− Γ

(4)
~0,~0,~q,~q

G 2
s (~q )ṙs(~q ) , (25)

where the ”prime” designates the partial derivative with respect to p2
1 . In the deep

UV (k � 1) the argument used in the T 4-truncation to discard non-melonic
contributions holds, and we keep only the melonic diagrams as well.
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Flow equations using the EVE

Deriving twice the exact flow equation, we get schematically :

∂sΓ(2) = −2λ
d∑

i=1


ṙsG

2
s

i

+

ṙsG
2
s

i

 , (26)

the diagrams being computed with the effective propagator ṙsG
2
s , the “dot” means

that the derivative is with respect to s. Explicitly :

ṙsG
2
s =

∑
~p∈(ZD )(d−1)

ṙs
(Z ~p 2α + Zq2α + m2α + rs)2

(27)

where q denotes the external momenta running through the effective loop. Also
we get

Ż = 4λ2A′s(0) I2(0)− 2λI ′2(0) . (28)
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Flow equations using the EVE

Keeping only the melonic contributions, we get finally the following autonomous
system by using the Litim’s regulation : βm = −(2 + η)m̄2 − 2d λ̄ π2

(1+m̄2)2

(
1 + η

6

)
,

βλ = −2ηλ̄+ 4λ̄2 π2

(1+m̄2)3

(
1 + η

6

) [
1− 1

2π
2λ̄
(

1
(1+m̄2)2 +

(
1 + 1

1+m̄2

)) ]
.

(29)

where the anomalous dimension is then given by :

η = 4λ̄π2 (1 + m̄2)2 − 1
2 λ̄π

2(2 + m̄2)

(1 + m̄2)2Ω(λ̄, m̄2) + (2+m̄2)
3 λ̄2π4

. (30)

The other solutions are :

p0 = (m̄2 = −1.28, λ̄ = 0.025), p1 = (m̄2 = 1.96, λ̄ = 1.10), (31)

17 / 21



Tensorial group field theory and FRG
Effective vertex expansion

Conclusion

Constraint from WI

In the symmetric phase, the zero-momenta 4-point fonction satisfies :

π
(1)
00 Z−∞Ls = − ∂

∂p2
1

(
Γ(2)
s (~p⊥)− Z−∞~p

2
) ∣∣∣∣

~p=0

, (32)

where we defined the loop Ls as :

Ls :=
∑
~p⊥

(
1 +

∂ r̃s(~p⊥)

∂p2
1

)
[Gs(~p⊥)]2 , rs =: Z−∞r̃s . (33)

implies

βλ = −ηλ̄
(

1− 2λ̄
Ω4

(1 + m̄2)2

)
+ 4λ̄2 Ω4

(1 + m̄2)3
βm . (34)

Ωm = π
m
2

Γ( m
2 +1) .
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WI violation

We get βm(p) = 0 = βλ(p) = 0. Then the constraint (34) implies that a the point
p

ηλ̄
(

1− λ̄π2

(1 + m̄2)2

)
(p) = 0. (35)

The particular solution λ̄ = 0 correspond to the Gaussian fixed point. For λ̄ 6= 0
we have only

η = 0, or
λ̄π2

(1 + m̄2)2
= 1 (36)

It is clear that the fixed point p+ = (−0.55, 0.0025), η ≈ 0.7 violate these
constraints. Finally all the fixed point discovered from EVE or EV methods violate
the Ward identities.
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To sum up, in this presentation

• We show that the IR fixed point obtained in the FRG applications for TGFT
lack an important constraint coming from Ward identities. This constraint
reduces the physical region of the phase space to a one-dimensional subspace
without fixed point, suggesting that the phase transition scenario abundantly
cited in the TGFT literature may be an artifact of an incomplete method.

• This suggestion is improved with a more sophisticated method, taking into
account the momentum dependence of the effective vertex, and providing a
maximal extension of the symmetric region. Despite with this improvement,
the resulting numerical fixed point does not cross any of the physical lines
provided from the Ward constraint.

• In the literature, the quartic truncation has been largely investigated, for
various group manifold and dimensions. We shown from our analysis that
none of these models modify our conclusions, except for TGFT including
closure constraint as a gauge symmetry.
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Thank you for your attention
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