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Motivations
• The quantum gravity is one of more important problem in physics, which intertwines between two
fundamental theories: general relativity (GR) and quantum mechanics (QM).
It appeares when we consider higher mass in a few volume, as black hole physics. At the Planck

length scale λp =
√

G~
c3 ≈ 1,6 ·10−35m, our description of the nature with these two fundamental

theories break down.
• In the last two decades, several approaches have been given to tackle this issue from which we
can identify very promising theories such as string theory, noncommutative (NC) geometry, loop
quantum gravity, group field theory · · ·

Noncommutative quantum field theory
• Noncommutative field theory (NCFT), arising from NC geometry, has been the subject of intense
studies, owing to its importance in the description of quantum gravity phenomena.
More precisely, the concepts of noncommutativity in fundamental physics have deep motivations
which originated from the fundamental properties of the Snyder spacetime [S. Snyder (1947); Alain
Connes (1991), S.Doplicher et al (1995), M. Douglas et al (2001)].

2 / 26



introduction
Plan

Introduction 3

• One of the important implications of noncommutativity is the Lorentz violation symmetry in more
than two dimensions spacetime, which, in part, modifies the dispersion relations. It led to new
developments in quantum electrodynamics (QED) and Yang-Mills (YM) theories in the NC variable
function versions [R. Jackiw (2003), A. F. Ferrari et al (2006), M. Raasakka et al (2010)].
• Also, the quantum Hall effect well illustrates the NC quantum mechanics of spacetime
[F. G. Scholtz et al (2005), B. Harms and O. Micu (2006)].

The NC ?-product is obtained by replacing the ordinary product of functions by the Moyal star
product defined as follows:

(f ?g)(x) = m
[
e

i
2 θµν∂µ⊗∂ν f (x)⊗g(x)

]
(1)

where f , g ∈ C∞(RD), m(f ⊗g) = f ·g; θµν stands for a skew-symmetric tensor characterizing the
NC behaviour of the spacetime, and has the Planck’s length square dimension, i.e. [θ]≡ [λ2

p].
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In NCFT, we use a NC star product obtained by replacing the ordinary product of functions by the
Moyal ?-product (1). It provides the following commutation relation between the coordinate
functions:

[xµ, f ]? = iθµν
∂νf , xµ ∈ RD, µ,ν = 1,2,3 · · ·D. (2)

Noncommutative quantum electrodynamics
Recall that two main problems arise when one tries to implement the electromagnetism in a NC
geometry: the loss of causality due to the appearance of derivative coupling in the Lagrangian
density and, more fundamentally, the violation of Lorentz invariance exhibited by plane wave
solutions [ R. Jackiw (2001); G. Berrino et al (2003)]. For example, the spacetime rotation Rρ

µ leads
to [

(Rρ
µ xµ = yρ),(Rσ

ν xν = yσ)
]

= iRρ
µ Rσ

ν θ
µν 6= iθρσ. (3)
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Like in ordinary quantum mechanics, the NC coordinates satisfy the coordinate-coordinate version
of the Heisenberg uncertainty relation, namely ∆xµ∆xν ≥ θ, and then makes the spacetime a
quantum space. This idea leads to the concept of quantum gravity, since quantizing spacetime
leads to quantizing gravity.

The Moyal space RD
θ

Let us define E = {x̂µ, µ ∈ 1,2, · · ·D} and C〈E〉 the algebra generated by E . Let (θ) a D×D
non-degenerate skew-symmetric matrix (which requires D even) and I the ideal of C〈E〉 generated
by the elements R µν := x̂µx̂ν− x̂νx̂µ− ıθµν. The Moyal algebra Aθ is the quotient C〈E〉/I.

The very useful property of Moyal star product is :∫
dDx(f ?g)(x) =

∫
dDxf (x).g(x) =

∫
dDx(g ? f )(x). (4)
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The Moyal algebra can be also defined as the linear space of smooth and rapidly decreasing
functions equipped with the NC star product (1) in the form f ?g = m[(?θ?~)(f ⊗g)] with

(f ?θ g) = m
[

exp
( i

2
θ

ij
∂x i ⊗∂x j

)
(f ⊗g)

]
(5)

(f ?~ g) = m
[

exp
( i

2
~δ

ij(
∂x i ⊗∂pj −∂pi ⊗∂pj

)
(f ⊗g)

]
(6)
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Scientific question
How does the noncommutativity modifies the pair production of fermionic particles?
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[J. Madore et al (2000)]
Let consider the spacetime geometry described with the NC coordinates xµ and momentums pµ,
µ = 0,1,2,3, which satisfy the star-commutation relations :

[xµ,xν]? = iθµν, [xµ,pµ]? = iδµ
ν, [pµ,pν]? = 0, (7)

in which, we shall take ~ := 1 and where ? denotes the Moyal star product (1),
and fields as elements of the algebra Aθ: ψ(x) = ψ(x1,x2,x3x4) ∈ Aθ. We shall introduce the
notion of an infinitesimal gauge transformation δψ of the field ψ and suppose that under an
infinitesimal gauge transformation with the parameter α(x) it can be written in the form

δψ(x) = iα(x)?ψ(x), α(x), ψ(x) ∈ Aθ. (8)
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[N.Seiberg and E. Witten (1999), S. Fidanza (2002), K. Ulker et al (2012)]
Let’s assume that the NC gauge field is written in the same function of commutative gauge and the
NC gauge transformation parameter Λ̂,

Âµ = (Aµ;θ), F̂µν = F̂µν(Aµ;θ), Λ̂ = Λ̂α(α,Aµ;θ) (9)

Using the Seiberg-Witten maps at the first order of perturbation in θ, we write the NC field variables
as function of commutative variables:

ψ̂ = ψ− 1
4

θ
κλAκ(∂λ + Dλ)ψ (10)

ˆ̄ψ = ψ̄− 1
4

θ
κλAκ(∂λ + Dλ)ψ̄ (11)

Âµ = Aµ−
1
4

θ
κλ
{

Aκ,∂λAµ + Fλµ
}
. (12)
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[ J. Schwinger (1948)]
Pair production is the creation of an elementary particle and its antiparticle, usually when a neutral
boson interacts with a nucleus or another boson. This phenomenon is caused by the vacuum
instability in the presence of electric fields near the critical strength value
E ≈ Ec = m2c3/e~≈ 1,3×1016V/cm .

In the more original literature, there are two alternative ways for the computation of the probability
density of the pair creaction but here, we presente only one.
It consists with the definition of the vacuum-vacuum transition amplitude Z and its complex norm
which allows to derive the density ω(x) by the following formula:

|Z |2 = exp
[
−

∫
dDx ω(x)

]
(13)

This issue has been investigated in ordinary spacetime with the electromagnetic field by [
Qiong-Gui Lin (1998), M. N. Hounkonnou and M. Naciri (2000)].
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The action for a Dirac particle on NC spacetime can be defined as follows:

S =
∫

R4
d4x L(ˆ̄ψ, ψ̂), L(ˆ̄ψ, ψ̂) = ˆ̄ψ? iγµD̂µψ̂−m ˆ̄ψ? ψ̂, (14)

where ψ̂ and ˆ̄ψ are the Dirac spinors and its associated Hermitian conjugate, respectively. The γ’s
are the Dirac matrices which satisfy the Clifford algebra: {γµ,γν}= 2ηµν, and are given explicitly in
terms of Pauli matrices σi , i = 1,2,3, by:

γ
0 =

(
12 0
0 −12

)
, γ

i =

(
0 σi

−σi 0

)
. (15)

The covariant derivative D̂µ is expressed as: D̂µ = ∂µ− i Âµ?. We choose ~ = c = 1 and take the
charge of particle equal to the unit value, i.e. qe = 1.
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By substituting the expressions of fields ψ̂ , ˆ̄ψ, Âµ obtained by solving Seiberg-Witten equations in
(10),(11),(12) in the action (14), we get, at the first order in θ the following Lagrangian density:

L(ψ̄,ψ) = iγµ
[
ψ̄(∂µ− iAµ−m)ψ +

i
2

θ
αβ

∂αψ̄∂β(∂µ− iAµ)ψ− 1
4

θ
αβ

ψ̄∂µ

(
Aα(∂β + Dβ)ψ

)
+

1
2

θ
αβ

ψ̄∂αAµ∂βψ +
i
4

θ
αβ

ψ̄AµAα(∂β + Dβ)ψ +
i
4

θ
κλ

ψ̄
{

Aκ,∂λAµ + Fλµ
}

ψ

− 1
4

θ
κλAκ(∂λ + Dλ)ψ̄(∂µ− iAµ)ψ

]
−m

[ i
2

θ
µν

∂µψ̄∂νψ− 1
4

θ
µν

ψ̄Aµ(∂ν + Dν)(ψ)

− 1
4

θ
µνAµ(∂ν + Dν)(ψ̄)ψ

]
+ o(θ

2). (16)

In the commutative limit where θ→ 0, we recover to the Lagrangian density LC . The action
S [ψ, ψ̄,A] in (14) can be write as the form

S [ψ, ψ̄,A] =
∫

d4x L(ψ̄,ψ)≈
∫

d4x
(

LC(ψ̄,ψ) + B(θ,A, ψ̄,ψ)
)
, (17)
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where the quantity B(θ,A, ψ̄,ψ) depending on θ is given by

B(θ,A, ψ̄,ψ) = iγµ
θ

κλ
ψ̄

[
− 1

2
(∂µAκ)∂λ +

1
2

∂κAµ∂λ +
i
2

AµAκ∂λ +
i
2

Ak ∂λAµ−
i
2

Ak ∂µAλ

+
1
2

(∂λAκ)∂µ−
i
2

(∂λAk )Aµ

]
ψ− mθκλ

2
ψ̄(∂κAλ)ψ. (18)

Now by performing the path integral over the background fields ψ and ψ̄, the vacuum-vacuum
transition amplitude Z(A) is afforded by the expression:

Z(A) = N
∫

DψDψ̄exp i
{∫

d4x
(

iγµ
ψ̄(∂µ− iAµ)ψ−mψ̄ψ + B(θ,A, ψ̄,ψ)

)}
, (19)

in which the normalization constant N is chosen such that Z(0) = 1. Note that B(θ,0,1,1) = 0.
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Let M := iγµDµ−m + B(θ,A,1,1) + iε. Then, we get a simpler form:

Z(A) = exp

[
−tr ln

iγµ∂µ−m + iε
M

]
. (20)

Now, we consider the EM field, defined in x direction as B = Bex and E = Eex, E > 0 and B ≥ 0 .
The position and momentum operators Xµ = (X0,X1,X2,X3) =: (X0,X ,Y ,Z ) and
Pµ = i∂µ = (P0,P1,P2,P3) satisfy the commutation relation: [Xµ,Pµ] = iηµν. The covariant vector
Vµ is expressed with the contravariant V µ as Vµ = ηµνV ν, where (η) = diag(1,−1,−1,−1). The
covariant Faraday tensor Fµν =: ∂µAν−∂νAµ with Aµ = (−EX ,0,0,BY ). Then, B(θ,A,1,1) is
obtained as:

B(θ,A,1,1) =
mθ

2
(B−E) +

iθ
2

γ
µ
[
i(E + B)Aµ− (E + B)∂µ− iAµ(EX∂1 + BY ∂2)

− (∂1Aµ)∂0 + (∂2Aµ)∂3 + ∂µ(EX)∂1 + ∂µ(BY )∂2

]
. (21)
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Using the charge conjugation matrix C = iγ2γ0, the identity CγµC−1 =−γt
µ, and taking into account

the fact that the trace of an operator is invariant under a matrix transposition lead to

Zt(A) = exp

[
−tr ln

iCγµC−1∂µ + m− iε
M t

]
, (22)

where M t = iCγµC−1Dµ + m−B t(θ,A,1,1)− iε.

The probability density is defined by the module of Z (A) as

|Z(A)|2 := exp
[
− tr ln

P2−m2 + iε
M M t

]
, (23)

with

M M t = [γµ(Pµ + Aµ)]2−m2−m2
θ(B−E) + Bγ

µ(Pµ + Aµ)− γ
µ(Pµ + Aµ)B t + iε. (24)
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The conjugate of B(θ,A,1,1), denoted by B t(θ,A,1,1) can be then written as:

B t(θ,A,1,1) =
mθ

2
(B−E) +

iθ
2

Cγ
µC−1

[
i(E + B)Aµ− iAµ(EX∂1 + BY ∂2)

− (E + B)∂µ− (∂1Aµ)∂0 + (∂2Aµ)∂3 + ∂µ(EX)∂1 + ∂µ(BY )∂2

]
. (25)

At this point it would be worth using the identity

ln
a + iε
b + iε

=
∫

∞

0

ds
s

[
eis(b+iε)−eis(a+iε)

]
(26)

to get

ln
P2−m2 + iε

M M t =
∫

∞

0

ds
s

e−is(m2−iε)
[
eis[(P+A)2+ 1

2 σµνFµν−m2θ(B−E)+X (θ)]−eisP2
]

(27)

where the operator X (θ) should be Hermitian.
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For an arbitrary operator A we can define the associated Hermitian operator denoted by AH as

AH = (A+A†)
2 .

We then have the following:

Proposition
The Hermitian operator associated with X (θ), denoted XH(θ), is given by

XH(θ) =
θ

2

[
iEBγ

3
γ

2 + iE2
γ

0
γ

1 + iB2
γ

3
γ

2 +
1
2

i(γ
0
γ

1 + γ
3
γ

2)EB + γ
0
γ

1EBYP2

+ 2E2
γ

0
γ

1XP1 + γ
0
γ

3(E2B−EB2)XY − γ
1
γ

3EBYP1− (4E3 + 3BE2)X 2

+ (2B3 + B2E)Y 2 + (4E2 + 5EB)XP0 + (2B2 + 3EB)YP3−2BP2
0 + 2BP2

1

+ 2EP2
2 + 2EP2

3

]
. (28)

XH(θ) = X †
H(θ).

20 / 26



Preliminaries
Pair production of Dirac particles

Concluding remarks

Pair production of Dirac particles in ordinary spacetime
Pair production of Dirac particles in noncommutative spacetime

Pair production of Dirac particles in NC spacetime 23

Now we focus on the computation of the following quantity:

Q = 〈x|eis[(P+A)2+ 1
2 σµνFµν−m2θ(B−E)+XH(θ)]|x〉 (29)

which can write as

Q = Qc + Qnc(θ), Qnc(0) = 0 (30)

where

Qc = e
is
2 σµνFµν〈x|eis(P+A)2 |x〉 (31)

and

Qnc(θ) = e
is
2 σµνFµν

∫
dy〈x|eis(P+A)2 |y〉〈y|is

[
m2

θ(E−B) + XH(θ)
]
|x〉. (32)

We then come to the following result:
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Theorem
Let θ =:℘ ·θ0 where ℘ is a dimensionless quantity which is bounded by two numbers a1, and a2

and such that θ0 << 1. The mass dimension of θ0 is obviously θ0 ≡ [M−2]. Let M ⊂ R2 be the
compact subset of R2 in which the following integral∫

M⊂R2

dt
t0

dz = b ≡ [M−2]. (33)

The trace of the expectation value Q is given by:

trQ =
(

1−℘−σ(θ0,E ,B)
)

trQc, (34)

σ(θ0,E ,B) =
16π3b℘exp

[
isθ0G0

]
θ3

0s3EB

√
B
E

f (E ,B), trQc =− 1
4π2i

EB cosh(Es)cot(Bs),

f (E ,B) =
[
4B6 + 76EB5 + 258E2B4 + 494E3B3 + 224E4B2 + 12E5B

]−1
. (35)
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Remark that the quantity σ(θ0,E ,B) leads to the divergence in the limit where B = 0 and in the
limit where θ0 = 0. This expression do not contribute to the physical solution.

Theorem

The vacuum-vacuum transition probability is |Z (A)|2 = exp
[
−

∫
dx ω(x)

]
where

ω(x) =
1

4π2i

∫
∞

0
ds

eism2

s

[(
1−℘

)
EB coth(Es)cot(Bs)− 1

s2

]
(36)

whose real part, denoted by ℜeω(x) = ω+ω?

2 , is given by

ℜeω(x) = − 1
8π2i

∫
∞

−∞

ds
eism2

s

[(
1−℘

)
EB coth(Es)cot(Bs)− 1

s2

]
= −m4℘

16π
+

EB
4π2

(
1−℘

) ∞

∑
k=1

1
k

coth
(

kπ
B
E

)
exp
(
− kπm2

E

)
. (37)

23 / 26



Preliminaries
Pair production of Dirac particles

Concluding remarks

Pair production of Dirac particles in ordinary spacetime
Pair production of Dirac particles in noncommutative spacetime

Pair production of Dirac particles in NC spacetime 26

Discussion
If ℜeωc(x) is the probability density provided in the equation (37), in the limit where θ→ 0 i.e.

lim
θ→0

ℜeω(x) = ℜeωc(x), (38)

then this expression corresponds to the commutative limit derived by [ Qiong-Gui Lin (1998), M. N.
Hounkonnou and M. Naciri (2000)] and given by:

ℜeωc(x) =
EB
4π2

∞

∑
k=1

1
k

coth
(

kπ
B
E

)
exp
(
− kπm2

E

)
. (39)

We get

ℜeω(x) < ℜeωc(x), (40)

and we conclude that the noncommutativity increases the amplitude |Z (A)|2. This shows the
importance of noncommutativity in the high energy regime in which creation of particle is being
manifested.
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Concluding remarks

• In this presentation, we talk about the NC theory of fermionic field interacting with its
corresponding boson. We have used the Seiberg-Witten expansion describing the relation
between the NC and commutative variables, to compute the probability density of pair
production of NC fermions. We have showed that, in the limit where the NC parameter θ = 0,
we recover the result of the previous litterature.

• Our study has highlighted that the noncommutativity of spacetime increases the density ω of
the probability of pair creation of the fermion particle.
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Thank you for your attention

26 / 26


	introduction
	Plan
	Main Talk
	Preliminaries
	Pair production of Dirac particles
	Pair production of Dirac particles in ordinary spacetime
	Pair production of Dirac particles in noncommutative spacetime

	Concluding remarks


