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Standard Heisenberg algebra

The ordinary quantum mechanics is governed by the standard
Heisenberg algebra gives as follows

[x,p] = if1. (1)
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Introduction

Standard Heisenberg algebra

& Then it is not possible to simultaneously measure these
two observable quantities which are said to be
complementary.

& The notion of phase space disappears in quantum
mechanics, and the quantum object is in fact completely
described by its wave function.
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Heisenberg Uncertainty Principle

The commutation relation is directly related to the uncertainty
relation through the formula

AAAB > [([A, B])| (@)

So, we have
AXDp > 722 3)

The more localized the particle, the less defined its momentum,
and vice versa.
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Deformed Heisenberg algebra

& The deformed Heisenberg algebra

Pl = im(1 + 7P, T= 0 0<p<1 (@)

It has been rigorously studied by Kempf and his
collaborators in 1995.

& The generalized uncertainty relation gives:

AXAP > 2{1 + 7(AP)? + 7(P)?}.
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Generalized uncertainty relation

Delta (p)
EN @

w

N

0 0.5 1 15 2 25 3
Delta(x)

Figure 1: The generalized uncertainty relation, implying a
minimal length (AXnin = V/B) -
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Several models

The one-dimensional and multi-dimensional harmonic
oscillator. The problem of a charged particle of spin 1/2
moving in a constant magnetic field, the one, two and
three-dimensional Dirac oscillator, the hydrogen atom...

Several methods

The method approximation, the Nikiforov-Uvarov method,
supersymmetric quantum mechanics...
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Hamiltonian

In the N—dimensional space the deformed Hamiltonian is
defined by

N

1 1

H = Z<ﬁ73/73/+§mw22(/2(,~>
i=1

I R B gy
= 2mP —|—2mwX, (6)
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The operators X; and P; satisfy the following commutation
relations

N
(X, Pj] = ih(1 + 7P2)6; 11, P2 = PP
i=1
With the representation

: 0
X; = ih(1 +Tp2)8—p, Pi = pi,
1

Commutation relations
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Rotational symmetry

It is a lucky circumstance that rotational symmetry is preserved.
This means that isotropic systems can be reduced to a
quantization of some effective one-dimensional model on the

positive real line.
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N free deformed harmonic oscillators

The following N free deformed harmonic oscillators

hw N
Hiree = ? (j,'+j,'_ + j,'_~7,'+) ) (9)

i=1

where j,.i are the generators of the su(1,1) algebra in N
dimensions. |
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Generators of the su(1,1) algebra

The jii are the generators of the su(1, 1) algebrain N
dimensions and satisfy the following algebra

[J,.-,J,ﬂzz\/gﬁ, [J,~°,J,.i]=i\/§f, (10)

(alai+20)a;, J~ =al\/=(ala+28), (11)

Bigigr oy o N [N 1 .
\/;(a,a,+£,\,), Iy = 5 4 7 +ﬁ2' (12)

N ™

Jo
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Representation of deformed su(1, 1) algebra

The action of the above realizations on the state |3, n;)
(nj=0,1,2,---), gives

B
IRy = S8~ 1R

TRNR m) = 4 s+ IR ),

T |68 iy = \/gni(%?v +n;— 1), ni — 1),

Tt |68, i) = \/g(n,- +1)( 268 + n)| 6%, i+ 1).
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Eigenvalue equation
We can write the eigenvalue equation,

Hfreew?\la nl> 507ﬁ|€N’ n/> (17)
where . .

END = hwp [E’,i,(n +5)+ Enz] (18)
and

2nmr(240)
(e \/(ﬂ)n,nnr(n,+zz°)(‘7’+)mw%’o>' "o
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N-dimensional isotropic harmonic oscillator
Now, we can write the Hamiltonian in the following form

N, 1
HY = hwB ) [e’,i,(aja,- +35)+ E(ajfa,-)Q] + EhwﬁLz, (20)

N N2 1
L2:k(k+N_2)v glliI:_‘i‘ —+L2+—.
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Spectrum of H

It is a straightforward exercise to obtain the eigenvalues
5 = hwp [z (n+—)+ —n? + k(k+N 2)] (22)

associated to the eigenstates

2nr(20%)
|5 1) \/(5),,,nl|r(nl+2£k)(J+)”'\ek, 0). (28)
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Particular cases

the one-dimensional result can be reproduced from this
expression by setting N =1 and [? = 0,

1.1 1
&0 =t |[Bin+ )+ 5| B=g+izrz @9
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Particular cases

Forthe N =2 and N = 3 cases, the explicit expressions are

1 1
et s8] s s

B2
(25)
sé‘;,f = hwp [z’g(n+g)+%[nz+k(k+1)]],
9 1
e§=1+\/z+k(k+1)+?. (26)
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Vibratory partition function

We study the thermodynamic properties of N identical and
independent deformed harmonic oscillators (one-dimensional)

Z(@) = ) e n

&y N
_ Ze—awléﬁ’(w%)ﬁn’fl , (27)

n=0

where o = # kg is the Boltzmann constant and

B=l=3+,/1+7%
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Classical limit

In the classical limit, at high temperature T for large [}], the
sum can be replaced by the following integral, [\] = A — 1.
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Vibratory partition function

Z(a)

where

C = hwp,

A N
_ |:/ e—ahw,@[[?(n—i—%)-i—%nz] dn:|
0

_ [\/;ew(erf[\/_a]—erf[\/_b])]N (28)
62%06((—1), é:\/;c()wrf), b=

erf(z / e fat.
T VT
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The vibrational mean energy U

Uo) = —2-InZ(a)
_ N<;—a—&—\/7:\_a9>, (31)
where
Q = erf ( —ca(\ + €)> —erf (@é) , A= ge ¥o_pebte
(32)
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Vibrational specific heat C

Cla) = —kpa“—

(a3e—éza . B3e—Bza)
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Vibrational mean free energy F

Fla) = —g InZ(«)

N 7 -
= _E<Inw/%+0a+ln§2>. (34)
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Vibrational entropy S

S(o) = NkgInZ(a) — NkBaa% InZ(a)

[ ~
= — InQ
Nkg <In 2ac+ca+ n )

1 - A
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Figure 2: Vibrational partition function (27) as a function of
p = T/ Tp for different values of 5. In (a): A = 50, in (b):
AX=100.in(c) X =150. andin (d): \ = 200.
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Figure 3: Specific heat capacity of lead(Pb, Tp = 105K),
silver(Ag, Tp = 225K), aluminum(Al, Tp = 428K) and
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Conclusion 34

& The solutions of the deformed N-dimensional harmonic
oscillator in the presence of a minimal length have been
obtained by the algebraic method.

& The hidden symmetry su(1, 1) has been identified for the
N free deformed harmonic oscillators. This latter is
considered as a one-dimensional deformed crystal of N
identical and independent atoms.
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Conclusion 35

& These maxima, obtained at the level of the curvatures of
the curve representing the specific heat, neither show nor
indicate the existence of a phase transition.

& Inthe limit 3 — 0, the specific heat of a crystalline body
is independent of the temperature and of the body
considered for large values of the temperature:
Dulong-Petit law
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