Algebraic Solution of the *N*-dimensional Harmonic Oscillator with Minimal Length Uncertainty Relations and Thermodynamic Properties

Dr Dossa F. Anselme

Faculté des Sciences et Techniques (FAST), Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques (UNSTIM)

14/07/2022

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Standard Heisenberg algebra

The ordinary quantum mechanics is governed by the standard Heisenberg algebra gives as follows

$$[\mathbf{x}, \mathbf{p}] = i\hbar \mathbf{1}. \tag{1}$$

(日)

Standard Heisenberg algebra

- Then it is not possible to simultaneously measure these two observable quantities which are said to be complementary.
- The notion of phase space disappears in quantum mechanics, and the quantum object is in fact completely described by its wave function.

(日)

Heisenberg Uncertainty Principle

The commutation relation is directly related to the uncertainty relation through the formula

$$\Delta A \Delta B \ge |\langle [A, B] \rangle| \tag{2}$$

So, we have

$$\Delta x \Delta p \geq \frac{\hbar}{2}.$$
 (3)

(日)

The more localized the particle, the less defined its momentum, and vice versa.

Deformed Heisenberg algebra

The deformed Heisenberg algebra

$$[\mathcal{X}, \mathcal{P}] = i\hbar(1 + \tau p^2)\mathbf{1}, \quad \tau = \frac{\beta}{\hbar m\omega}, \quad \mathbf{0} \le \beta \le \mathbf{1}$$
 (4)

It has been rigorously studied by Kempf and his collaborators in 1995.

The generalized uncertainty relation gives:

$$\Delta \mathcal{X} \Delta \mathcal{P} \geq rac{\hbar}{2} \{ 1 + \tau (\Delta \mathcal{P})^2 + \tau \langle \mathcal{P} \rangle^2 \}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ ○

(5)

Generalized uncertainty relation

Figure 1: The generalized uncertainty relation, implying a minimal length ($\Delta X_{min} = \sqrt{\beta}$).

Introduction

Several models

The one-dimensional and multi-dimensional harmonic oscillator. The problem of a charged particle of spin 1/2 moving in a constant magnetic field, the one, two and three-dimensional Dirac oscillator, the hydrogen atom...

Several methods

The method approximation, the Nikiforov-Uvarov method, supersymmetric quantum mechanics...

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Outline

- Thermodynamic properties
- 3 Graphs of thermodynamic properties

・ロト ・ 聞 ト ・ 回 ト ・ 回 ト

Outline

- 2 Thermodynamic properties
 - 3 Graphs of thermodynamic properties

<ロト < @ ト < 臣 ト < 臣 >

Outline

・ ロ ト ・ 同 ト ・ 日 ト ・ 日 ト

Thermodynamic properties

Graphs of thermodynamic properties

Outline

- 2 Thermodynamic properties
- 3 Graphs of thermodynamic properties

• □ > < □ > < □ > < □ > < □ >

Graphs of thermodynamic properties

Hamiltonian

In the N-dimensional space the deformed Hamiltonian is defined by

$$H = \sum_{i=1}^{N} \left(\frac{1}{2m} \mathcal{P}_{i} \mathcal{P}_{i} + \frac{1}{2} m \omega^{2} \mathcal{X}_{i} \mathcal{X}_{i} \right)$$
$$= \frac{1}{2m} \mathcal{P}^{2} + \frac{1}{2} m \omega^{2} \mathcal{X}^{2}, \qquad (6)$$

• □ > < □ > < □ > < □ > < □ >

Graphs of thermodynamic properties

Commutation relations

The operators \mathcal{X}_i and \mathcal{P}_i satisfy the following commutation relations

$$[\mathcal{X}_i, \mathcal{P}_j] = i\hbar(1 + \tau \mathcal{P}^2)\delta_{ij}\mathbf{1}, \quad \mathcal{P}^2 = \sum_{i=1}^N \mathcal{P}_i \mathcal{P}_i. \tag{7}$$

With the representation

$$\mathcal{X}_i = i\hbar(1+\tau p^2)\frac{\partial}{\partial p_i}, \quad \mathcal{P}_i = p_i,$$
 (8)

. .

(日)

Graphs of thermodynamic properties

Rotational symmetry

It is a lucky circumstance that rotational symmetry is preserved. This means that isotropic systems can be reduced to a quantization of some effective one-dimensional model on the positive real line.

(日)

Graphs of thermodynamic properties

N free deformed harmonic oscillators

The following N free deformed harmonic oscillators

$$\mathcal{H}_{\text{free}} = \frac{\hbar\omega}{2} \sum_{i=1}^{N} \left(\mathcal{J}_i^+ \mathcal{J}_i^- + \mathcal{J}_i^- \mathcal{J}_i^+ \right), \tag{9}$$

where \mathcal{J}_i^{\pm} are the generators of the su(1, 1) algebra in N dimensions.

A (1) A (

Graphs of thermodynamic properties

Generators of the su(1,1) algebra

The \mathcal{J}_i^{\pm} are the generators of the su(1, 1) algebra in N dimensions and satisfy the following algebra

$$[\mathcal{J}_i^-, \mathcal{J}_i^+] = 2\sqrt{\frac{\beta}{2}}\mathcal{J}_i^0, \quad [\mathcal{J}_i^0, \mathcal{J}_i^\pm] = \pm\sqrt{\frac{\beta}{2}}\mathcal{J}_i^\pm, \qquad (10)$$

where

$$\mathcal{J}_{i}^{-} = \sqrt{\frac{\beta}{2}} (a_{i}^{\dagger} a_{i} + 2\ell_{N}^{0}) a_{i}, \quad \mathcal{J}_{i}^{-} = a_{i}^{\dagger} \sqrt{\frac{\beta}{2}} (a_{i}^{\dagger} a_{i} + 2\ell_{N}^{0}), \quad (11)$$
$$\mathcal{J}_{i}^{0} = \sqrt{\frac{\beta}{2}} (a_{i}^{\dagger} a_{i} + \ell_{N}^{0}), \quad \ell_{N}^{0} = \frac{N}{2} + \sqrt{\frac{N^{2}}{4} + \frac{1}{\beta^{2}}}. \quad (12)$$

Graphs of thermodynamic properties

Representation of deformed su(1,1) algebra

The action of the above realizations on the state $|\ell_N^0, n_i\rangle$ $(n_i = 0, 1, 2, \cdots)$, gives

$$\mathcal{C}|\ell_N^0, n_i\rangle = \frac{\beta}{2}\ell_N^0(\ell_N^0 - 1)|\ell_N^0, n_i\rangle, \qquad (13)$$

$$\mathcal{J}_i^0|\ell_N^0,n_i\rangle = \sqrt{\frac{\beta}{2}}(n_i + \ell_N^0)|\ell_N^0,n_i\rangle, \qquad (14)$$

$$\mathcal{J}_{i}^{-}|\ell_{N}^{0},n_{i}\rangle=\sqrt{\frac{\beta}{2}n_{i}(2\ell_{N}^{0}+n_{i}-1)}|\ell_{N}^{0},n_{i}-1\rangle,$$
 (15)

$$\mathcal{J}_{i}^{+}|\ell_{N}^{0},n_{i}\rangle = \sqrt{\frac{\beta}{2}(n_{i}+1)(2\ell_{N}^{0}+n_{i})}|\ell_{N}^{0},n_{i}+1\rangle.$$
(16)

Thermodynamic properties

Graphs of thermodynamic properties

Eigenvalue equation

We can write the eigenvalue equation,

$$\mathcal{H}_{\text{free}}|\ell_{N}^{0},n_{i}\rangle=\mathcal{E}_{N,n}^{0,\beta}|\ell_{N}^{0},n_{i}\rangle,\tag{17}$$

where

$$\mathcal{E}_{N,n}^{0,\beta} = \hbar\omega\beta \left[\ell_N^k (n + \frac{N}{2}) + \frac{1}{2}n^2 \right]$$
(18)

and

$$|\ell_N^0, n\rangle = \prod_{i=1}^N \sqrt{\frac{2^{n_i} \Gamma(2\ell_N^0)}{(\beta)^{n_i} n_i ! \Gamma(n_i + 2\ell_N^0)}} (\mathcal{J}_i^+)^{n_i} |\ell_N^0, 0\rangle.$$
(19)

Graphs of thermodynamic properties

N-dimensional isotropic harmonic oscillator

Now, we can write the Hamiltonian in the following form

$$H_{N}^{k} = \hbar\omega\beta \sum_{i=1}^{N} \left[\ell_{N}^{k} (a_{i}^{\dagger}a_{i} + \frac{N}{2}) + \frac{1}{2} (a_{i}^{\dagger}a_{i})^{2} \right] + \frac{1}{2} \hbar\omega\beta L^{2}, \quad (20)$$

where

$$L^{2} = k(k + N - 2), \quad \ell_{N}^{k} = \frac{N}{2} + \sqrt{\frac{N^{2}}{4} + L^{2} + \frac{1}{\beta^{2}}}.$$
 (21)

Graphs of thermodynamic properties

Spectrum of H_N^k

It is a straightforward exercise to obtain the eigenvalues

$$\mathcal{E}_{N,n}^{k,\beta} = \hbar\omega\beta \left[\ell_N^k (n + \frac{N}{2}) + \frac{1}{2}n^2 + \frac{1}{2}k(k + N - 2) \right], \qquad (22)$$

associated to the eigenstates

$$|\ell_{N}^{k},n\rangle = \prod_{i=1}^{N} \sqrt{\frac{2^{n_{i}} \Gamma(2\ell_{N}^{k})}{(\beta)^{n_{i}} n_{i}! \Gamma(n_{i}+2\ell_{N}^{k})}} (\mathcal{J}_{i}^{+})^{n_{i}} |\ell_{N}^{k},0\rangle.$$
(23)

(日)

Graphs of thermodynamic properties

Particular cases

the one-dimensional result can be reproduced from this expression by setting N = 1 and $L^2 = 0$,

$$\mathcal{E}_{1,n}^{0,\beta} = \hbar\omega\beta \left[\ell_1^0(n+\frac{1}{2}) + \frac{1}{2}n^2 \right], \quad \ell_1^0 = \frac{1}{2} + \sqrt{\frac{1}{4} + \frac{1}{\beta^2}}.$$
 (24)

・ロット 小型マン キョマ

Graphs of thermodynamic properties

Particular cases

For the N = 2 and N = 3 cases, the explicit expressions are

$$\mathcal{E}_{2,n}^{k,\beta} = \hbar\omega\beta \left[\ell_2^k(n+1) + \frac{1}{2}(n^2 + k^2) \right], \quad \ell_2^k = 1 + \sqrt{1 + k^2 + \frac{1}{\beta^2}}.$$
(25)

$$\mathcal{E}_{3,n}^{k,\beta} = \hbar\omega\beta \left[\ell_3^k (n+\frac{3}{2}) + \frac{1}{2} [n^2 + k(k+1)] \right],$$

$$\ell_3^k = 1 + \sqrt{\frac{9}{4} + k(k+1) + \frac{1}{\beta^2}}.$$
 (26)

Thermodynamic properties

Graphs of thermodynamic properties

Outline

1 Deformed N-dimensional Harmonic oscillator

- 2 Thermodynamic properties
 - 3 Graphs of thermodynamic properties

• □ > < □ > < □ > < □ > < □ >

Graphs of thermodynamic properties

Vibratory partition function

We study the thermodynamic properties of *N* identical and independent deformed harmonic oscillators (one-dimensional)

$$Z(\alpha) = \sum_{n=0}^{[\lambda]} e^{-\alpha \mathcal{E}_{N,n}^{0,\beta}}$$
$$= \left[\sum_{n=0}^{[\lambda]} e^{-\alpha \hbar \omega \beta \left[\ell_1^0(n+\frac{1}{2}) + \frac{1}{2}n^2 \right]} \right]^N, \qquad (27)$$

where $\alpha = \frac{1}{k_B T}$, k_B is the Boltzmann constant and $\ell_1^0 = \ell = \frac{1}{2} + \sqrt{\frac{1}{4} + \frac{1}{\beta^2}}$.

Thermodynamic properties

Graphs of thermodynamic properties

Classical limit

In the classical limit, at high temperature *T* for large $[\lambda]$, the sum can be replaced by the following integral, $[\lambda] = \lambda - 1$.

• □ > < □ > < □ > < □ > < □ >

Thermodynamic properties

Graphs of thermodynamic properties

Vibratory partition function

$$Z(\alpha) = \left[\int_{0}^{\lambda} e^{-\alpha\hbar\omega\beta \left[\ell_{1}^{0}(n+\frac{1}{2})+\frac{1}{2}n^{2}\right]} dn\right]^{N}$$
$$= \left[\sqrt{\frac{\pi}{2c\alpha}} e^{\alpha\tilde{c}} \left(\operatorname{erf}\left[\sqrt{\alpha}\tilde{a}\right] - \operatorname{erf}\left[\sqrt{\alpha}\tilde{b}\right]\right)\right]^{N} \quad (28)$$

where

$$c = \hbar\omega\beta, \quad \tilde{c} = \frac{1}{2}c\,\ell(\ell-1), \quad \tilde{a} = \sqrt{\frac{1}{2}c}\,(\lambda+\ell), \quad \tilde{b} = \sqrt{\frac{1}{2}c}\,\ell,$$
(29)
$$erf(z) = \frac{2}{\sqrt{\pi}}\int_{0}^{z}e^{-t^{2}}dt.$$
(30)

Thermodynamic properties

Graphs of thermodynamic properties

The vibrational mean energy U

$$\begin{aligned}
\mathcal{I}(\alpha) &= -\frac{\partial}{\partial \alpha} \ln Z(\alpha) \\
&= N\left(\frac{1}{2\alpha} - \tilde{c} - \frac{\Lambda}{\sqrt{\pi \alpha}\Omega}\right),
\end{aligned}$$
(31)

where

$$\Omega = \operatorname{erf}\left(\sqrt{\frac{1}{2}c\alpha}(\lambda+\ell)\right) - \operatorname{erf}\left(\sqrt{\frac{1}{2}c\alpha}\ell\right), \quad \Lambda = \tilde{a}e^{-\tilde{a}^{2}\alpha} - \tilde{b}e^{-\tilde{b}^{2}\alpha}.$$
(32)

Thermodynamic properties

Graphs of thermodynamic properties

Vibrational specific heat C

$$C(\alpha) = -k_{B}\alpha^{2}\frac{\partial U}{\partial\alpha}$$

$$= -Nk_{B}\alpha^{2}\left[-\frac{1}{2\alpha^{2}} + \frac{1}{\sqrt{\pi\alpha\Omega}}\left(\tilde{a}^{3}e^{-\tilde{a}^{2}\alpha} - \tilde{b}^{3}e^{-\tilde{b}^{2}\alpha}\right) + \frac{\Lambda}{\sqrt{\pi\Omega}}\left(\frac{1}{2\alpha^{\frac{3}{2}}} + \frac{\Lambda}{\sqrt{\pi\alpha\Omega}}\right)\right].$$
(33)

< □ > < □ > < □ > < □ > < □ > < □ >

Thermodynamic properties

Graphs of thermodynamic properties

Vibrational mean free energy F

$$F(\alpha) = -\frac{N}{\alpha} \ln Z(\alpha)$$

= $-\frac{N}{\alpha} \left(\ln \sqrt{\frac{\pi}{2\alpha c}} + \tilde{c}\alpha + \ln \Omega \right).$ (34)

<ロト < 回 > < 回 > < 回 > < 回 >

Thermodynamic properties

Graphs of thermodynamic properties

Vibrational entropy S

$$S(\alpha) = Nk_{B} \ln Z(\alpha) - Nk_{B}\alpha \frac{\partial}{\partial \alpha} \ln Z(\alpha)$$

$$= Nk_{B} \left(\ln \sqrt{\frac{\pi}{2\alpha c}} + \tilde{c}\alpha + \ln \Omega \right)$$

$$+ Nk_{B}\alpha \left(\frac{1}{2\alpha} - \tilde{c} - \frac{\Lambda}{\sqrt{\pi \alpha \Omega}} \right).$$
(35)

・ロン ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Thermodynamic properties

Graphs of thermodynamic properties

Outline

Deformed N-dimensional Harmonic oscillator

- 2 Thermodynamic properties
- Graphs of thermodynamic properties

• □ > < □ > < □ > < □ > < □ >

Thermodynamic properties

Graphs of thermodynamic properties

Figure 2: Vibrational partition function (27) as a function of $\rho = T/T_D$ for different values of β . In (a): $\lambda = 50$, in (b): $\lambda = 100$, in (c) : $\lambda = 150$, and in (d): $\lambda = 200$

Thermodynamic properties

Graphs of thermodynamic properties

Figure 3: Specific heat capacity of lead(*Pb*, $T_D = 105K$), silver(*Ag*, $T_D = 225K$), aluminum(*Al*, $T_D = 428K$) and diamond($T_D = 2230K$) as a function of temperature.

Thermodynamic properties

Graphs of thermodynamic properties

Conclusion

- The solutions of the deformed N-dimensional harmonic oscillator in the presence of a minimal length have been obtained by the algebraic method.
- The hidden symmetry su(1,1) has been identified for the N free deformed harmonic oscillators. This latter is considered as a one-dimensional deformed crystal of N identical and independent atoms.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Thermodynamic properties

Graphs of thermodynamic properties

Conclusion

- These maxima, obtained at the level of the curvatures of the curve representing the specific heat, neither show nor indicate the existence of a phase transition.
- In the limit β → 0, the specific heat of a crystalline body is independent of the temperature and of the body considered for large values of the temperature: Dulong-Petit law

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Graphs of thermodynamic properties

THANKS!

< □ > < □ > < □ > < □ > < □ > < □ >