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Standard Heisenberg algebra

The ordinary quantum mechanics is governed by the standard

Heisenberg algebra gives as follows

[x ,p] = i~11. (1)
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Standard Heisenberg algebra

♣ Then it is not possible to simultaneously measure these

two observable quantities which are said to be

complementary.

♣ The notion of phase space disappears in quantum

mechanics, and the quantum object is in fact completely

described by its wave function.
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Heisenberg Uncertainty Principle

The commutation relation is directly related to the uncertainty

relation through the formula

∆A∆B ≥ |〈[A,B]〉| (2)

So, we have

∆x∆p ≥ ~

2
. (3)

The more localized the particle, the less defined its momentum,

and vice versa.
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Deformed Heisenberg algebra

♣ The deformed Heisenberg algebra

[X ,P] = i~(1 + τp2)11, τ =
β

~mω
, 0 ≤ β ≤ 1 (4)

It has been rigorously studied by Kempf and his

collaborators in 1995.

♣ The generalized uncertainty relation gives:

∆X∆P ≥ ~

2
{1 + τ(∆P)2 + τ〈P〉2}. (5)
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Generalized uncertainty relation
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Figure 1: The generalized uncertainty relation, implying a

minimal length (∆Xmin =
√
β) .
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Several models

The one-dimensional and multi-dimensional harmonic

oscillator. The problem of a charged particle of spin 1/2

moving in a constant magnetic field, the one, two and

three-dimensional Dirac oscillator, the hydrogen atom...

Several methods

The method approximation, the Nikiforov-Uvarov method,

supersymmetric quantum mechanics...
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Hamiltonian

In the N−dimensional space the deformed Hamiltonian is

defined by

H =
N
∑

i=1

(

1

2m
PiPi +

1

2
mω2XiXi

)

=
1

2m
P2 +

1

2
mω2X 2, (6)
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Commutation relations

The operators Xi and Pi satisfy the following commutation

relations

[Xi ,Pj ] = i~(1 + τP2)δij11, P2 =

N
∑

i=1

PiPi . (7)

With the representation

Xi = i~(1 + τp2)
∂

∂pi
, Pi = pi , (8)
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Rotational symmetry

It is a lucky circumstance that rotational symmetry is preserved.

This means that isotropic systems can be reduced to a

quantization of some effective one-dimensional model on the

positive real line.
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N free deformed harmonic oscillators

The following N free deformed harmonic oscillators

Hfree =
~ω

2

N
∑

i=1

(

J +
i J−

i + J −
i J+

i

)

, (9)

where J±
i are the generators of the su(1,1) algebra in N

dimensions.



Deformed N-dimensional Harmonic oscillator Thermodynamic properties Graphs of thermodynamic properties

16

Generators of the su(1,1) algebra

The J ±
i are the generators of the su(1,1) algebra in N

dimensions and satisfy the following algebra

[J −
i
,J+

i
] = 2

√

β

2
J 0

i , [J 0
i ,J ±

i
] = ±

√

β

2
J±

i
, (10)

where

J−
i =

√

β

2
(a†

i ai + 2ℓ0
N)ai , J−

i = a
†
i

√

β

2
(a†

i ai + 2ℓ0
N), (11)

J 0
i =

√

β

2
(a†

i ai + ℓ0
N), ℓ0

N =
N

2
+

√

N2

4
+

1

β2
. (12)



Deformed N-dimensional Harmonic oscillator Thermodynamic properties Graphs of thermodynamic properties

17

Representation of deformed su(1,1) algebra

The action of the above realizations on the state |ℓ0
N ,ni〉

(ni = 0,1,2, · · · ), gives

C|ℓ0
N ,ni〉 =

β

2
ℓ0

N(ℓ
0
N − 1)|ℓ0

N ,ni〉, (13)

J 0
i |ℓ0

N ,ni〉 =
√

β

2
(ni + ℓ0

N)|ℓ0
N ,ni〉, (14)

J−
i |ℓ0

N ,ni〉 =
√

β

2
ni(2ℓ

0
N + ni − 1)|ℓ0

N ,ni − 1〉, (15)

J +
i |ℓ0

N ,ni〉 =
√

β

2
(ni + 1)(2ℓ0

N + ni)|ℓ0
N ,ni + 1〉. (16)
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Eigenvalue equation

We can write the eigenvalue equation,

Hfree|ℓ0
N ,ni〉 = E0,β

N,n|ℓ
0
N ,ni〉, (17)

where

E0,β
N,n = ~ωβ

[

ℓk
N(n +

N

2
) +

1

2
n2

]

(18)

and

|ℓ0
N ,n〉 =

N
∏

i=1

√

2niΓ(2ℓ0
N)

(β)ni ni !Γ(ni + 2ℓ0
N)

(J +
i
)ni |ℓ0

N ,0〉. (19)
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N-dimensional isotropic harmonic oscillator

Now, we can write the Hamiltonian in the following form

Hk
N = ~ωβ

N
∑

i=1

[

ℓk
N(a

†
i ai +

N

2
) +

1

2
(a†

i ai)
2

]

+
1

2
~ωβL2, (20)

where

L2 = k(k + N − 2), ℓk
N =

N

2
+

√

N2

4
+ L2 +

1

β2
. (21)
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Spectrum of Hk
N

It is a straightforward exercise to obtain the eigenvalues

Ek ,β
N,n

= ~ωβ

[

ℓk
N(n +

N

2
) +

1

2
n2 +

1

2
k(k + N − 2)

]

, (22)

associated to the eigenstates

|ℓk
N ,n〉 =

N
∏

i=1

√

2niΓ(2ℓk
N
)

(β)ni ni !Γ(ni + 2ℓk
N
)
(J +

i )ni |ℓk
N ,0〉. (23)
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Particular cases

the one-dimensional result can be reproduced from this

expression by setting N = 1 and L2 = 0,

E0,β
1,n = ~ωβ

[

ℓ0
1(n +

1

2
) +

1

2
n2

]

, ℓ0
1 =

1

2
+

√

1

4
+

1

β2
. (24)
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Particular cases

For the N = 2 and N = 3 cases, the explicit expressions are

Ek ,β
2,n = ~ωβ

[

ℓk
2(n + 1) +

1

2
(n2 + k2)

]

, ℓk
2 = 1+

√

1 + k2 +
1

β2
.

(25)

Ek ,β
3,n = ~ωβ

[

ℓk
3(n +

3

2
) +

1

2
[n2 + k(k + 1)]

]

,

ℓk
3 = 1 +

√

9

4
+ k(k + 1) +

1

β2
. (26)
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Vibratory partition function

We study the thermodynamic properties of N identical and

independent deformed harmonic oscillators (one-dimensional)

Z (α) =

[λ]
∑

n=0

e
−αE

0,β
N,n

=





[λ]
∑

n=0

e−α~ωβ[ℓ0
1
(n+ 1

2
)+ 1

2
n2]





N

, (27)

where α = 1
kBT , kB is the Boltzmann constant and

ℓ0
1 = ℓ = 1

2 +
√

1
4 + 1

β2 .
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Classical limit

In the classical limit, at high temperature T for large [λ], the

sum can be replaced by the following integral, [λ] = λ− 1.
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Vibratory partition function

Z (α) =

[
∫ λ

0

e−α~ωβ[ℓ0
1
(n+ 1

2
)+ 1

2
n2]dn

]N

=

[
√

π

2cα
eαc̃

(

erf
[√

αã
]

− erf
[√

αb̃
])

]N

(28)

where

c = ~ωβ, c̃ =
1

2
c ℓ(ℓ− 1), ã =

√

1

2
c (λ+ ℓ), b̃ =

√

1

2
c ℓ,

(29)

erf(z) =
2√
π

∫ z

0

e−t2

dt . (30)
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The vibrational mean energy U

U(α) = − ∂

∂α
lnZ (α)

= N

(

1

2α
− c̃ − Λ√

παΩ

)

, (31)

where

Ω = erf

(

√

1

2
cα(λ+ ℓ)

)

−erf

(

√

1

2
cαℓ

)

, Λ = ãe−ã2α−b̃e−b̃2α.

(32)
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Vibrational specific heat C

C(α) = −kBα
2 ∂U

∂α

= −NkBα
2

[

− 1

2α2
+

1√
παΩ

(

ã3e−ã2α − b̃3e−b̃2α
)

+
Λ√
πΩ

(

1

2α
3
2

+
Λ√
παΩ

)]

. (33)
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Vibrational mean free energy F

F (α) = −N

α
lnZ (α)

= −N

α

(

ln

√

π

2αc
+ c̃α+ lnΩ

)

. (34)
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Vibrational entropy S

S(α) = NkB lnZ (α)− NkBα
∂

∂α
lnZ (α)

= NkB

(

ln

√

π

2αc
+ c̃α+ lnΩ

)

+ NkBα

(

1

2α
− c̃ − Λ√

παΩ

)

. (35)
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Figure 2: Vibrational partition function (27) as a function of

ρ = T/TD for different values of β. In (a): λ = 50, in (b):

λ = 100, in (c) :λ = 150, and in (d): λ = 200.
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Figure 3: Specific heat capacity of lead(Pb,TD = 105K ),

silver(Ag,TD = 225K ), aluminum(Al ,TD = 428K ) and

diamond( TD = 2230K ) as a function of temperature.
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♣ The solutions of the deformed N-dimensional harmonic

oscillator in the presence of a minimal length have been

obtained by the algebraic method.

♣ The hidden symmetry su(1,1) has been identified for the

N free deformed harmonic oscillators. This latter is

considered as a one-dimensional deformed crystal of N

identical and independent atoms.
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♣ These maxima, obtained at the level of the curvatures of

the curve representing the specific heat, neither show nor

indicate the existence of a phase transition.

♣ In the limit β −→ 0, the specific heat of a crystalline body

is independent of the temperature and of the body

considered for large values of the temperature:

Dulong-Petit law
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