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Motivation

• Nair (2001) consider a case of a charged particle in a magnetic field with a
harmonic oscillator (HO) potential and shows that a critical point with the
density of states becoming infinite for the value of the magnetic field equal to
the inverse of the noncommutativity parameter.

• The higher-dimensional HO in noncommutative phase space (NCPS) cannot
simply be divided into independent 1d HO, and the calculation of the energy
spectra is very complicated if using the normal methods in NCPS.

• Note that, despite the large number of models studied in the literature,
anharmonicity of vibration plays an important role in several branches of
physics. Its importance was first recognized in acoustics with the alteration of
the pitch of overtones of mode with intensity changes were successfully
accounted for as the effects of the anharmonicity of the oscillator.

• Recently, the subject has acquired a fresh interest in relation to the subject of
molecular spectroscopy. The thermal expansion of crystals also owes its
origin to the anharmonic nature of the vibrations inside a crystal lattice.
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• To our knowledge, the explicit expression of the energy spectra of an
anisotropic HO in generalized NCPS has not been reported in the literature
so far.

• All these formal aspects and relevant effects of noncommutativity, researchers
used many methods: factorization method; perturbation method; eigen-ope-
rator method . . ., to study a quantum exactly solvable higher-dimensional NC
oscillator with quasi-harmonic behaviour.

The case of noncommutativity with: anharmonic oscillator; anisotropic harmonic
oscillator received little attention, even though it deserves also to be investigated
in order to analyze the properties of a wide class of physical systems in NCPS.
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Scientific questions

The scientific questions that immediately arise are:

• How the noncommutativity of space removes the degeneracies of spectrum
thought a system of particles plunged into anharmonic potential?

• How to compute the energy Spectra of an anisotropic HO in a Generalized
NCPS by using the Invariant eigen-operator method?
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A 2-d anharmonic oscillator

Let us consider a physical model for a 2-d anharmonic oscillator moving in a
noncommutative plane described by the following quantum Hamiltonian:

H =
1

2m
(p̂2

1 + p̂2
2) +

1

2
mω2(x̂2

1 + x̂2
2 ) + α(x̂2

1 + x̂2
2 )2, (1)

where x̂1, x̂2, p̂1 and p̂2 are the noncommutative coordinates expressed by

x̂i = xi −
θ

2~
εi,jpj , p̂i = pi +

η

2~
εi,jxj where ε12 = −ε21 = 1, (2)

which satisfy the following canonical commutation relations:

[x̂i , p̂j ] = i~δ̃i,j , [x̂i , x̂j ] = iθi,j , [p̂i , p̂j ] = iηi,j ∀i , j = 1, 2 (3)
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2-d anharmonic oscillator

The Hamiltonian (1) can be viewed as the unperturbed Hamiltonian H0 of the
usual 2-d harmonic oscillator

H0 =
1

2M
(p2

1 + p2
2) +

MΩ̃2

2
(x2

1 + x2
2 )−

(
MΩ̃2

2

θ

~
+$

η

~

)
(x1p2 − x2p1), (4)

perturbed by the anharmonic term α(x̂2
1 + x̂2

2 )2, where

M =
m

1 + m2ω2θ2

4~2

, Ω̃ =

√
(m2θ2ω2 + 4~2)(4m2ω2~2 + η2)

4m~2

and $ =
1

2M

(
4~2 −M2Ω̃2θ2

4~2 + ηθ

)
. (5)
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The lowering and raising operators are given by:

aj =

√
MΩ̃

2~

(
xj + i

pj

MΩ̃

)
, a†j =

√
MΩ̃

2~

(
xj − i

pj

MΩ̃

)
, j = 1, 2, (6)

and the unperturbed non-diagonal Hamiltonian (4) leads to

H0 = ~Ω̃(a†1a1 + a†2a2 + 1) + i(
MΩ̃2θ

2
+$η)(a†1a2 − a†2a1). (7)

Using the following unitary transformations

(
a1

a2

)
= 1√

2

(
1 −i
i −1

)(
â1

â2

)
,

the Hamiltonian (7) takes the diagonalized form and its eigenvalues are

E (0)
n1,n2

= ~Ω̃(n1 + n2 + 1)− (
MΩ̃2θ

2
+$η)(n1 − n2). (8)

These eigenvalues are non-degenerate, what is a priori unexpected.
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Anharmonic term
In term of ladder operators, the anharmonic term yields to

(x̂2
1 + x̂2

2 ) = 4β̃2(N̂1 +
1

2
) + 4γ̃2(N̂2 +

1

2
) + 4i β̃γ̃(â†1â

†
2 − â1â2) (9)

where β̃ = 1
2

(√
~

MΩ̃
−
√

MΩ̃θ2

4~

)
and γ̃ = 1

2

(√
~

MΩ̃
+
√

MΩ̃θ2

4~

)
.

In Fock space, we use the perturbation theory to compute the anharmonic term as

α(x̂2
1 + x̂2

2 )2|n1, n2〉(0) =
2∑

j = −2

C̃ (j)
n1,n2
|n1 + j , n2 + j〉(0), (10)

where C̃ (−2)
n1,n2

= −16αβ̃2γ̃2
√
n1n2(n1 − 1)(n2 − 1),

C̃ (−1)
n1,n2

= −32iαβ̃γ̃(β̃2n1 + γ̃2n2)
√
n1n2, (11)
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C̃ (0)
n1,n2

= 16α[β̃4

(
n1 +

1

2

)2

+ γ̃4

(
n2 +

1

2

)2

+ 2β̃2γ̃2

(
2n1n2 + n1 + n2 +

3

4

)
]

C̃ (1)
n1,n2

= 32iαβ̃γ̃
√

(n1 + 1)(n2 + 1)
[
β̃2(n1 + 1) + γ̃2(n2 + 1)

]
,

C̃ (2)
n1,n2

= −16αβ̃2γ̃2
√

(n1 + 1)(n2 + 1)(n1 + 2)(n2 + 2).

Proposition 1:

To the first order of the correction, the n-th energy level of the system are given by

En1,n2 ' ~Ω̃(n1 + n2 + 1)−

(
MΩ̃2θ

2
+$η

)
(n1 − n2)+16α

[
β̃2

(
n1 +

1

2

)
+γ̃2

(
n2 +

1

2

)]2

+16αβ̃2γ̃2 [n1n2 + (n1 + 1)(n2 + 1)]. (12)

In limit θ, η → 0, they reduce to the degenerate form E
(0)
n1,n2 → ~ω(n1 + n2 + 1).
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Proposition 2:

First and second order the n-th level excited state are given by

|n1, n2〉 ' |n1, n2〉(0) + α

2∑
j = −2(j 6= 0)

C̃
(j)
n1,n2

−2j~Ω̃
|n1 + j , n2 + j〉(0), (13)

|n1, n2〉 ' |n1, n2〉(0) + α|n1, n2〉(1) + α2
∞∑

k 6= n

∞∑
k′ 6= n

{
H1kk′H1k′n

∆E 0
nk∆E 0

nk′
|ϕ0

k〉

−
|ϕ0

k〉
(
H1nn − 1

2H1nk

)
H1kn

(∆E 0
nk)2

}
, (14)

where k = (k1, k2), |ϕ0
n〉 ≡ |n1, n2〉(0), H1nk ≡ 〈ϕ0

k|H1|ϕ0
n〉 and ∆E 0

nk ≡ E 0
n − E 0

k .
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Proposition 3:

The arbitrary excited wave function of the unperturbed problem are given by

Ψ1,2,(0)
n1,n2

= (−1)n2

√
n1!n2!

2(n1+n2)
Ψ

1,2,(0)
00

n1∑
k1=0

n2∑
k2=0

ik1+k2H1
n1−∆kH

2
n2+∆k

k1!k2!(n1 − k1)!(n2 − k2)!
(15)

where ∆k := k1 − k2, Ψ1,2
n := Ψn(x1, x2), H i

n := Hn(
√
δxi ) represents Hermite

polynomial of degree n and δ = MΩ̃
~ .

The first order correction to the ground state is given by

Ψ
1,2,(1)
00 =

8β̃γ̃

~Ω

[
−2i(β̃2 + γ̃2)Ψ

1,2,(0)
11 + β̃γ̃Ψ

1,2,(0)
22

]
(16)

and the first order approximation to the ground state leads to

Ψ1,2
00 = Ψ

1,2,(0)
00 + αΨ

1,2,(1)
00 . (17)
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3-d anisotropic harmonic oscillator (HO)

Invariant eigen operator method

Let us compute energy-level gap for an 3-d anisotropic HO in NCPS whose Hamil-

tonian Ĥ =
∑3

i=1(
p̂2

i

2m + 1
2mω

2
i x̂

2
i ) does not depend explicitly on time and assume

that F̂ =
∑3

i=1(ai x̂i + bi p̂i ) is invariant under the action i~ d
dt . With |Ψm〉, |Ψn〉

two adjacent eigenstates of Ĥ, the Heisenberg equation motion d
dt F̂ = i

~ [F̂ , Ĥ]

[F̂ , Ĥ] = λ F̂ , (18)

where λ = (En − Em) denote the energy gap.

The key point of the method relies on finding the appropriate invariant eigen-
operators for the Hamiltonian. If, for some cases, finding invariant eigen-operators
via a single commutator calculation fails, we should try the calculation of double

commutators through the equation
(
i~ d

dt

)2
F̂ =

[
[F̂ , Ĥ], Ĥ

]
= λF̂ .
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In this case the energy gap between the two adjacent levels is
√
λ. This method is

called invariant eigen-operator method. Once the invariant eigen-operator F̂ is
found, some information about the eigenvalues can be obtained.

Noncommutative phase space

Let us consider a NCPS described by the operators x̂i and p̂i

x̂i = xi −
θi,j

2~
pj p̂i = pi +

ηi,j

2~
xj . (19)

They satisfy the following extended Heisenberg algebra:

[x̂i , p̂j ] = i~δ̃i,j , [x̂i , x̂j ] = iθi,j , [p̂i , p̂j ] = iηi,j (20)

where θi,j = εi,j,kθk , ηi,j = εi,j,kηk , δ̃i,j = ~eff

~ δi,j − θiηj

4~2 , ~eff = ~
(

1 +
~θ·~η
4~2

)
and

θi and ηi are positive real parameters.
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Condition for the existing of nonzero solutions

Using the Weyl Heisenberg algebra (20), the eigenvector-like equation (18)
transform to the system of linear homogeneous algebraic equations of the variables
a1, a2, a3, b1, b2 and b3 respectively for 1-d and 3-d anisotropic HO. Then, the
necessary and sufficient condition for the existing of nonzero solutions are

∣∣∣∣∣ iλ −mω2~eff

~eff

m iλ

∣∣∣∣∣ = 0 and

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

iλ
mω2

1
−θ 0 −~eff 0 0

θ iλ
mω2

2
0 0 −~eff 0

0 0 iλ
mω 2 0 0 −~

~eff 0 0 imλ −η 0

0 ~eff 0 η imλ 0

0 0 ~ 0 0 imλ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (21)
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Energy-level gaps

Then, the energy-level gaps for ω1 = ω2 6= ω are given by

λ = ± ~eff ω and λ =

 λ−1 = −~ ω̃ − ε, λ−2 = ~ ω̃ − ε
λ+

1 = −~ ω̃ + ε λ+
2 = ~ ω̃ + ε

λ−3 = −~ω , λ+
3 = ~ω

(22)

where ω̃ = ω1

√
θ2η2

16~4 +
m2ω2

1θ
2

4~2 + η2

4m2~2ω2
1

+ 1 and ε = 1
2 ( ηm + mω2

1θ).

Proposition

Since the energy-level gaps do not depend on the quantum numbers, the energy
spectra derived from the 3-d anisotropic HO may be unique and given by

En1,n2,n3 = ~ω ( n1 +
1

2
) + ~ ω̃(n2 + n3 + 1) + ε(n3 − n2). (23)

The minimal energy level of the system is given by E0 = ~
2 (ω + 2ω̃).
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Wavefunction

In cylindrical coordinates (r , φ , z), following a similar method as in a
commutative space case, the Schrödinger equation of the system translates to two
equations witch the radial equation describes a system of 2-d particle moving in
the perpendicular homogeneous field in the circular gauge.

Ψ( s, φ, z̃) =

√
c δ

1
2 !

π
3
2 2 n n!(+ |`|)!

s
|`|
2 e−

s+z̃2−2 i |`|φ
2 1F1( ; |`|+ 1; s)H n(z̃). (24)

Recurrence relation

Let construct ladder operators with the property L̂±|〉 = c±|± 1〉 for the
solution of the radial euation as generalized Laguerre functions

|〉 ≡
√

`! 2c
!(+`)! s

`
2 e−

1
2 sL

(`)
 ( s), and the recurrence relation is given by

c+Ω+1( s) + c−Ω−1( s)− (2+ `+ 1− s)Ω( s) = 0. (25)

Jeannot M. Allognon Anharmonic oscillator in a NCPS



2-d anharmonic oscillator
3-d anisotropic harmonic oscillator (HO)

Concluding remarks
Associated wavefunctions for the system

Dynamic symmetry group SU(1, 1)

The ladder operators L̂+ = s d
d s −

s
2 + `

2 + ̂+ 1 and L̂− = − s d
d s −

s
2 + `

2 + ̂ are
obtained with its realizations in the basis of the functions Ω( s).

We obtain Ω( s) = 1√
!(`+1)

∏−1
k=0 L̂+( s, − 1− k)Ω0( s) and the operator L̂−

annihilates the ground state |0〉. Thus [L̂−, L̂+]|〉 = (2+ `+ 1)|〉.
Note that in the basis spanned by the generalized Laguerre functions |〉 the
operators L̂± and L̂0 := ̂+ `+1

2 satisfy the commutation relations of the su(1, 1)
algebra, which is isomorphic to an so(2, 1) algebra as follows:

[L̂−, L̂+] = 2L̂0, [L̂0, L̂±] = ±L̂±. (26)

The UIRs of the so(2, 1) having unbounded L̂0 eigenvalues spectra are from the
general class D(J (J + 1),M0) given by D±(J ).

The Casimir operator can be written as Ĉ = L̂0(L̂0 − 1)− L̂+L̂−, with the

property Ĉ|〉 = 1
4 (`2 − 1)|〉.
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(i) The energy spectra (8) are non-degenerate, this could have an important
impact on our conception of the quantum structure of the nature of physical
systems. In the absence of other perturbing potentials, the system is
invariant under the 2-d translation group and the conserved charge can be
identified with the center of the Landau orbit.

(ii) Energy spectra of an anisotropic HO have been derived in various situations
in a NCPS by using the eigen-operator technic. In the limit that the two
noncommutativity parameters vanish, the results (??) conform to one’s
expectations of the behaviour of a NC system.

(iii) Using the factorization method, the associated dynamic su(1, 1) Lie algebra
generators have been constructed thanks to their representations in the radial
wave functions basis solutions of the radial equation.

(v) In addition, the Landau problem resembles to a 2-d HO on NCS by
Sayipjamal et al (2008) and in the situation that ω1 = ω2 = ω, the results
(23) reduce to 3-d isotropic HO, Hounkonnou et al (2010).
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Thank you for your attention
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