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I Les espace-temps à symétrie maximale: Minkowski, de Sitter et anti-de-Sitter

Un panorama du groupe de Poincaré et de ses deux déformations, de Sitter et
anti-de-Sitter, est présenté du point de vue de leurs duals (duaux?) unitaires respectifs.
Des applications récentes de ces considérations de symétries en théorie quantique
des champs et en cosmologie sont décrites

ISpace-times with maximal symmetries: Minkowski, de Sitter et anti-de-Sitter

A survey of the Poincaré group and its two deformations, de Sitter and anti-de-Sitter, is
presented from the viewpoint of their respective unitary duals. Recent applications of
these symmetry approaches to quantum field theories and in cosmology are described
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General considerations about the mass

I In Minkowski space-time, the concept of (rest or proper) mass or rest energy
originates in the ubiquitous law of conservation of energy, a direct consequence of
the Poincaré symmetry.

I As soon as we deal with de Sitter or Anti de Sitter space-time (i.e. background),
this concept of mass or rest energy should be thoroughly reconsidered.

I In particular, one might expect to lose a precise distinction between “massive” and
“massless”.

I So, we should look for other properties, e.g. existence or violation of conformal
invariance, of some gauge invariance, in view of extending concepts about mass
inherited from Minkowskian physics.
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Elementary system in the Wigner sense

From T. D. Newton and E. P. Wigner, Localized States for Elementary Systems,
Rev. Mod. Phys. 21, 400-406 (1949)

I The concept of an “elementary system” requires that all states of the system be
obtainable from the relativistic transforms of any state by superpositions. In other
words, there must be no relativistically invariant distinction between the various
states of the system which would allow for the principle of superposition. This
condition is often referred to as irreducibility condition

I The concept of an elementary system (...) is a description of a set of states which
forms, in mathematical language, an irreducible representation space for the
inhomogeneous Lorentz (' Poincaré) group
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Wigner classification of Poincaré UIR’s

From Wigner E.P., On Unitary Representations of the Inhomogeneous Lorentz
Group, Ann. Math. 40, 149-204 (1939)

The unitary irreducible representations (UIR) of the Poincaré group are completely
characterized by the eigenvalues of its two Casimir operators,

I Quadratic (Klein-Gordon operator)

Q(1)
Poincaré = Pµ Pµ = P02 − P2 ≡ P2

(Pµ : translation generators) with eigenvalues

〈Q(1)
Poincaré〉 = m2 c2,

I Quartic (Pauli-Lubanski operator)

Q(2)
Poincaré = WµWµ, Wµ =

1
2
εµνρσJνρPσ ,

(Jνρ: 6 Lorentz generators) with eigenvalues (in the non-zero mass case)

〈Q(2)
Poincaré〉 = −m2 c2 s(s + 1)~2.
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Wigner classification according to mass operator and the little group UIR’s (0ptional)

First Casimir or squared mass Pµ Little group
(a) P2 = m2c2 > 0 ,P0 > 0 (mc, 0, 0, 0) SO(3)

(b) P2 = m2c2 > 0 ,P0 < 0 (−mc, 0, 0, 0) SO(3)

(c) P2 = 0 ,P0 > 0 (κ, κ, 0, 0) ISO(2)

(d) P2 = 0 ,P0 < 0 (−κ, κ, 0, 0) ISO(2)

(e) P2 = N2 > 0 (0,N, 0, 0) SO(2, 1)
(f) Pµ = 0 (0, 0, 0, 0) SO(3, 1)

The only physical cases are respectively

(a) massive representations with positive energy, denoted P>(m, s)

(c) massless representations with positive energy, denoted P>(0, s)

(f) vacuum
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Uniqueness of deformations of Poincaré kinematical symmetry

From H. Bacry and J. M. Levy-Leblond, Possible Kinematics, J. Math. Phys. 9
1605-1614 (1968)

I With the requirements of kinematical rotation, parity, and time-reversal invariance,
there exists only one way to “deform” the Poincaré group, namely, in endowing
space-time with a certain curvature

Downloaded 06 Dec 2005 to 134.157.18.62. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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The question of mass in (Anti-) de Sitter quantum physics

I The classical context
(i) Geometry
(ii) Symmetries

I The quantum context
(i) UIR’s of de Sitter group
(ii) UIR’s of Anti de Sitter group
(iii) Null-curvature limit

I Proper mass and rest energy in “(Anti) desitterian Physics”

I Dark matter as a relic AdS pure curvature energy?
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General Relativity (GR) : Two distinct theories proposed by Einstein

There were elaborated by Einstein to deal respectively with local gravitational
phenomena and within a cosmological context

Theory 1

Rµν −
1
2

R gµν = −κ Tµν − Λ gµν .

Here, the fundamental state that contains the maximum number of symmetries is
the Minkowskian geometry.
Λ > 0 ∼ “dark energy”
Λ < 0 ∼ “dark matter”?

Theory 2

Rµν −
1
2

R gµν + Λ gµν = −κ Tµν .

Here, the fundamental states that contain the maximum number of symmetries
are the de-Sitter (dS) (Λ ≡ ΛdS > 0) and the Anti-de-Sitter (AdS) (Λ ≡ ΛAdS < 0)
geometries.
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General remarks on the interest of dS/AdS studies

I dS and AdS are maximally symmetric
(in a metric space of dimension n, the maximum number of metric preserving symmetries is n(n + 1)/2, here 10 since n = 4)

I Their symmetries are one-parameter deformations of Minkowskian symmetry with
negative curvature −κdS = −H/c = −

√
ΛdS/3 (H : Hubble parameter)

positive curvature κAdS =
√
|ΛAdS|/3

respectively

I As soon as a constant curvature is present (like the currently observed one), we
lose some of our so familiar conservation laws like energy-momentum
conservation!

I What is then the physical meaning of a scattering experiment (“space” in dS is like
the sphere S3, let alone the fact that time is ambiguous)?

I Which relevant “physical” quantities are going to be considered as
(asymptotically? contractively?) experimentally available?
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dS perturbation of minkowskian background (optional)

Typical dimensionless parameter for dS perturbation of minkowskian background,
ϑ ≡ ϑm =: ~

√
Λ√

3mc
= ~ H

mc2 = ~ κdS
mc ≈ 0.293× 10−68 × m−1

kg for some known (rest
minkowskian) masses m and the present day estimated value of the Hubble radius

c/H0 ≈ 1.2× 1026m,
(distance between the Earth and the galaxies which are currently receding from us at the speed of light)

Mass m ϑm ≈
mΛ/
√

3 ≈ 0.293× 10−68kg 1
up. lim. photon mass mγ 0.29× 10−16

up. lim. neutrino mass mν 0.165× 10−32

electron mass me 0.3× 10−37

proton mass mp 0.17× 10−41

W± boson mass 0.2× 10−43

Planck mass MPl 0.135× 10−60

We easily understand from this table that the currently estimated value of the cosmological constant
has no practical effect on our familiar massive fermion or boson fields. Contrariwise, adopting the

de Sitter point of view appears as inescapable when we deal with infinitely small masses, as is
done in standard inflation scenario.
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The symmetries

I De Sitter [resp. Anti-de Sitter] space-times are the unique solutions with maximal
symmetry of the vacuum Einstein’s equations with positive [resp. negative]
cosmological constant Λ. This constant is linked to the (constant) Ricci curvature
4Λ of these space-times

I There exists a fundamental length `Λ :=
√

3/|Λ| or equivalently a universal
frequency νΛ or a universal curvature κΛ = κdS or κAdS

I Respective invariance (in the relativity or kinematical sense) groups : the
ten-parameter de Sitter SO0(1, 4) (or Sp(2, 2)) and anti de Sitter SO0(2, 3) (or
Sp(4,R)) groups.

I Both are deformations of the proper orthochronous Poincaré group
R1,3 o SO0(1, 3) (or R1,3 o SL(2,C)), the kinematical group of Minkowski
spacetime
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de Sitter geometry

I de Sitter space can be viewed as a one-sheeted hyperboloid embedded in a
five-dimensional Minkowski space

MdS ≡ {x ∈ R5; x2 = ηαβ xαxβ = −κ−2
dS }, α, β = 0, 1, 2, 3, 4,

where ηαβ =diag(1,−1,−1,−1,−1)
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Anti de Sitter geometry

I Anti de Sitter space can be viewed as a one-sheeted hyperboloid embedded in
another five-dimensional space with different metric:

MAdS ≡ {x ∈ R5; x2 = ηαβ xαxβ = κ−2
AdS} , α, β = 0, 1, 2, 3, 5,

where ηαβ =diag(1,−1,−1,−1, 1).
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The de Sitter group

I The de Sitter relativity group is G = SO0(1, 4) or its universal covering Sp(2, 2)

Sp(2, 2) =

{
g =

(
a b
c d

)
; a, b, c, d ∈ H, det(g) = 1, g†γ0g = γ0

}
,

g† = g̃t where g̃ is the quaternionic conjugate of g and γ0 =

(
1 0
0 −1

)
I From g†γ0g = γ0, one derives

|a|2 − |c|2 = 1 , |d|2 − |b|2 = 1 , ãb = c̃d ,

I Equivalently

|a|2 − |b|2 = 1 , |d|2 − |c|2 = 1 , ac̃ = bd̃ .

which implies |a| = |d| , |b| = |c|
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Homomorphism between SO0(1, 4) and Sp(2, 2)

I To x ∈ R5 associate the matrix /x built from the Clifford algebra {γα} determined
by: γαγβ + γβγα = 2ηαβ14

/x = xαγα =

(
x0 −x
x̃ −x0

)
, /x = γ0/x†γ0 , /x2 =

(
(x0)2 − |x|2

)
14 = −(x)2

14

with x = (x4,~x) ∈ H

I /x uniquely determines a point x ∈ R5 such that :

xα =
1
4

tr
(
γα/x

)
.

I Sp(2, 2) acts on R5 as

/x′ = g/xg−1 =

(
x′0 −x′

x̃′ −x′0

)
.

and so

x′α =
1
4

tr
(
γα/x′

)
=

1
4

tr
(
γαg/xg−1) =

1
4

tr
(
γαgγβg−1)xβ . (1)

I Hence, Sp(2, 2) is two-to-one homomorphic to SO0(1, 4), with the kernel
isomorphic to Z2:

Sp(2, 2)/Z2 ∼ SO0(1, 4) .
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de Sitter geometry

I A familiar realization of the Lie algebra is that one generated by the ten Killing
(pseudo-rotation generators) vector fields

Kαβ = xα∂β − xβ∂α.

I BUT there is no globally time-like Killing vector in de Sitter, the adjective time-like
(resp. space-like) referring to the Lorentzian four-dimensional metric induced by
that of the bulk.

I In a unitary representation the ten Killing vectors are represented as (essentially)
self-adjoint operators in Hilbert space of (spinor-)tensor valued functions on dS,
square integrable with respect to some invariant K-G like inner product :

Kαβ −→ Lαβ = Mαβ + Sαβ ,

where the orbital part is Mαβ = −i(xα∂β − xβ∂α) and the spinorial part Sαβ acts
on the indices of functions in a certain permutational way.
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dS Unitary Irreducible Representations (UIR)

Like for the UIR’s of the Poincaré group, there are two Casimir operators, the
eigenvalues1 of which determine completely the UIR’s :

Q(1)
dS = −

1
2

LαβLαβ ,

with eigenvalues
〈Q(1)

dS 〉 = −(q + 1)(q− 2)− p(p + 1) .

and
Q(2)

dS = −WαWα, Wα = −
1
8
εαβγδηLβγLδη ,

with eigenvalues
〈Q(2)

dS 〉 = −q(q− 1)p(p + 1) .

1In the Thomas-Newton-Dixmier notations, J. Dixmier, Bull. Soc. Math. France, 89, 9 (1961).
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dS UIR classification (Dixmier, Takahashi)

I The discrete series Π±p,q,
defined by p and q having integer or half-integer values, p ≥ q

(i) The scalar case Πp,0, p = 1, 2, · · · ;

(ii) The spinorial case Π±p,q, q > 0, p = 1
2 , 1, 3

2 , 2, · · · , q = p, p− 1, · · · , 1 or 1
2

I The principal and complementary series UdS(ςdS, s),
where p = s has a spin meaning.
We put ς2

dS + 1
4 = q(1− q), i.e. q = 1

2 ± iςdS

(i) The scalar case for which
(a) −9/4 < ς2

dS < 0 for the complementary series;

(b) 0 ≤ ς2
dS for the principal series.

(ii) The spinorial case for which
(a) −1/4 < ς2

dS < 0, s = 1, 2, · · · , for the complementary series,

(b) 0 ≤ ς2
dS, s = 1, 2, · · · , for the integer spin principal series,

(c) 0 < ς2
dS , s = 1

2 ,
3
2 ,

5
2 · · · , for the half-integer spin principal series.
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Anti de Sitter space-time and complex quaternions

I In order to display the homomorphism between SO0(2, 3) and its two-fold covering
Sp(4,R), namely the real symplectic group, one associates the following 4× 4
complex matrix with any 5-uple yα in R2+3,

y = (yα) 7→ Γ(y) =

(
y+12 YYY
−YYY y−12

)

with y± = y5 ± iy0 and YYY =

(
iy3 iy1 − y2

iy1 + y2 −iy3

)
I We see that YYY is element of the complex quaternionic algebra

HC ∼ H⊗ C ∼M2(C):

HC 3 z = (z4, zzz) 7→ Z(z) =

(
z4 + iz3 iz1 − z2

iz1 + z2 z4 − iz3

)
≡ Z

with det Z = det z, and

z̄ =
(

z4, zzz
)
, z̃ = (z4,−zzz) , z∗ = z̃ = ˜̄z ,
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The AdS group i G = SO0(2, 3) or its two-fold covering Sp(4,R) with complex quaternions and its action on AdS

I The elements of Sp(4,R) are 2× 2 complex quaternionic matrices

Sp(4,R) 3 g =

(
a b
−b̄ ā

)
, a, b ∈ HC ,

such that the inverse g−1 is given by

g−1 =

(
0 1
1 0

)
tg̃
(

0 1
1 0

)
=

(
a∗ b̃
−b∗ ã

)
.

I The complex quaternionic entries of g =

(
a b
−b̄ ā

)
∈ Sp(4,R) obey

aa∗ − bb∗ = 1 and ab̃ = −bã

(or equivalently a∗a− b̃b̄ = 1 and a∗b = −b̃ā), which entails that ab̃ and a∗b
are pure complex quaternions.

I Action of Sp(4,R) on AdS is given by

Sp(4,R) 3 g : Γ(y) 7→ Γ(y′) = g Γ(y) tg̃ .

I There results the homomorphism g ∈ Sp(4,R) 7→ Rg ∈ SO0(2, 3):

Γ(y′) = g Γ(y) tg̃ = Γ(Rgy) .
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AdS Lie algebra

I Like for dS, a realization of the Lie algebra is that one generated by the ten Killing
vectors

Kαβ = xα∂β − xβ∂α.

I Contrarily to dS, there is one globally time-like Killing vector in anti de Sitter,
namely K50.

I The compact nature of the associated one-parameter group (it is just
SO(2) ' U(1) or its double covering) can raise problems. The latter can be

circumvented by dealing with the universal covering G̃ = ˜SO0(2, 3) in which the
“time” SO(2) subgroup becomes R.
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AdS UIR’s

I Physically meaningful UIR’s of the de Anti de Sitter group are found in the
(holomorphic) discrete series and in its lower limits

I Like in dS, the infinitesimal generators read as:

Kαβ −→ Lαβ = Mαβ + Sαβ ,

where the orbital part is Mαβ = −i(xα∂β − xβ∂α) and the spinorial part Sαβ acts
on the indices of functions in a certain permutational way

I In the case of the discrete series and its lower limit, these UIR’s are denoted
UAdS(ςAdS, s) with 2s ∈ N and ςAdS ≥ s + 1 (at the exception of a few cases). The

label s is for spin and
~κ
c
ςAdS for rest “energy” .

For UIR in the strictu senso discrete series of the double covering Sp(4,R), the
parameter ςAdS is such that 2ςAdS ∈ N whilst for “discrete” series UIR of the
universal covering ˜SO0(2, 3) this parameter assumes its values in [s + 1,∞).
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Classification of AdS UIR in the discrete series

I Eigenvalues of the two Casimir operators determine completely the UIR’s :

Q(1)
AdS = −

1
2

LαβLαβ ,

with eigenvalues
〈Q(1)

AdS〉 = ςAdS(ςAdS − 3) + s(s + 1) .

and
Q(2)

AdS = −WαWα, Wα = −
1
8
εαβγδηLβγLδη ,

with eigenvalues

〈Q(2)
AdS〉 = −(ςAdS − 1)(ςAdS − 2)s(s + 1) .

I Among the AdS UIR UAdS(ςAdS, s), one must distinguish between those for which
ςAdS > s + 1, and the following important limit cases 2

(i) The limit scalar cases UAdS(1, 0) and UAdS( 1
2 , 0). The latter is called the “Rac”

(ii) The limit spinorial or tensorial cases UAdS(s + 1, s) and UAdS(1, 1
2 ). The latter is called

the “Di”

2M. Flato and C. Fronsdal, Phys. Lett. B 97
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Minkowskian content of dS and AdS elementary systems

I Now, we wish to go further into the interpretative question of mass and “energy at
rest” in a dS/AdS background

I The crucial question to be addressed concerns the interpretation of the dS/AdS
UIR’s (or quantum AdS and dS elementary systems) from a (asymptotically)
Minkowskian point of view

I We mean by this the study of the contraction limit κ → 0 or equivalently Λ→ 0 of
these representations, which is the quantum counterpart of the following
geometrical and group contractions

“A physical theory that treats spacetime as Minkowskian flat must be obtain-
able as a well-defined limit of a more general physical theory, for which the
assumption of flatness is not essential.” Fronsdal (1965)

J.-P. Gazeau MENAQUAN IMSP 11-16 July 2022



27/45

Motivations Classical context Quantum context Mass & Energy at rest Dark Matter

Flat limit of de Sitter geometry (optional)

I Example of global coordinates on dS, τ := ct ∈ R,~n ∈ S2, α := κdSr ∈ [0, π]:

MdS 3 x :=(x0
,~x = (x1

, x2
, x3

), x4
)

=(κ−1
dS sinh(κdSct), κ−1

dS cosh(κdSct) sin(κdSr)~n,

κ−1
dS cosh(κdSct) cos(κdSr)).

!2
!1

0
1

2

!2
!1

0
1

2
!1

!0.5

0

0.5

1

x4

de Sitter space!time

Space direction

x0

I limκdS→0 MdS = M0, the Minkowski spacetime tangent to MdS at, say, the de Sitter origin point
OdS = (0,~0,κ−1

dS ), since then

MdS 3 x ≈
κdS→0

(t,~r = r~n,κ−1
dS )

I limκdS→0 Sp(2, 2) = P↑+(1, 3) = M0 o SL(2,C), the Poincaré group.

I The ten de Sitter Killing vectors (in the Wigner-Inonü sense) contract to their Poincaré
counterparts Kµν , Πµ, µ = 0, 1, 2, 3, after rescaling the four K4µ −→ Πµ = κdSK4µ.
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The same for the flat limit of Anti de Sitter geometry (optional)

I Example of global coordinates in AdS : τ := κAdSct ∈ [0, 2π), r ∈ [0,∞),~n ∈ S2,

MAdS 3 x :=(x0,~x = (x1, x2, x3), x5)

=(κ−1
AdS cosh (κAdSr) sin(κAdSct),κ−1

AdS sinh(κAdSr)~n,

x5 = κ−1
AdS cosh(κAdSr) cos(κAdSct).

I limκAdS→0 MAdS = M0, the Minkowski spacetime tangent to MAdS at, say, the de
Sitter origin point OAdS = (0,~0,κ−1

AdS), since then

MAdS 3 x ≈
κAdS→0

(t = τ,~r = r~n,κ−1
AdS)

I limκAdS→0 Sp(4,R) = P↑+(1, 3) = M0 o SL(2,C).

I The ten de Sitter Killing vectors contract to their Poincaré counterparts Kµν , Πµ,
µ = 0, 1, 2, 3, after rescaling the four K5µ −→ Πµ = κAdSK5µ.
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Mass in Minkowski: a non ambiguous notion (in the Wigner sense)

I P≷(m, s) stand for the positive (resp. negative) energy Wigner UIR’s of the
Poincaré group with mass m (≡ proper mass ≡ energy at rest, c = 1) and spin s :
no ambiguity about the mass m!

I P≷(0, s) stand for the Poincaré massless cases where s reads for helicity.

I In this massless case, conformal invariance leads us to deal with the discrete
series representations (and their lower limits) of the (universal covering of the)
conformal group or its double covering SO0(2, 4) or its fourth covering SU(2, 2).

I These (conformal meaningful) UIR’s are denoted by C≷(ς, j1, j2), where
(j1, j2) ∈ N/2× N/2 labels the UIR’s of the SU(2)× SU(2) subgroup and ς stems
for the positive (resp. negative) conformal energy.
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The notion of mass in de Sitter is ambiguous!

I The notion of mass in “desitterian Physics” may appear confusing. Nevertheless a
mass formula has been proposed by Garidi3 in terms of the dS RUI parameters p
and q:

m2
dS =

~2κ2
dS

c2 (〈Q(1)
dS 〉 − 〈Q

(1)
dS |p=q〉) =

~2κ2
dS

c2

(
ς2

dS +
(

s− 1
2

)2
)
.

I The minimal value assumed by the eigenvalues of the first Casimir in the set of
RUI in the discrete series is precisely reached at s = 1/2 + iςdS, which
corresponds to the “conformal” massless case

I Controlling the validity of such a formula from a Minkowskian observer amounts to
understand the contraction (mathematically non trivial en terms of sequences of
Hilbert spaces)

dS UIR −→ Poincaré UIR

3T. Garidi, What is mass in desitterian Physics? hep-th/0309104
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de Sitter contraction limits. Massive case

I Solely the principal series representations are involved here (from where the
name of de Sitter “massive representations”)

I In terms of the representation parameter ςdS and for a spin s, the Casimir
eigenvalue and Garidi mass read respectively:

〈Q(1)
dS 〉 = −s(s + 1) + ς2

dS +
9
4
,

mdS =
~κdS

c

(
ς2

dS +

(
s−

1
2

)2
)1/2

I Then the contraction dS→ Poincaré in terms of masses has to be understood as

κdS → 0 ςdS →∞ , while fixing ςdS~κdS/c = mPoincaré ≡ m .
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de Sitter contraction limits. Massive case continued (optional)

I Actually we have the following general result on contraction of dS principal series
representations4:

UdS(ςdS, s) −→
κdS→0,|ςdS|→∞
|ςdS|κdS= mc

~

c>P>(m, s)⊕ c<P<(m, s),

I One of the “coefficients” among c<, c> can be fixed to 1 whilst the other one will
vanish. Note that m = mdS + O(κdS). (a choice left to a “local tangent” observer).

I Note also here the evidence of the energy ambiguity in de Sitter relativity,
exemplified by the possible breaking of dS irreducibility into a direct sum of two
Poincaré UIR’s with positive and negative energy respectively

I This phenomenon is linked to the existence in the de Sitter group of a specific
discrete symmetry which sends any point (x0,P) ∈ MdS into its mirror image
(x0,−P) ∈ MdS with respect to the x0-axis.

I Under such a symmetry the four generators La0, a = 1, 2, 3, 4, (and particularly L40
which contracts to energy operator!) transform into their respective opposite −La0,
whereas the six Lab’s remain unchanged.

4J. Mickelsson and J. Niederle, Commun. Math. Phys. 27 (1972)
T. Garidi, E. Huguet, and J. Renaud, Phys. Rev. D 67 (2003), gr-qc/0304031
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de Sitter contraction limits. Massless (conformal) case (optional)

From Barut A. O., Böhm A., J. Math. Phys., 11 (1970) 2938 Reduction of a class of
O(4, 2) representations with respect to SO(4, 1) and SO(3, 2)

Here we have mdS = 0 for all involved representations. Now, we must distinguish
between

(i) the scalar massless case involves the unique complementary series UIR
UdS(±i/2, 0) (for which 〈Q(1)〉dS = 2) to be contractively Poincaré significant

C>(1, 0, 0) C>(1, 0, 0) ←↩ P>(0, 0)

UdS(±i/2, 0) ↪→ ⊕ κ=0−→ ⊕ ⊕
C<(−1, 0, 0) C<(−1, 0, 0) ←↩ P<(0, 0),

(ii) the spinorial case where are involved all representations Π±s,s, s > 0 for which
〈Q(1)〉dS = −2(s2 − 1) and lying at the lower limit of the discrete series (the arrows
↪→ designate unique extension.)

C>(s + 1, s, 0) C>(s + 1, s, 0) ←↩ P>(0, s)

Π+
s,s ↪→ ⊕ κ=0−→ ⊕ ⊕

C<(−s− 1, s, 0) C<(−s− 1, s, 0) ←↩ P<(0, s),

C>(s + 1, 0, s) C>(s + 1, 0, s) ←↩ P>(0,−s)

Π−s,s ↪→ ⊕ κ=0−→ ⊕ ⊕
C<(−s− 1, 0, s) C<(−s− 1, 0, s) ←↩ P<(0,−s),
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An exceptional case: the dS “massless” minimally coupled field (optional)

I All other representations have either non-physical Poincaré contraction limit or have no
contraction limit at all

I In particular, we have for the so-called massless minimally coupled field5 which corresponds
to the UIR Π+

1,0 lying at the lowest limit of the discrete series the following values for Casimir
eigenvalue and Garidi mass:

〈Q(1)
dS 〉 = 0, mdS = 0.

I This representation, and hence the corresponding field, is exceptional under many aspects:

(i) it is the only one among all non massless dS representations for which the Garidi mass
vanishes

(ii) it is part of an indecomposable structure issued from the existence of (constant) gauge
solutions

(iii) it has been thought to play a role in inflation theories

(iv) it is part of the Gupta-Bleuler structure for the massless spin 1 dS field (de Sitter QED)
described by the UIR’s Π+

1,1

(v) It is the elementary brick for the construction of the massless spin 2 dS fields (de Sitter
linear gravity) described by the UIR’s Π+

2,2

(vi) the corresponding covariant quantum field theory requires a specific treatment due
precisely to its indecomposable nature6

5The term “massless” refers to the description of a scalar field φ with “mass m” and coupling ξ to the curvature
scalar R by the action S = 1

2
∫

d4x
√
−g [∇aφ∇aφ− m2 φ2 − ξ Rφ2] .

6J. P. G., J. Renaud and M. V. Takook, Class. Quantum. Grav., 17 (2000) 1415.
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Contraction limits Anti de Sitter→ Minkowski. The massive case

I A “mass” formula 7 analogous to the Garidi one can be proposed in the case of
the AdS discrete series. It precisely vanishes for massless AdS fields:

m2
AdS =

~2κ2
AdS

c2

(
〈Q(1)

AdS〉 − 〈Q
(1)
AdS|ςAdS=s+1〉

)
=

~2κ2
AdS

c2

[(
ςAdS −

3
2

)2

−
(

s−
1
2

)2
]

I Solely the (holomorphic) discrete series representations UAdS(ς, s) with
ςAdS > s + 1 are involved here.

UAdS(ςAdS, s) −→
κAdS→0,ςAdS→∞
ςAdSκAdS= mc

~

P>(m, s)

I Note here that there is no energy ambiguity in Anti de Sitter relativity (there are
other ambiguities!). If we wished to get the negative energy Poincaré
representations, we would instead have chosen the representations in the
antiholomorphic discrete series (in which the spectrum of the compact generator
L50 is bounded above by −ςAdS, ςAdS > 0)

7J.-P. G. and M. Novello, J. Phys. A: Math. Theor. 41 (2008); The Nature of Λ and the Mass of the Graviton: A
Critical View, J.-P. G. and M. Novello Int. J. Mod. Phys. A 26, (2011)
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Contraction limits anti de Sitter→ Minkowski. The massless case (optional)

We must distinguish between

(i) the scalar massless case which involves the UIR UAdS(1, 0)

UAdS(1, 0) ↪→ C>(1, 0, 0) κ=0−→ C>(1, 0, 0) ←↩ P>(0, 0).

(ii) the spinorial-tensorial massless case in which are involved all representations
UAdS(s + 1, s), s > 0 lying at the lower limit of the holomorphic discrete series.

C>(s + 1, s, 0) C>(s + 1, s, 0) ←↩ P>(0, s)

UAdS(s + 1, s) ↪→ ⊕ κ=0−→ ⊕ ⊕
C>(s + 1, 0, s) C>(s + 1, 0, s) ←↩ P>(0,−s).

Here, there is no ambiguity concerning energy, but there is ambiguity concerning
helicity, since the latter is not defined in AdS.
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Two exceptional case: the AdS “singletons” (optional)

I All other representations have either non-physical Poincaré contraction limit or
have no contraction limit at all

I It should be also noted that, like for de Sitter, there exists a unique UIR, among all
non massless AdS representations, for which mAdS vanishes, namely the UIR
D(2, 0) in the discrete series.

I In particular, we have for the Rac and Di fields the following respective values for
Casimir eigenvalue and Garidi mass:

〈Q(1)
AdS〉 = −

5
4
, mAdS =

√
3

2
~κAdS

c
, (Rac),

〈Q(1)
AdS〉 = −

5
4
, mAdS =

~κAdS

2c
, (Di).

I These representations, and hence their corresponding fields, are also exceptional
under many aspects, particularly due to the fact that AdS massless fields are
composite in terms of these singletons8

8M. Flato and C. Fronsdal, Lett. Math. Phys. 2 (1978) 421-426
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Inertial versus gravitational mass

Now, the contraction Formulae dS & AdS → Poincaré give us the
freedom to write

mdS = m = mAdS

which agrees with the Einstein position that the proper mass of an
elementary system should be independent of the geometry of
space-time, or equivalently there should not exist any difference
between inertial and gravitational mass.
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Energy at rest of a free particle in AdS versus dS and Poincaré

I Each Anti-deSitterian quantum elementary system (in the Wigner sense) has a rest energy

Erest
AdS =

[
m2c4

+ ~2c2κ2
AdS

(
s−

1
2

)2
]1/2

+
3
2
~κAdS c , (2)

I Hence, to the order of ~, an AdS elementary system is a deformation of both a relativistic free
particle with rest energy mc2 and a 3d isotropic quantum harmonic oscillator with ground state

energy 3
2 ~ωAdS, with ωAdS := κAdSc =

√
|ΛAdS|

3 c. .

I In contrast to AdS, for Poincaré and DS symmetries the energy spectrum is continuous ≥ mc2

(in absolute value):

Erest
dS = ±

[
m2c4 − ~2c2κ2

dS

(
s−

1
2

)2
]1/2

. (3)

I Noticeable simplification in both AdS and dS for fermions s = 1/2 :

for dS : Erest
dS = ±mc2

,

for AdS: Erest
AdS = mc2

+
3
2
~ωAdS .

(4)

(5)

The choice Erest
dS = mc2 should be privileged for obvious reasons.
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Energy of a free particle in AdS versus dS and Poincaré (continued)

I In the massless case and spin s, we have

for dS : Erest
dS = ±i~κdS c

(
s−

1
2

)
, (6)

for AdS: Erest
AdS = ~κAdSc(s + 1) . (7)

Therefore, while for dS the energy at rest makes sense only for massless
fermionic systems and is just zero, for AdS the energy at rest makes sense for any
spin, and in particular for spin 1 massless bosons we get

Erest
AdS = 2~ωAdS . (8)

I Save the proper energy mc2 ≥ 0 common to dS, AdS, and Poincaré, the energy
spectrum of a free particle in AdS is like the spectrum of a 3d isotropic quantum
harmonic oscillator whose excited states apart from degeneracy are spaced at
equal energy intervals of ~ωAdS = ~κAdS c.
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To conclude: about dark matter

Some (observational) facts about dark matter

I According to Planck 2015 analysis9 of CMB power spectrum, our Universe is
spatially flat, accelerating, and composed of 5% baryonic matter, 27% cold dark
matter (CDM, non baryonic) and 68% dark energy (Λ)10

I (Cold) dark matter is observed by its gravitational influence on luminous, baryonic
matter

I The dark matter mass halo and the total stellar mass are coupled through a
function that varies smoothly with mass (with controversial exception(s) like the
recent11)

I Up to now, all hypothetical particle models (WIMP, Axions, Neutrinos ...) failed
direct or indirect detection tests

I Similarly, alternative theories (e.g. MOND) to dark matter have failed to explain
clusters and the observed pattern in the CMB.

9Planck 2015 results XIII. Cosmological parameters, A& A 594 (2016)
10The Search for Dark Matter L. Baudis, European Review 26 70-81 (2017)
11A galaxy lacking dark matter van Dokkum et al, Nature Lett. 555 (2018), and references therein
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Cosmology chronology : de Sitter and Anti de Sitter phases
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Quark-Gluon Plasma: experimental evidence

From Strong interactions News
Protons probe quark-gluon plasma at CMS 13 January 2017

I Theories predicting the existence of quark-gluon plasma were developed in the
late 1970s and early 1980s (Satz, Rafelsky, Kapusta, Müller, Letessier...)

I Quark-gluon plasma was detected for the first time at CERN (2000)

I Lead and gold nuclei have been used for collisions yielding QGP at CERN SPS
and BNL RHIC, respectively

I The current estimate of the hadronization temperature for light quarks is
Tcf = 156.5± 1.5 MeV ≈ 1.8× 1012 K (“chemical freeze-out temperature”).
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Cold dark matter: Bose-Einstein condensation of gluons in Anti-de Sitter space time

Gilles Cohen-Tannoudji and J-P Gazeau Universe 2021, 7(11), 402;
https://doi.org/10.3390/universe7110402

I A parallel between dark matter and CMB:

CMB→ photon decoupling, i.e. photons started to travel freely through space rather
than constantly being scattered by electrons and protons in plasma (QED effect).
Dark matter→ gluonic component of the quark epoch (quark-gluon plasma) which
freely subsists after hadronization within an effective AdS environment (QCD effect)

I As an assembly of NG non-interacting entities with individual energies
En = Erest

AdS + (n + 2)~ωAdS and degeneracy gn = (n + 1)(n + 3)/2, those remnant gluons are
assumed to form a grand canonical Bose-Einstein ensemble whose the chemical potential µ
is, at temperature T, fixed by

NG =

∞∑
n=0

gn

exp
[

~ωAdS
kBT (n + ν0 − µ)

]
− 1

, ν0 :=
Erest

AdS

~ωAdS
.

I Since this number is very large this gas condensates at temperature

Tc ≈
~ωAdS

kB

(
NG

ζ(3)

)1/3

to become the currently observed dark matter.
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J. Mickelsson and J. Niederle, Contractions of representations of de Sitter groups, Commun. Math. Phys. 27 167-180 (1972).

T. Garidi, E. Huguet, and J. Renaud, de Sitter waves and the zero curvature limit, Phys. Rev. D 67 (2003). arxiv gr-qc/0304031

J. Bros, J.-P. Gazeau, and U. Moschella, Quantum Field Theory in the de Sitter Universe, Phys. Rev. Lett. 73 1746 (1994).

T. Garidi, What is mass in desitterian Physics? hep-th/0309104

J.-P. Gazeau and M. Novello, The question of mass in (anti-) de Sitter spacetimes, J. Phys. A: Math. Theor. 41 304008 (2008).

J.-P. Gazeau MENAQUAN IMSP 11-16 July 2022



45/45

Motivations Classical context Quantum context Mass & Energy at rest Dark Matter

J.-P. Gazeau and M. Novello, The Nature of Λ and the Mass of the Graviton: A Critical View, Int. J. Mod. Phys. A 26 3697-3720

(2011).

J.-P. Gazeau and J. Renaud, Relativistic harmonic oscillator and space curvature, Phys. Lett. A 179 67 (1993).

A. Andronic, P. Braun-Munzinger, K. Redlich, and J. Stachel, Decoding the phase structure of QCD via particle production at high

energy, Nature (2018). DOI: 10.1038/s41586-018-0491-6

Arbey, A. and Mahmoudi, F. Dark matter and the early Universe: A review, Progress in Particle and Nuclear Physics 2021, 119,

103865-1-41.

Cohen-Tannoudji, G. Lambda, the Fifth Foundational Constant Considered by Einstein, Metrologia 2018, 55 486–498.

Cohen-Tannoudji, G. The de Broglie universal substratum, the Lochak monopoles and the dark universe, Annales de la Fondation

Louis de Broglie 2019, 44, 187–209 ; (https://arxiv.org/abs/1507.00460v10)

Gazeau, J.-P. Mass in de Sitter and Anti-de Sitter Universes with Regard to Dark Matter, Universe 2020, 6 (5), 66;

(https://www.mdpi.com/2218-1997/6/5/66)

Cohen-Tannoudji, G. and Gazeau, J.-P. Cold Dark Matter: A Gluonic Bose-Einstein Condensate in Anti-de Sitter Space Time,

Universe 2021, 7 (11), 402; https://doi.org/10.3390/universe7110402

J.-P. Gazeau MENAQUAN IMSP 11-16 July 2022



45/45

Motivations Classical context Quantum context Mass & Energy at rest Dark Matter

Voici la première image scientifique du télescope James-Webb
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