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Theoretical idealizations of black holes

Simplest assumption: isolated stationary black hole in vacuum

I Example: Schwarzschild metric

ds2 = −
(

1− 2M

r

)
dt2 +

dr2

1− 2M
r

+ r2
(

dθ2 + sin2 θ dϕ2
)

I Advantage: simple
I Disadvantage: too simple

I no angular momentum

⇒ add angular momentum ⇒ Kerr

I no charge

⇒ add charge ⇒ Kerr–Newman

I half of spacetime unphysical

⇒ consider only physical half

I vacuum not good assumption for most physical black holes

⇒ see next slides!

I even in vacuum stationarity not good assumption for most physical
black holes

⇒ see next slides!
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Detecting black holes through accretion disks: matter crucial
Historically: Shakura, Sunyaev ’73. Picture below from 1810.00883

Accretion disk simulations (need general relativity,
magnetohydrodynamics, viscosity, plasma physics, ...)
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Detecting black holes through gravitational radiation: non-stationary!
Historically: LIGO.

Snapshot of numerical simulation video from LIGO
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Realistic theoretical description of black holes

Need to allow for non-staionarity and possibly also for matter

Possibilities:

I numerical simulations (see previous slides)

⇒ disadvantage 1: computationally costly
disadvantage 2: may miss insights deduceable with paper & pencil

I theoretical progress (see next slides)
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Lemos–Letelier black hole with disk
δ-like energy momentum tensor in equatorial plane of black hole

Sidenote:
22 of Patricio Letelier’s 180
papers on INSPIRE have
“disk(s)” in the title; this paper
here is his most famous among
them

superposition of two exact
axi-symmetric stationary
solutions: rotating black hole
and thin disk of
(counter-)rotating particles
without angular momentum

numerous follow-up papers and
extensions
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Aim: describe interacting black holes

Goal: drop all assumptions about symmetries to
describe generically interacting black holes

I noble goal...

I ...but how to approach it?

I theoretically straightforward: just solve the Einstein equations!

I fully realistic exact solution?

unlikely to succeed

I imposing symmetries?

unlikely to capture all features

I work in far-field approximation?

misses near horizon physics

I use black hole microstates?

do not know them in general
also, too many: O(1010

77
) microstates for smallest known black hole

Step back for a moment and consider simpler theory
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Stepping back: How do describe electrodynamics?

I theoretically straightforward: just keep track of all the point sources,
the electrons and ions, and use the appropriate Green function

∇2Aµ(xν) =

N∑
i=1

qi

∫
dτi

dx̄µi (τi)

dτi
δ
(
xν − x̄νi (τi)

)

I practical problem: N ∼ O(1020 − 1030) point sources in most
systems, even if electrically neutral

I practical solution: electrodynamics in matter provides coarse-grained
description

I often adequately captured by boundary conditions (bc’s)
I microscopic structure of material summarized in fixing chemical

potential (At) at boundary of material
I e.g. Dirichlet bc’s for conductor or Neumann for dielectric medium

Intend to do something similar for black holes:
impose different bc’s at the black hole horizon!
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Back to black holes: Near horizon boundary conditions

Near horizon expansion:

gµν =

−κ2ρ2 +O(ρ3) O(ρ2) fta ρ
2 +O(ρ3)

gρt = gtρ 1 +O(ρ) fρa ρ+O(ρ2)
gat = gta gaρ = gρa Ωab +O(ρ2)


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gρt = gtρ 1 +O(ρ) fρa ρ+O(ρ2)
gat = gta gaρ = gρa Ωab +O(ρ2)


Keeping only leading terms: Rindler-like approximation:

ds2 = gµν dxµ dxν = −κ2ρ2 dt2 + dρ2 + Ωab dxa dxb + . . .

Meaning of various quantities:

I t: time-coordinate
I ρ: radial coordinate; ρ→ 0: black hole horizon; ρ > 0: outside region
I xa: transversal coordinates on horizon (“angular coordinates”)

I κ(t, xa) 6= 0: surface gravity of black hole
I Ωab(t, x

a): transversal metric (“sphere”)
I fµν(t, xa): additional functions characterizing interacting black hole
I Still need to specifiy what is fixed and what is allowed to vary!
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Back to black holes: Near horizon boundary conditions

Near horizon expansion:

gµν =

−κ2ρ2 +O(ρ3) O(ρ2) fta ρ
2 +O(ρ3)

gρt = gtρ 1 +O(ρ) fρa ρ+O(ρ2)
gat = gta gaρ = gρa Ωab +O(ρ2)


I Simple possibility (canonical ensemble): keep fixed κ: δκ = 0

Fineprint: δκ obeys a condition displayed later

I Other functions allowed to vary; define

P =
√

Ω Ja =
√

Ω
(
∂tfρa − 2fta

)
allowing δP 6= 0 and δJa 6= 0

I implies allowed variations of metric given by

δgµν =

 O(ρ3) O(ρ2) δfta ρ
2 +O(ρ3)

gρt = gtρ O(ρ) δfρa ρ+O(ρ2)
gat = gta gaρ = gρa δΩab +O(ρ2)


I near horizon expansion preserved by ∞ near horizon Killing vectors

Lξgµν = O(δgµν) ξ = η(t, xb)/κ ∂t + ηa(t, xb) ∂a +O(ρ)
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Near horizon symmetries

Remarkable result: infinitely many near horizon symmetries

Associated Noether-like co-dimension-2 charges:

δQ[η, ηa] =

∫
dxD−2

(
η δP + ηa δJa

)

Discuss two examples on next slides
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Near horizon symmetries

Remarkable result: infinitely many near horizon symmetries

Associated Noether-like co-dimension-2 charges:

δQ[η, ηa] =

∫
dxD−2

(
η δP + ηa δJa

)
If you see such a result for the first time:
I analogous to Gauss law and electric charge in electrodynamics, but

infinitely many charges
I derivable using canonical or covariant methods

see e.g. lecture notes Compère, Fiorucci ’17
I main difference to global Noether charges: co-dimension-2 rather

than co-dimension-1 (surface integral, not volume integral)
I only get variation of charges, not yet the charges themselves
I charges generate Poisson bracket algebra:

δηi1
Q[ηi2] = {Q[ηi1], Q[ηi2]} = Q[ηi1 ◦ ηi2] + Z12

Discuss two examples on next slides
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δη,ηaJa = P ∂aη + ηc∂cJa + Jc ∂aηc + Ja ∂cηc 1-form density

Still need to make choices!
I (how) do chemical potentials η, ηa depend on charges P,Ja?

I this is where physical input about black hole interactions enter!
I straightforward choice: η, ηa independend from charges

Donnay, Giribet, González, Pino ’15
I general choices: DG, Perez, Sheikh-Jabbari, Troncoso, Zwikel ’19

Discuss two examples on next slides
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Example 1: BMS near horizon symmetries
DG, Pérez, Sheikh-Jabbari, Troncoso, Zwikel ’19

I Choose
η = η(s)Ps/(D−2) δη(s) = 0 = δηa

Fineprint: a necessary condition is
δκ = ∂tη + η

a
∂aκ

so δκ = 0 may not be achievable

I Obtain charges (P(s) ∼ Ps/(D−2)+1)

Q[η(s), η
a] =

∫
dD−2x

(
η(s)P(s) + ηaJa

)
I Determine Poisson bracket algebra from {Q[ηi1], Q[ηi2]} = δηi1

Q[ηi2]

{Ja(x), P(s)(y)} =
( s

D − 2
P(s)(y)

∂

∂xa
− P(s)(x)

∂

∂ya

)
δ(D−2)(x− y)

{P(s)(x), P(s)(y)} = 0 supertranslations

{Ja(x), Jb(y)} =
(
Ja(y)

∂

∂xb
− Jb(x)

∂

∂ya

)
δ(D−2)(x− y)

I For s = 0: recover results by Donnay et al. ’15
I For s = 1 and D = 4: famous BMS-algebra Bondi et al.; Sachs ’62
I Otherwise: spin-s generalization of BMS in arbitrary D

Daniel Grumiller — Interacting black holes and near horizon symmetries 12/16

https://arxiv.org/abs/1908.09833


Example 1: BMS near horizon symmetries
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I For s = 0: recover results by Donnay et al. ’15
I For s = 1 and D = 4: famous BMS-algebra Bondi et al.; Sachs ’62

but here this algebra appears near the horizon, not at infinity!

I Otherwise: spin-s generalization of BMS in arbitrary D
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Example 2: Soft Heisenberg hair
DG, Pérez, Sheikh-Jabbari, Troncoso, Zwikel ’19

I Choose

ηa = ηaH P−1 η = ηH − ηaH Ja P−2 δηaH = δηH = 0

I Obtain charges (J H
a = JaP−1)

Q[ηH, η
a
H] =

∫
dD−2x

(
ηHP + ηaHJ H

a

)
I Determine Poisson bracket algebra from {Q[ηi1], Q[ηi2]} = δηi1

Q[ηi2]

=

{P(x), P(y)} = 0

=

I for D = 3 and non-rotating black holes (Schwarzschild): Fab = 0
I locally: J H

a = ∂aQ
I suprisingly simple algebra!
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a is now a 1-form rather than a 1-form density

I Determine Poisson bracket algebra from {Q[ηi1], Q[ηi2]} = δηi1
Q[ηi2]

=

{P(x), P(y)} = 0

=

I for D = 3 and non-rotating black holes (Schwarzschild): Fab = 0
I locally: J H

a = ∂aQ
I suprisingly simple algebra!

Daniel Grumiller — Interacting black holes and near horizon symmetries 13/16

https://arxiv.org/abs/1908.09833


Example 2: Soft Heisenberg hair
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Example 2: Soft Heisenberg hair
DG, Pérez, Sheikh-Jabbari, Troncoso, Zwikel ’19

I Why “soft Heisenberg hair”?

Historical notes:
I expression “soft hair” coined by Hawking in his last series of papers,

together with Perry and Strominger in 2015-16
I soft hair as part of near horizon symmetries found by Donnay, Giribet,

González, Pino ’15
I soft Heisenberg hair found first in D = 3 by Afshar, Detournay, DG,

Merbis, Peréz, Tempo, Troncoso ’16
I generalized to higher dimensions, higher spins, higher derivative

theories, dynamical black holes, ... ’16-’21

I hair: excitations of a black hole beyond asymptotic charges (mass,
angular momentum, electric charge); here labelled by infinitely many
near horizon charges P(x), Q(x)

I Heisenberg: near horizon charges obey Heisenberg algebra
I soft: physical excitations with zero energy — check how this happens
I near horizon Hamiltonian

H = Q[∂t] = κP0
I Heisenberg excitations of some state |ψ〉 with energy H|ψ〉 = E|ψ〉:

Q|ψ〉 or P|ψ〉
I energy excited states unchanged!

HQ|ψ〉 = QH|ψ〉 = EQ|ψ〉 HP|ψ〉 = PH|ψ〉 = EP|ψ〉
hence, excitations are soft!
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DG, Pérez, Sheikh-Jabbari, Troncoso, Zwikel ’19

I Why “soft Heisenberg hair”?
I hair: excitations of a black hole beyond asymptotic charges (mass,

angular momentum, electric charge); here labelled by infinitely many
near horizon charges P(x), Q(x)

I Heisenberg: near horizon charges obey Heisenberg algebra
I soft: physical excitations with zero energy — check how this happens
I near horizon Hamiltonian

H = Q[∂t] = κP0
I Heisenberg excitations of some state |ψ〉 with energy H|ψ〉 = E|ψ〉:

Q|ψ〉 or P|ψ〉
I energy excited states unchanged!

HQ|ψ〉 = QH|ψ〉 = EQ|ψ〉 HP|ψ〉 = PH|ψ〉 = EP|ψ〉

hence, excitations are soft!

Daniel Grumiller — Interacting black holes and near horizon symmetries 13/16

https://arxiv.org/abs/1908.09833


Example 2: Soft Heisenberg hair
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near horizon charges P(x), Q(x)

I Heisenberg: near horizon charges obey Heisenberg algebra
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I near horizon Hamiltonian

H = Q[∂t] = κP0
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Near horizon entropy law

I Bekenstein–Hawking entropy suprisingly simple in terms of near
horizon charges:

S =
A

4
= 2πP0

with P0 =
∫

dD−2xP(x)

I near horizon first law

dH =
κ

2π
dS = T dS

simple thermodynamics!
I in case you know the Cardy-formula: this is its near horizon version!

technical details for the experts: in D = 3 near horizon charges related to asymptotic Virasoro charges through
(twisted) Sugawara construction

L ∼
6

c
P2

+ iP′

Cardy-formula:

S ∼ 2π

√
cL0

6
= 2πP0

similar constructions work for higher spin black holes
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Summary & Outlook

Can describe interacting black holes by imposing
suitable near horizon boundary conditions

I generically: infinite-dimensional near horizon symmetry algebra
I generically: soft hair excitations

I optionally: BMS
(s)
D or Heisenberg near horizon symmetry algebra

I generically: near horizon entropy law with simple Cardyology
I generically: simple near horizon first law
I appears to work for higher dimensions, higher derivatives, higher spins
I recent generalization: gravitational waves entering black holes

(expansion- and spin-memory effects)
I speculation: near horizon soft hair encodes black hole microstates
I open question: optimal choice of bc’s for phenomenology/theory?!

A lot remains to be discovered (perhaps by you)!
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I optionally: BMS

(s)
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BMS
(s)
D algebra for higher spins s appeared recently in context of

higher spin theories Campoleoni, Francia, Heissenberg ’17-’21
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I appears to work for higher dimensions, higher derivatives, higher spins
I recent generalization: gravitational waves entering black holes

(expansion- and spin-memory effects)
Adami, DG, Sheikh-Jabbari, Taghiloo, Yavartanoo, Zwikel ’21

dQ

dt
∼ −flux

like in asymptotic region with “leaky boundary conditions”

(Compére), Fiorucci, Ruzziconi ’19-’21
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construction in 3d Afshar, DG, Sheikh-Jabbari, (Yavartanoo) ’16 (’17)
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A lot remains to be discovered (perhaps by you)!
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Last words

We have come a long way since pioneering work by Letelier et al to
describe interacting black holes

Our perspective: put physics into choice of near horizon boundary
conditions, like in macroscopic electrodynamics
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Last words

https://indico.cern.ch/event/1085701/
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Last words

Thanks for your attention!

i0B

I+

I−H−
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