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The Two-Body Problem in Geometrodynamics 

SUSAN G. HAHN 

International Business Machines Corporation, New York, New York 

AND 

RICHARD W. LINDQUIST 

Adelphi University, Garden City, New York 

The problem of two interacting masses is investigated within the framework 
of geometrodynamics. It is assumed that the space-time continuum is free of 
all real sources of mass or charge; particles are identified with multiply con- 
nected regions of empty space. Particular attention is focused on an asymp- 
totically flat space containing a “handle” or “wormhole.” When the two 
“mouths” of the wormhole are well separated, they seem to appear as two cen- 
ters of gravitational attraction of equal mass. To simplify the problem, it is 
assumed that the metric is invariant under rotations about the axis of sym- 
metry, and symmetric with respect to the time t = 0 of maximum separation 
of the two mouths. Analytic initial value data for this case have been ob- 
tained by Misner; these contain two arbitrary parameters, which are uniquely 
determined when the mass of the two mouths and their initial separation have 
been specified. We treat a particular case in which the ratio of mass to initial 
separation is approximately one-half. To determine a unique solution of the 
remaining (dynamic) field equations, the coordinate conditions go- = -& are 
imposed; then the set of second order equations is transformed into a quasi- 
linear first order system and the difference scheme of Friedrichs used to ob- 
tain a numerical solution. Its behavior agrees qualitatively with that of the 
one-body problem, and can be interpreted as a mutual attraction and pinching- 
off of the two mouths of the wormhole. 

I. INTRODUCTION 

Wheeler (1, 2) has used the term “geometrodynamics” to characterize those 
solutions of the field equations for gravitation and electromagnetism’ 

41 = R,v - ?4 g& = 2(F,,FP - Pi gj,.F,sF=B) (l.la) 

FPu;v = 0 (l.lb) 

1 Throughout this paper Greek subscripts and superscripts range from 0 to 3 and Latin 
ones from 1 to 3. Also, units are chosen so that G (universal gravitation constant) = c = 1. 

304 
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Evolution of Binary Black-Hole Spacetimes

Frans Pretorius1,2,*
1Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125, USA

2Department of Physics, University of Alberta, Edmonton, AB T6G 2J1 Canada
(Received 6 July 2005; published 14 September 2005)

We describe early success in the evolution of binary black-hole spacetimes with a numerical code based
on a generalization of harmonic coordinates. Indications are that with sufficient resolution this scheme is
capable of evolving binary systems for enough time to extract information about the orbit, merger, and
gravitational waves emitted during the event. As an example we show results from the evolution of a
binary composed of two equal mass, nonspinning black holes, through a single plunge orbit, merger, and
ringdown. The resultant black hole is estimated to be a Kerr black hole with angular momentum parameter
a ! 0:70. At present, lack of resolution far from the binary prevents an accurate estimate of the energy
emitted, though a rough calculation suggests on the order of 5% of the initial rest mass of the system is
radiated as gravitational waves during the final orbit and ringdown.

DOI: 10.1103/PhysRevLett.95.121101 PACS numbers: 04.25.Dm, 04.30.Db, 04.70.Bw

I. Introduction.—One of the more pressing, unsolved
problems in general relativity today is to understand the
structure of spacetime describing the evolution and merger
of binary black-hole systems. Binary black holes are
thought to exist in the Universe, and the gravitational
waves emitted during a merger event are expected to be
one of the most promising sources for detection by gravi-
tational wave observatories (LIGO, VIRGO, TAMA, GEO
600, etc.). Detection of such an event would be an unpre-
cedented test of general relativity in the strong-field re-
gime, and could shed light on many issues related to the
formation and evolution of black holes and their environ-
ments within the Universe. Given the design-goal sensi-
tivities of current gravitational wave detectors, matched
filtering may be essential to detect the waves from a mer-
ger and extract information about the astrophysical source.
During the early stages of a merger, and the later stages
of the ringdown, perturbative analytic methods should
give a good approximation to the waveform [1,2]; how-
ever, during the last several orbits, plunge, and early stages
of the ringdown, it is thought a numerical solution of the
full problem will be needed to provide an accurate
waveform.

Smarr [3] pioneered the numerical study of binary
black-hole spacetimes in the mid-1970s, where he consid-
ered the head-on collision process in axisymmetry. The full
3D problem has, for many reasons, proven to be a more
challenging undertaking, and only recently has progress
been made in the ability of numerical codes to evolve
binary systems [4–8]. However, until now no code has
been able to simulate a nonaxisymmetric collision through
coalescence and ringdown. The purpose of this Letter is to
report on a recently introduced numerical method based on
generalized harmonic coordinates [9] that can evolve a
binary black hole during these crucial stages of a merger.
At a given resolution the code will not run ‘‘forever,’’
though convergence tests suggest that with sufficient reso-
lution the code can evolve the system for as long as needed

to extract the desired physics from the problem. As an
example we describe an evolution that completes approxi-
mately one orbit before coalescence, and runs for long
enough afterwards to extract a waveform at large distances
from the black hole.

The code has several features of note, some or all of
which may be responsible for its stability properties: (1) a
formulation of the field equations based on harmonic co-
ordinates as first suggested in [10], (2) a discretization
scheme where the only evolved quantities are the covariant
metric elements, harmonic source, and matter functions,
thus minimizing the number of constraint equations that
need to be solved [which is similar to the discretization
scheme used in [11] ], (3) the use of a compactified coor-
dinate system where the outer boundaries of the grid are at
spatial infinity, hence the physically correct boundary con-
ditions can be placed there, (4) the use of adaptive mesh
refinement to adequately resolve the relevant length scales
in the problem, (5) dynamical excision that tracks the
motion of the black holes through the grid, (6) addition
of numerical dissipation to control high-frequency insta-
bilities, (7) a time slicing that slows down the ‘‘collapse’’
of the lapse that would otherwise occur in pure harmonic
time slicing, and (8) the addition of ‘‘constraint-damping’’
terms to the field equations [12,13]. This final element was
not present in the version of the code discussed in [9], and
though these terms seem to have little effect when black
holes are not present in the numerical domain, they have a
significant effect on how long a simulation with black holes
can run with reasonable accuracy at a given resolution.

An outline of the rest of the Letter is as follows. In
Sec. II we give a brief overview of the numerical method,
focusing on details not present in [9]. Section III gives
results from the simulation of one such orbital configura-
tion. We conclude in Sec. IV with a summary of future
work. More details, including convergence tests, the effect
of constraint damping, and a thorough description of the
initial data calculation, will be presented elsewhere.

PRL 95, 121101 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
16 SEPTEMBER 2005

0031-9007=05=95(12)=121101(4)$23.00 121101-1 © 2005 The American Physical Society
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inspiral, collision and emission of gravitational waves 
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- Cosmology: structure formation, multiple black holes….

- Anti de Sitter spacetime: AdS/CFT correspondence (numerical holography)
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HIGH ACCURACY METHODS
If not exact, then numerical.  

If numerical, then as exact as possible 

✓ Physical scenarios (i.e., special regions of parameter space 
studies) that do require robust and accurate methods

✓ Infer mathematical properties of the solution

Spectral Methods 

๏ Numerically expensive (there are faster algorithms)
๏ Relies on regularity properties of solution (be careful with 

discontinuities)

Spectral methods for numerical relativity, G. Granclemént and J. Novak 
Living Reviews in General Relativity
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• Example 1: eigenvalue problems (Quasi-normal 
modes)
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CHEBYSHEV POLYNOMIALS
• Basis functions:                            .�i(x) = Ti(⇠(x))

• Chebyshev Polynomials of first kind

⇠ : [a, b] ! [�1, 1]Linear map

⇠ = cos(✓)if                   , ✓ 2 [0,⇡]

• Orthogonality
Z 1

�1

Ti(⇠)Tk(⇠)p
1� ⇠2

d⇠ = Ni�ij

Ti(✓) = cos(i✓)

Ti(⇠) = cos(i arccos ⇠)



SPECTRAL METHODS
• Spectral expansion of a real valued function        , f(x) x 2 [a, b]

f(x) =
NX

i=0

c

(N)
i �i(x) +R

(N)(x)
c(N)
i

R

(N)(x)

: spectral coefficients
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• Different approaches leads to different methods:  
Galerkin Method, Tau-method, Collocation method

Spectral Coefficients
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• Spectral Representation 

on domain [�1, 1]
f(⇠) =
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Discrete orthogonality
•With respect to grid points

•With respect to degree
 

NX

i

Ti(⇠j)Ti(⇠k) = Ñj�jk

NX

k

Ti(⇠k)Tj(⇠k) = Ñi�ij
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EXAMPLE: ACCURACY
• Analytical Function (strong gradients): C!

(Taylor expansion in the neighbourhood of any               )             

Exponential 
Decay

Coefficients 
behaviour 

mirrors 
error

(slower slope)

x 2 [0, 1]
f2(x) =

✏

✏+ x

Error = ↵e��N



EXAMPLE: ACCURACY
• Continuous  -differentiable Functions:

gk(x) = x

k lnx

-4.0e-01

-3.5e-01

-3.0e-01

-2.5e-01

-2.0e-01

-1.5e-01

-1.0e-01

-5.0e-02

0.0e+00

 0  0.2  0.4  0.6  0.8  1
x

g1(x)=x ln(x)

` C`

(Ck�1)



EXAMPLE: ACCURACY
• Continuous  -differentiable Functions:

Algebraic 
Decay

Coefficients 
behaviour 
similar to 

error

Error = AN�p

gk(x) = x

k lnx

1.0e-07

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

 0  20  40  60  80  100
i/n

g1(x)=x ln(x)

   Rmax
(n)

   ci
(100)

ci = Ãi�p̃
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• Decay rate of error (as a function of truncation error N) or  

discrete set of Chebyshev coefficients (fixed truncation error N)  
gives mathematical information about the underlying function

• Method provides a physical and mathematical “numerical-lab”

• Efficient way to identify bugs:
➡Assume: (i) There are theorems that guarantees the regularity of 

solution for differential equations
(ii) We know them (iii) We understand them

➡Chebyshev coefficients must decay exponentially
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DERIVATIVES
• Interpolate at any point    : ⇠ f̃(⇠) =

NX

i=0

c(N)
i Ti(⇠)

• The derivative reads: 
d

d⇠
f̃(⇠) =

NX

i=0
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Derivative Coefficients algorithm
• Given resolution     and Chebyshev Coefficients
• Recurrence relation for derivative coefficients
• Start with
• Run backward for 

N c(N)
i

c0(N)
i

c0(N)
N+1 = c0(N)

N = 0

i = N · · · 1

c0i�1 = 2kci + c0k+1
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• Continuous derivative operator: @µ

• Discrete derivative operator: D̂µ

➡ Dense matrix

➡ Eventually one needs to invert such matrices: 
numerically expansive procedure

➡ Contains a lot of information (see example 
eigenvalue problem)
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 For each 
derivative, 
approximately 
two digits of 
accuracy are 
lost



•Perturbation Theory: typical problem 
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 Stationary (black-hole) spacetime as background
 Consider fields propagating on background
 Linearise or consider a linear theory
 Wave equation
 Take boundary conditions into account
 Fourier (or Laplace) transformation
Non-trivial solutions to the homogenous equation (eigenvalue 
problem)
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EXAMPLE 1: QNM

 Stationary (black-hole) spacetime as background
 Consider fields propagating on background
 Linearise or consider a linear theory
 Wave equation
 Take boundary conditions into account
 Fourier (or Laplace) transformation
Non-trivial solutions to the homogenous equation (eigenvalue 
problem)

Boundary conditions are regularity conditions



EXAMPLE 1: QNM 
M. AMMON, S.GRIENINGER, A.J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

•Black brane background spacetime: Schwarzschild-AdS in 5D 
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(time-like surface)

⇢ = 0
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•Coordinates: Ingoing Eddington-Finkelstein
(horizon penetrating) ⇢ = 1

f(⇢) = 1� ⇢4

•Null Infinity: AdS boundary
(time-like surface)

⇢ = 0

Motivation AdS/CFT Correspondence
• Introduction gauge/gravity duality (O. Miskovic)
• Time evolution of the chiral magnetic effect in the 
presence of time dependent axial charges



EXAMPLE 1: QNM 
M. AMMON, S.GRIENINGER, A.J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

•Black brane background spacetime: Schwarzschild-AdS in 5D 

ds

2 =
1

⇢

2

�
�f(⇢)dv2 � 2 dvd⇢+ dx

2 + dy

2 + dz

2
�

H+ H+

AA

r = 0 i−

r = 0i+ i+

i−

H−H−

•Coordinates: Ingoing Eddington-Finkelstein
(horizon penetrating) ⇢ = 1

f(⇢) = 1� ⇢4

•Null Infinity: AdS boundary
(time-like surface)

⇢ = 0



EXAMPLE 1: QNM 
M. AMMON, S.GRIENINGER, A.J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

•Black brane background spacetime: Schwarzschild-AdS in 5D 

ds

2 =
1

⇢

2

�
�f(⇢)dv2 � 2 dvd⇢+ dx

2 + dy

2 + dz

2
�

H+ H+

AA

r = 0 i−

r = 0i+ i+

i−

H−H−

•Coordinates: Ingoing Eddington-Finkelstein
(horizon penetrating) ⇢ = 1

f(⇢) = 1� ⇢4

•Null Infinity: AdS boundary
(time-like surface)

⇢ = 0

•Wave equation: 

�⇢ (1� ⇢4)

@2

@⇢2
�

�
3� 7⇢4

� @

@⇢
+ (8 + �2) ⇢3

�
U(v, ⇢) +


2 ⇢

@

@⇢
+ 3

�
U̇(v, ⇢) + S(v, ⇢) = 0.



EXAMPLE 1: QNM 
M. AMMON, S.GRIENINGER, A.J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

•Black brane background spacetime: Schwarzschild-AdS in 5D 

ds

2 =
1

⇢

2

�
�f(⇢)dv2 � 2 dvd⇢+ dx

2 + dy

2 + dz

2
�

H+ H+

AA

r = 0 i−

r = 0i+ i+

i−

H−H−

•Coordinates: Ingoing Eddington-Finkelstein
(horizon penetrating) ⇢ = 1

f(⇢) = 1� ⇢4

•Null Infinity: AdS boundary
(time-like surface)

⇢ = 0

•Wave equation: 

�⇢ (1� ⇢4)

@2

@⇢2
�

�
3� 7⇢4

� @

@⇢
+ (8 + �2) ⇢3

�
U(v, ⇢) +


2 ⇢

@

@⇢
+ 3

�
U̇(v, ⇢) + S(v, ⇢) = 0.

time-derivative



EXAMPLE 1: QNM 
M. AMMON, S.GRIENINGER, A.J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

•Black brane background spacetime: Schwarzschild-AdS in 5D 

ds

2 =
1

⇢

2

�
�f(⇢)dv2 � 2 dvd⇢+ dx

2 + dy

2 + dz

2
�

H+ H+

AA

r = 0 i−

r = 0i+ i+

i−

H−H−

•Coordinates: Ingoing Eddington-Finkelstein
(horizon penetrating) ⇢ = 1

f(⇢) = 1� ⇢4

•Null Infinity: AdS boundary
(time-like surface)

⇢ = 0

•Wave equation: 

�⇢ (1� ⇢4)

@2

@⇢2
�

�
3� 7⇢4

� @

@⇢
+ (8 + �2) ⇢3

�
U(v, ⇢) +


2 ⇢

@

@⇢
+ 3

�
U̇(v, ⇢) + S(v, ⇢) = 0.

time-derivative
second order



EXAMPLE 1: QNM 
M. AMMON, S.GRIENINGER, A.J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

•Black brane background spacetime: Schwarzschild-AdS in 5D 

ds

2 =
1

⇢

2

�
�f(⇢)dv2 � 2 dvd⇢+ dx

2 + dy

2 + dz

2
�

H+ H+

AA

r = 0 i−

r = 0i+ i+

i−

H−H−

•Coordinates: Ingoing Eddington-Finkelstein
(horizon penetrating) ⇢ = 1

f(⇢) = 1� ⇢4

•Null Infinity: AdS boundary
(time-like surface)

⇢ = 0

•Laplace transformation (homogenous equation): 

�⇢ (1� ⇢4)

@2

@⇢2
�

�
3� 7⇢4

� @

@⇢
+ (8 + �2) ⇢3

�
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•Problem: find complex s-values for which equation has a 
non-vanishing regular solution 

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•Numerical solution with spectral methods: 

1. Discretise domain              with Lobatto-grid (include end points) 
leads to                   and  

⇢ 2 [0, 1]

Ū(⇢) ! ~U @⇢ ! D̂
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leads to                   and  
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2. Ask your favourite mathematical software to solve the 
(generalised) eigenvalue problem
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•Remarks:
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•Remarks:
1. Given numerical resolution     leads to     “eigenvalues” N

2. However, most of them are rubbish
N

3. One must study the convergence to see which values are stable 
and converge to a fixed value as we increase the resolution
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