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SUMMARISE |

* Spectral representation: high accuracy approximation of an analytical function

N
f(z) 2 ™ gi(x)
1=0

* Basis Function: trigconometric if function is periodic (Fourier), Chebyshev else

* Collocation Method: Function is exact at given grid points {Z; }

N
flag) =Y V()
1=0

* Grid: Lobatto (include end points), Gauss (exclude end points), Radau (include
one end and excludes other)

* Error / Chebyshev coefficients: exponencial/algebraic convergence
depending whether the function Is analytic or Cc*



OUTLINE PART 2

Derlvatives

—xample |: eigenvalue problems (Quasi-normal modes)

Algorithm for solution of ordinary differential equations
Example 2: Laplace equation

Extension to partial differential equations

Example 3: elliptic equation
(rotating disk of charged dust in general relativity)

Example 4: hyperbolic equation
(conformal Einstein’s field equations, linear problem)
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1=0
N
d - d
e The derivative reads: — f(§) = Cng) —T;(¢)
d§ - dg



DERIVATIVES

e Interpolate at any point & : f(&) = Z e VT (€)
1=0
N
d - d
e The derivative reads: — f(§) = CfEN) —T;(¢)
0 AT

* In particular, the derivative of a Chebyshev Polynomial can
be expressed I terms of the Chebyshev basis

(N)
Zd T (



DERIVATIVES

* Interpolate at any point § : f&) = ZCEN)Ti(f)
1=0
N
d - d
e The derivative reads: — f(§) = CgN) —T;(¢)
d§ - dg

* In particular, the derivative of a Chebyshev Polynomial can

be expressed in terms of the Chebyshev basis
N are calculated exactly

d _ (V) using properties of
7e [1(8) = Z diy T5 (&) the Chebyshev

Polynomials




DERIVATIVES

* Interpolate at any point § : f&) = ZCEN)Ti(f)
1=0
N
d - d
e The derivative reads: — f(§) = CfEN) —T;(¢)
d§ - dg

* In particular, the derivative of a Chebyshev Polynomial can
be expressed in terms of the Chebyshev basis



DERIVATIVES

* Interpolate at any point § : f(€) = ZCEN)Ti(f)
1=0
N
d - d
e The derivative reads: — f(§) = CfEN) —T;(¢)
d§ - dg

* In particular, the derivative of a Chebyshev Polynomial can
be expressed I terms of the Chebyshev basis

Zd(N)T
¢

.- Z Z Mg 7
f (

7=0 1=0
| S

/
C'.
J




DERIVATIVES

* Interpolate at any point § : f&) = ZCEN)Ti(f)
1=0
N
d - d
e The derivative reads: — f(§) = Cng) —T;(¢)
d§ - dg



DERIVATIVES

* Interpolate at any point § : f&) = ZCEN)Ti(f)
1=0
> i N
e The derivative reads: —f(§) = Z ;N (€)



DERIVATIVES

* Interpolate at any point § : f&) = ZCEN)Ti(f)
1=0
> i N
e The derivative reads: d—gf(@ = Z ;N (€)
i=0

" Derivative Coefficients algorhm

(V)

1

* Given resolution )y and Chebyshev Coefficients ¢

e Recurrence relation for derivative coefficients C’gN)

o Start with C/%\L — c'g\],v) — ()

 Run backward for 4 = N...1

/ e /
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DISCRETE DERIVATIVES

» Consider the derivative at the grid points {&x }

d%f £) LL MM T
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f
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e Consider relation to find coefficients CgN) = Z(T_l)i£f£
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DISCRETE DERIVATIVES

» Consider the derivative at the grid points {&x }

d%f £) LL N a7 (¢

N—— 7=0 1=0 Th,
/i
N
e Conslider relation to find coefficients C Z

N
fi=> Dufe=f =Df
¢=0

» Spectral differentiation matrices: D
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e Continuous derivative operator: 0,

* Discrete derivative operator: lA)M
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DISCRETE DERIVATIVES

e Continuous derivative operator: 0,

A

* Discrete derivative operator: D,

= [Dense matrix

= Fventually one needs to invert such matrices:
numerically expansive procedure

= Contains a lot of information (see example
eigenvalue problem)



DISCRETE DERIVATIVES

f(x)=1/(14x")
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DISCRETE DERIVATIVES

F(x)=1/(14X°)

For each
derivative,
approximately
two digits of
accuracy are
lost



EXAMPLE [ QONM

*Perturbation Theory: typical problem

¢ Stationary (black-hole) spacetime as background

¢ Consider fields propagating on background

¢ Linearise or consider a linear theory

¢ VWave equation

¢ lake boundary conditions into account

¢ Fourier (or Laplace) transformation

¢ Non-trivial solutions to the homogenous equation (eigenvalue

problem)
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* Black brane background spacetime: Schwarzschild-AdS in 5D
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* Black brane background spacetime: Schwarzschild-AdS in 5D

1
ds® = e (—f(,o)alv2 — 2dvdp + dz* + dy* + dzZ) il =1 — o'

“+

“Motivation AdSFTCorrespodene
* Introduction gauge/gravity duality (O. Miskovic)

* [iIme evolution of the chiral magnetic effect In the

_presence of time dependent axial charges
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* Black brane background spacetime: Schwarzschild-AdS in 5D
1

ds? = e (—f(,o)alv2 — 2dvdp + dx* + dy* + sz) o= 1l— ¢
T i = it
H ,H * Coordinates: Ingoing Eddington-Finkelstein

% (horizon penetrating)  p =1
/i A
ey * Null Infinity: AdS boundary  p =10

(time-like surface)

i r=0 t

‘Wave equation:

—p(1—p )W—(3—7,04) agp+(8+)\2)p3} U(v,p) + [2,0(%+3] U(v, p) + S(v,p) = 0.
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* Black brane background spacetime: Schwarzschild-AdS in 5D

ds® = iz (—f(p)dv2 — 2dvdp + dz* + dy* + sz) o =1l — o
o 5 r=0 o
‘ e ,H * Coordinates: Ingoing Eddington-Finkelstein
§ (horizon penetrating)  p =1
’ x %A * Null Infinity: AdS boundary p=20
H H (time-like surface)
- o

i r=0 t

‘Wave equation:

—+(8+)\2)p3] U(v, p) + [2p3+3] U(v, p) + S(v,p) = 0.

. | 1 e 4
p(1 p)ap2 (3—17p) 5

\Atime-derivative
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* Black brane background spacetime: Schwarzschild-AdS in 5D

ds® = % (—f(p)dv2 — 2dvdp + dz* + dy* + sz) o =1l — o
o g r=0 o
‘ e ,H * Coordinates: Ingoing Eddington-Finkelstein
§ (horizon penetrating)  p =1
’ x %A * Null Infinity: AdS boundary p=20
H H (time-like surface)
- o

i r=0 t

‘Wave equation:

—+(8+)\2)p3] U(v, p) + [2p3+3] U(v, p) + S(v,p) = 0.

dp
\‘x‘time-derivative

second order

—p(1—p )a—pg—(3—7p4)
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* Black brane background spacetime: Schwarzschild-AdS in 5D

ds® = iz (—f(p)dv® —2dvdp + dz* + dy* +dz*)  f(p)=1—p
Z-+ 5 r=0 -
H ,H * Coordinates: Ingoing Eddington-Finkelstein
§ (horizon penetrating)  p =1
’ x %A * Null Infinity: AdS boundary  p =20
H H (time-like surface)

‘Laplace transformation (homogenous equation):

—p(1—0p );22 (3— 7,0)(%+(8+)\2) ](_](p)+s[2p—+3](_](p):().
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*Problem: find complex s-values for which equation has a
non-vanishing regular solution

(0" s = (3= 16) o+ 8+ )| U +5 205 +3| OG0 =0



cXAMPLE |

- QNM

M. AMMON, S.GRIENINGER A J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

*Problem: find complex s-values for which equation has a

non-vanishing regular solution

82

[ p(1—p )5—(3 7p") aap
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*Numerical solution with spectral methods:

|. Discretise domain p € |0, 1] with Lobat

eadsto U(p) — U and 9, — D

0-grid (Include end points)
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*Problem: find complex s-values for which equation has a
non-vanishing regular solution

82

[ p(L—p )5—(3 7/))3a

; (8—|—)\2)p3] U(p) + s [2p—+3] U(p) = 0.

*Numerical solution with spectral methods:

|. Discretise domain p € |0, 1] with Lobatto-grid (include end points)
eadsto U(p) — U and 9, — D

[—p(l—p4)l§-l§—(3—7p4) ZA?+(8+)\2),03']1}(74—3{2,0154—3-]1](720.
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M. AMMON, S.GRIENINGER A J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

*Problem: find complex s-values for which equation has a
non-vanishing regular solution

82

[ p(L—p )5—(3 7/))8a

; (8+)\2)p3] U(p) + s [2p—+3] U(p) = 0.

*Numerical solution with spectral methods:

|. Discretise domain p € |0, 1] with Lobatto-grid (include end points)
eadsto U(p) — U and 9, — D

(34(7%-33(72 0.

2. Ask your favourite mathematical software to solve the

(generalised) eigenvalue problem
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which satisfies a given ordinary differential equation subject
to boundary conditions (BC)

o Extra issues: sometimes the problem involves extra unknown
parameters, (Indirectly) subject to subsidiary conditions
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SOLUTION ALGORITHM

e Problem: find solution for a function f(x) with x € |a, b]
which satisfies a given ordinary differential equation subject
to boundary conditions (BC)

o Extra issues: sometimes the problem involves extra unknown
parameters, (Indirectly) subject to subsidiary conditions

e Example: [ egendre equation
r e |—1,1]

(1 —£U2)f//—23?f/—|—>\f =0 (x = cos0)

/ —— 1
BC: regularity condition 2fl—1 +Afl-1=0

—2f1 +Afl1 =0
extra unknown parameter A
subsidiary condrtion: F(1) =1

normalisation
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e Notation: consider the second order differential
equation In the form

F(f, ', 52, ) = 0
with boundary conditions
Fo(f(a), f'(a);\) =0 Fy(f(b), f(b); A) =0
and eventual complementary condition

Fo(f (@), f'(2s), [ (@4); A) = 0

 Numerical implementation: fix resolution N and consider
a vector with all unknowns:

XT = (fo-- fnlN)

e Dimension: total number of unknown 7total = Nfelds (N + 1) + npar



SOLUTION ALGORITHM

e Notation: consider the second order differential
equation In the form

F(f, ', 52, ) = 0
with boundary conditions
Fo(f(a), f'(a);\) =0 Fy(f(b), f(b); A) =0
and eventual complementary condition

Fo(f (@), f'(2s), [ (@4); A) = 0

 Numerical implementation: fix resolution N and consider
a vector with all unknowns:

XT = (fo-- fnlN)

From any such vector we can compute the spectral coefficients
and the corresponding derivatives f, f/, [



SOLUTION ALGORITHM

« With f, J', " we evaluate the differential equation, boundary
conditions and eventual subsidiary equations at the grid points
and obtain the vector

FT = (Fb - - - FNtotal)
whose components are
Fa(anf(,);)‘) k=0

L F(fe, fi,fis;A) 0<k<N

F*(f*7 iy)\) k= Ntotal

* [he system correspond to an algebraic system

—

F(X)=0
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e Normalisation fo — 1 =0




SOLUTION ALGORITHM

o Example: [ egendre equation
(1—z2)f" —2z2f +Af=0

* Discretisation: Lobatto grid (end points included)
(1 — CE%) ,;/ = 2£Ekf]2 + Afr =0

e Normalisation fo — 1 =0

* Here, the discrete algebraic system ﬁ()f) s formed as

o

[ (1—a2) (152 )k—Qa:k (f))?)k+XN+1Xk 0<k<N

Xo—1 k=N+1

Fi. =«




SOLUTION ALGORITHM

Linear X Non-Linear

e Disd(1) Originally, the Legendre equation is linear on the
unknown function ()

N () However, we incorporate A\ also as a variable

(iif) Coupling between A and f(2) leads to a non-linear

. equation
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« We find a solution X (0D using the Newton-Raphson method:

e Newton method: find solution *°V to the equation F(z) =0

V

|.Give initial guess (%)

2. Calculate f(z©)
3. Calculate derivative ¢/(z()
4. |dentify (1) via
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SOLUTION ALGORITHM

« We find a solution X (0D using the Newton-Raphson method:

e Newton method: find solution *°V to the equation F(z) =0

|.Give initial guess (%)

2. Calculate f(z©)
3. Calculate derivative ¢/(z()
4. |dentify (1) via

e® =@ — )] f(®)

5. Start again untll
f@®D) ~ 0

V

» X

m— EUNktioN
Tangenic
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SOLUTION ALGORITHM

* We find a solution X 0 using the Newton-Raphson scheme:
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SOLUTION ALGORITHM

* We find a solution X 0 using the Newton-Raphson scheme:
Given initial-guess X©) (in general F(X°) #0 )
terate to find a solution via
—1
F(m+1) _ g(m) _ {j ()ZW))} (X))

where the Jacobian matrix Is given by
OF;
Jij = 7=
0X;

- —

- Solution is determined by F(X®°V) < Tolerance

* Note that for the convergence of the scheme, a “good” Initial guess X s
necessary

* In higher dimensions, inverting the Jacobian matrix Is expensive and we
need to make use of further iterative methods to speed up the algorithm
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SOLUTION

* Input: parameter £ to indicate the order of the eigenvalue

* Input: intial guess for the Newton-Raphson Scheme
FO(g) = af —gt2 4 gt4 ... A0 = 42
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SOLUTION

* Input: parameter £ to indicate the order of the eigenvalue

* Input: intial guess for the Newton-Raphson Scheme
FO(g) = af —gt2 4 gt4 ... A0 = 42
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HIGHER DIMENSION

* Extend the same idea to higher dimension:
- Vector X stores all unknown of the system

( f(x0,y0) \
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HIGHER DIMENSION

* Extend the same idea to higher dimension:
- Vector X stores all unknown of the system

- Algebraic system F(X) is composed by the partial differential
equations, boundary conditions and subsidiary conditions

( f(wo,v0) \
Yy f(xo,yn2)
A .
0 -.---: ------- :----L----: ------ :---. — 4 .
- G [ . X = Flzn,,vo)
................................ f([L'NlijQ)
TLc : : 4 > T K extra unknown )
. . . . SR ( BCwO(yj) 1=0
T L o 0| i S L BCay, (y5) i=N
e : : 2 2 BC,, (x;) 1<i<N; -1
ol R S — - Fo(X) = ¢ BC, . (n) S
7Y PDE(z;, ) 1<i<N;—1
N. 0 | subsidiary equations k = extra components

0<j< Ny

0<7< Ny
7 =0

J= N>

1<j<N;—-1



N

HIGHER DIMENSION

e Extend the same idea to higher dimension:
Vector X stores all unknown of the system

Algebraic system F(X) is composed by the partial differential
equations, boundary conditions and subsidiary conditions

Solution 1s found via N
with further tricks to s

Matrix)

..................................
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--------------------------------

--------------------------------

>
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o
I
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f($N1.7 yNQ)

K extra unknown )
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S BC,, () 1<i<N;—1

Fie(X) = 4 BCy,, (z;) 1<i<N;—1

| subsidiary equations k = extra components

ewton-Raphson scheme (eventually
beed up the Inversion of the Jacobian

0<j< Ny

0<7< Ny
7 =0

J= N>

1<j<N;—-1



