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SUMMARISE II

•Solution algorithm:

- Vector    stores all unknown of the system                  ~X

- Algebraic system          is composed by the partial differential equations, 
boundary conditions and subsidiary conditions 

~F ( ~X)

- Solution is found via Newton-Raphson scheme

•Derivatives: loss of accuracy (~2 digits) with each derivative 
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(spectral representation) (derivative matrices) @µ ! D̂µ

~f 0 = D̂ ~f
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EXAMPLES

 Identify the physical / mathematical problem of interest
 Derive equations and establish the appropriate boundary 
conditions
 Identify extra unknowns in the system (if any)
 Derive complementary equations (if any) to close the system
 Adapt the coordinate system to the geometry/causal structure of 
the problem
 Learn (formal theorems, Taylor expansions, linearisation, trail-and-
error…) specific properties of the solution: strong gradients, 
irregularities….

• Message behind the examples
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•Cylindrical-like coordinates (Weyl-Lewis-Papapetrou)
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•Line Element and Maxwell Field

Fab = raAb �rbAa A = At(⇢, z) dt+A�(⇢, z) d�

•Dust properties
Baryonic mass density
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ELLIPTIC EQUATION
•Variables of the system: ⌫(⇢, z) !(⇢, z) At(⇢, z)A�(⇢, z) ⌦

•Parameter Space:

•Elliptic equations: Einstein Maxwell

•Subsidiary condition: ⌫(0, 0) = ⌫c

•Boundary condition: A Regularity conditions on the axis
B Asymptotic flatness at infinity
C Symmetry (parity condition) for           and  z > 0 z < 0

D
Junction conditions due to mass density on disk

+
rbT

ab = 0Lorentz force

Relativistic parameter
Charge density

� = 1� ⌫c 2 (0, 1]

✏ 2 [0, 1]
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z

⇢

•Adapted coordinates: map into elliptic coordinates: 



126 KAPITEL 5. KOLLOKATIONSPUNKTMETHODE

⇠ = constant : konfokale Ellipsen im (⇢, z)-Raum
⌘ = constant : konfokale Hyperbeln im (⇢, z)-Raum

• Die Scheibe in der z-Ebene wird beschrieben durch ⇠ = 0.

• Die Laplace-Gleichung (gültig außerhalb der Scheibe) lautet:

1

%

2

0

(⇠2 + ⌘

2)

⇥

(1 + ⇠

2)U,⇠⇠ + (1� ⌘

2)U,⌘⌘ + 2⇠U,⇠ � 2⌘U,⌘

⇤

= 0

• Geben wir die Flächenmassendichte µF der Scheibe vor, so erhalten
wir ein Neumann-Randwertproblem der Laplace-Gleichung in ellipti-
schen Koordinaten:

U,⇠(⇠ = 0, ⌘) = 2⇡%
0

⌘µF (⌘)
⇥

(1 + ⇠

2)U,⇠⇠ + 2⇠U,⇠ � 2⌘U,⌘

⇤

⌘=±1

= 0

lim
⇠!1

U(⇠, ⌘) = 0

• Die zweite der obigen Bedingungen ergibt sich aus der Laplace-Gleichung
bei Forderung von Regularität der Lösung bei ⌘ = ±1.

• Wir können uns auf äquator-symmetrische Lösungen U(⇠, ⌘) = U(⇠,�⌘)
beschränken. Dann gilt die Randbedingung

U,⌘(⇠, ⌘ = 0) = 0

ELLIPTIC EQUATION
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•Adapted coordinates: map into elliptic coordinates: 

⇢ = ⇢0
p
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(ellipse with focus     )⇢0
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•Adapted coordinates: map into elliptic coordinates: 
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•Spectral Coordinates:  
Compactify infinity and restrict to upper half plane

⌧ = ⌘2� =
2

⇡
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ELLIPTIC EQUATIONS REMARKS
Error: Physical parameters are related via
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•Spectral methods are well stablished for elliptic equations in many communities

ELLIPTIC EQUATIONS REMARKS

•Introduction of adapted coordinates to map the coordinates into a squared domain

•Treatment of unknown functions and unknown parameters in equal stage

•Solution is analytic, exponential decay of Chebyshev coefficients

•Regions in the parameter space with strong gradient (careful treatment)

(Treatment of a priori unknown boundaries - example surface of a star)

In general:

Here:
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• Gravitational degrees of freedom near spatial infinity 

(linear regime on Minkowski background)
J. Valiente, RPM. In preparation (2017)

i0

i+

I +

Gravitational degrees of freedom: components of 
the Riemann Tensor (Newman-Penrose scalars)

ingoing/outgoing gravitational waves�4

�3

�2

�1

�0

“Coulomb” field

gauge freedom

Near station infinity: introduce coordinates          that 
“inflates” the point     into a surfacei0

t = 0

L
(⌧,�)

i0

I +

L
(� = 0)(� = 1)

(⌧ = 1)

(⌧ = 0)
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•Spectral methods with dynamical equations is an incipient field

HYPERBOLIC EQUATIONS REMARKS

•Introduction of adapted coordinates (careful with boundary of causal domain)

•Treatment of unknown functions and unknown parameters in equal stage

•Solution is       , algebraic decay           of Chebyshev coefficients in time direction

In general:

Here:

(Treatment of a priori unknown boundaries - evolution of star’s surface)

C1

•Compatible with the structure of the auxiliary functions                             after 
removing leading order terms

⇠ N�5

⇠ (1� ⌧)2 ln(1� ⌧)



ENHANCING ACCURACY

• Softening strong gradients (analytical mesh refinement)

• Introducing        functionsC1

• Discontinuities: Gibbs phenomena and filtering techniques

• Discontinuities: multi-domain approach

Today:

Somewhen in the future (lack of time)



ANALYTICAL FUNCTIONS

• Convergence Rate:  
Error ⇠ %�N

• Strong gradients: leads to smaller basis    (slope in the log-linear plot)

• Functions:      (Taylor expansion around every point in domain)C!
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•Spectral approximation:
Error ⇠ %�N

•Decay rate     :  a well definite distance between the singular points            of 
the function in the complex plane and the domain in the real axis

%

x

�1 1

y

x0

y0

x 2 [�1, 1]
(x0, y0)

•Conclusion : complex singularities closer to real domain leads to slower 
exponential convergence

•Remark : discussion in terms of the Fourier basis is actually simpler (sorry!)

ANALYTICAL FUNCTIONS
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ELLIPTIC EQUATION
• Disk of charged dust in General Relativity

Y.C.Liu, RPM, M. Breithaupt, S. Palenta, R. Meinel. PRD 94 104035 (2016)
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ELLIPTIC EQUATION
• Disk of charged dust in General Relativity

Y.C.Liu, RPM, M. Breithaupt, S. Palenta, R. Meinel. PRD 94 104035 (2016)
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• Functions:     C`([0, 1])

• Convergence Rate:  
Error ⇠ N�p

• Typical occurrence: 
f(x) ⇠ x

k ln(x)

• Introduce transformation: 

x(z) = e

1�1/z

x : [0, 1] ! [0, 1]

• Property: (Smooth function, but no Taylor 
expansion around            )z = 0

d

j

dz

j
x(0) = 0 x 2 C1([0, 1])

i.e.

• Consequence:

F 2 C1([0, 1])lim
z!0

dj

dzj
F (z) = 0

F (z) = f (x(z)) ⇠ e

k(1� 1
z )

z

(z � 1)



HYPERBOLIC EQUATION

⌧ = 1� exp




✓
1� 1

1� T

◆�

Gravitational degrees of freedom near spatial infinity 
(linear regime on Minkowski background)

J. Valiente, RPM. In preparation (2017)
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•Provide numerical solutions with high accuracy 

CONCLUSION

•Allows one to explore regions in the parameter space where the solution 
is problematic

•Treatment of unknown functions and unknown parameters in equal stage

Spectral Methods

•Explore mathematical properties of the solution
•But can be slower then other algorithms 

•Well stablished method for elliptic equations (General Relativity: stationary 
space times and initial data problem)

•Time dependent problems: spectral methods in the spatial direction 
together with some other time integrator (Runge-Kutta)

•Development of fully spectral codes: spectral methods applied to both space 
and time directions


