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SUMMARISE I
•Spectral representation: high accuracy approximation of an analytical function

f(x) ⇡
NX

i=0

c

(N)
i �i(x)

•Basis Function: trigonometric if function is periodic (Fourier), Chebyshev else

•Collocation Method: Function is exact at given grid points {xi}

f(xj) =
NX

i=0

c

(N)
i �i(xj)

•Grid: Lobatto (include end points), Gauss (exclude end points), Radau (include 
one end and excludes other)

•Error / Chebyshev coefficients: exponencial/algebraic convergence 
depending whether the function is analytic or C`



OUTLINE PART 2

• Algorithm for solution of ordinary differential equations

• Example 3: elliptic equation  
(rotating disk of charged dust in general relativity)

• Example 4: hyperbolic equation  
(conformal Einstein’s field equations, linear problem)

• Example 2: Laplace equation 

• Extension to partial differential equations

• Derivatives
• Example 1: eigenvalue problems (Quasi-normal modes)
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Polynomials 
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DERIVATIVES
• Interpolate at any point    : ⇠ f̃(⇠) =

NX

i=0

c(N)
i Ti(⇠)

• The derivative reads: 
d

d⇠
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NX
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c0i
(N)Ti(⇠)

Derivative Coefficients algorithm
• Given resolution     and Chebyshev Coefficients
• Recurrence relation for derivative coefficients
• Start with
• Run backward for 

N c(N)
i

c0(N)
i

c0(N)
N+1 = c0(N)

N = 0

i = N · · · 1

c0i�1 = 2kci + c0k+1
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• Consider the derivative at the grid points {⇠k}
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• Spectral differentiation matrices: D̂

f 0
k =

NX

`=0

Dk`f` ) ~f 0 = D̂ ~f
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DISCRETE DERIVATIVES
• Continuous derivative operator: @µ

• Discrete derivative operator: D̂µ

➡ Dense matrix

➡ Eventually one needs to invert such matrices: 
numerically expansive procedure

➡ Contains a lot of information (see example 
eigenvalue problem)
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DISCRETE DERIVATIVES

 For each 
derivative, 
approximately 
two digits of 
accuracy are 
lost



•Perturbation Theory: typical problem 

EXAMPLE 1: QNM

 Stationary (black-hole) spacetime as background
 Consider fields propagating on background
 Linearise or consider a linear theory
 Wave equation
 Take boundary conditions into account
 Fourier (or Laplace) transformation
Non-trivial solutions to the homogenous equation (eigenvalue 
problem)



•Perturbation Theory: typical problem 

EXAMPLE 1: QNM

 Stationary (black-hole) spacetime as background
 Consider fields propagating on background
 Linearise or consider a linear theory
 Wave equation
 Take boundary conditions into account
 Fourier (or Laplace) transformation
Non-trivial solutions to the homogenous equation (eigenvalue 
problem)

Boundary conditions are regularity conditions



EXAMPLE 1: QNM 
M. AMMON, S.GRIENINGER, A.J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

•Black brane background spacetime: Schwarzschild-AdS in 5D 

ds
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•Coordinates: Ingoing Eddington-Finkelstein
(horizon penetrating) ⇢ = 1

f(⇢) = 1� ⇢4

•Null Infinity: AdS boundary
(time-like surface)

⇢ = 0
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•Coordinates: Ingoing Eddington-Finkelstein
(horizon penetrating) ⇢ = 1

f(⇢) = 1� ⇢4

•Null Infinity: AdS boundary
(time-like surface)

⇢ = 0

Motivation AdS/CFT Correspondence
• Introduction gauge/gravity duality (O. Miskovic)
• Time evolution of the chiral magnetic effect in the 
presence of time dependent axial charges
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•Laplace transformation (homogenous equation): 
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Ū(⇢) + s


2 ⇢

@

@⇢
+ 3

�
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Ū(⇢) = 0.

•Numerical solution with spectral methods: 

1. Discretise domain              with Lobatto-grid (include end points) 
leads to                   and  
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2. Ask your favourite mathematical software to solve the 
(generalised) eigenvalue problem
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•Remarks:
1. Given numerical resolution     leads to     “eigenvalues” N

2. However, most of them are rubbish
N

3. One must study the convergence to see which values are stable 
and converge to a fixed value as we increase the resolution
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• Extra issues: sometimes the problem involves extra unknown 
parameters, (indirectly) subject to subsidiary conditions
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• Problem: find solution for a function         with  

which satisfies a given ordinary differential equation subject 
to boundary conditions (BC)  

(x = cos ✓)

BC: regularity condition

f(x) x 2 [a, b]

• Example: Legendre equation
(1� x

2)f 00 � 2xf 0 + �f = 0
x 2 [�1, 1]

2f 0
|�1 + �f|�1 = 0

�2f 0
|1 + �f|1 = 0

• Extra issues: sometimes the problem involves extra unknown 
parameters, (indirectly) subject to subsidiary conditions

extra unknown parameter �

subsidiary condition: 
normalisation f(1) = 1



SOLUTION ALGORITHM

with boundary conditions

• Notation: consider the second order differential 
equation in the form

Fa(f(a), f
0(a);�) = 0 Fb(f(b), f
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and eventual complementary condition
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• Notation: consider the second order differential 
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SOLUTION ALGORITHM

with boundary conditions

• Notation: consider the second order differential 
equation in the form

Fa(f(a), f
0(a);�) = 0 Fb(f(b), f

0(b);�) = 0

and eventual complementary condition
F⇤(f(x⇤), f

0(x⇤), f
00(x⇤);�) = 0

• Numerical implementation: fix resolution    and consider 
a vector with all unknowns:                   

~XT = (f0 · · · fN |�)

N

F (f, f 0
, f

00;x,�) = 0

From any such vector we can compute the spectral coefficients 
and the corresponding derivatives ~f, ~f 0, ~f 00



SOLUTION ALGORITHM
• With              , we evaluate the differential equation, boundary 

conditions and eventual subsidiary equations at the grid points 
and obtain the vector

~f, ~f 0, ~f 00

~FT = (F
0

· · ·F
Ntotal

)

whose components are

• The system correspond to an algebraic system
~F ( ~X) = 0

Fk =

8
>><

>>:

Fa(f0, f 0
0

;�) k = 0
F (fk, f 0

k, f
00
k ;�) 0 < k < N

Fb(fN , f 0
N ;�) k = N

F⇤(f⇤, f 0
⇤;�) k = N

total
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• Discretisation: Lobatto grid (end points included)
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SOLUTION ALGORITHM
• Example: Legendre equation

(1� x

2)f 00 � 2xf 0 + �f = 0

f0 � 1 = 0

• Here, the discrete algebraic system           is formed as ~F ( ~X)

Linear X Non-Linear

(i) Originally, the Legendre equation is linear on the 
unknown function 

(ii) However, we incorporate     also as a variable
(iii) Coupling between    and         leads to a non-linear 

equation 
f(x)

�

f(x)

�

Fk =

(
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2
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⇣
D̂

2
~

X

⌘

k
� 2xk

⇣
D̂

~

X

⌘

k
+XN+1Xk 0  k  N
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SOLUTION ALGORITHM
• We find a solution          using the Newton-Raphson method: ~X(sol)

• Newton method: find solution         to the equationx

(sol)

F (x) = 0

1.Give initial guess
2. Calculate 
3. Calculate derivative
4. Identify       via  
 

5. Start again until

x

(0)

f(x(0))

f

0(x(0))

x

(1)

x

(1) = x

(0) �
⇥
f

0(x0)
⇤�1

f(x(0))

f(x(sol)) ⇡ 0
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Ĵ
⇣
~X(m)

⌘i�1
· ~F ( ~X(m))

Jij =
@Fi

@Xj

~X(sol)



SOLUTION ALGORITHM
• We find a solution          using the Newton-Raphson scheme: 

where the Jacobian matrix is given by

- Given initial-guess        (in general                 )
- Iterate to find a solution via

~X(0) ~F ( ~X0) 6= 0

~X(m+1) = ~X(m) �
h
Ĵ
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SOLUTION ALGORITHM
• We find a solution          using the Newton-Raphson scheme: 

where the Jacobian matrix is given by

• Note that for the convergence of the scheme, a “good” initial guess        is 
necessary

• In higher dimensions, inverting the Jacobian matrix is expensive and we 
need to make use of further iterative methods to speed up the algorithm

- Given initial-guess        (in general                 )
- Iterate to find a solution via

~X(0) ~F ( ~X0) 6= 0

~X(m+1) = ~X(m) �
h
Ĵ
⇣
~X(m)

⌘i�1
· ~F ( ~X(m))

Jij =
@Fi

@Xj

~X(0)

- Solution is determined by ~F (

~X(sol)

) < Tolerance

~X(sol)
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ODE (EIGENVALUE PROBLEM)

• Input: parameter    to indicate the order of the eigenvalue`

• Input: initial guess for the Newton-Raphson Scheme
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• Input: parameter    to indicate the order of the eigenvalue`

• Input: initial guess for the Newton-Raphson Scheme
f

(0)(x) = x

` � x

`�2 + x

`�4 � · · · �(0) = `2

1.00e-18

1.00e-16

1.00e-14

1.00e-12

1.00e-10

1.00e-08

1.00e-06

1.00e-04

1.00e-02

1.00e+00

 0  5  10  15  20  25  30
i

l = 10

|ci|



HIGHER DIMENSION
• Extend the same idea to higher dimension:

x

y

i
0N1

N2

j

0



HIGHER DIMENSION
• Extend the same idea to higher dimension:

- Vector    stores all unknown of the system                  ~X

x

y

i
0N1

N2

j

0
~

X =

0

BBBBBBBBBBBBBBB@

f(x0, y0)

.

.

.

f(x0, yN2)

.

.

.

f(xN1 , y0)

.

.

.

f(xN1 , yN2)

��
extra unknown

1

CCCCCCCCCCCCCCCA



HIGHER DIMENSION
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• Extend the same idea to higher dimension:

- Vector    stores all unknown of the system                  ~X

- Algebraic system         is composed by the partial differential 
equations, boundary conditions and subsidiary conditions 

~F ( ~X)

- Solution is found via Newton-Raphson scheme (eventually 
with further tricks to speed up the inversion of the Jacobian 
Matrix)
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