
HIGH-ACCURACY
NUMERICAL METHODS IN

GENERAL RELATIVITY
Rodrigo Panosso Macedo

(Part II)

The 4th Afro-Franco-Brazilian meeting on Mathematics and Physics - July 2017

r.panossomacedo@qmul.ac.uk

mailto:r.panossomacedo@qmul.ac.uk

SUMMARISE I
•Spectral representation: high accuracy approximation of an analytical function

f(x) ⇡
NX

i=0

c

(N)
i �i(x)

•Basis Function: trigonometric if function is periodic (Fourier), Chebyshev else

•Collocation Method: Function is exact at given grid points {xi}

f(xj) =
NX

i=0

c

(N)
i �i(xj)

•Grid: Lobatto (include end points), Gauss (exclude end points), Radau (include
one end and excludes other)

•Error / Chebyshev coefficients: exponencial/algebraic convergence
depending whether the function is analytic or C`

OUTLINE PART 2

• Algorithm for solution of ordinary differential equations

• Example 3: elliptic equation  
(rotating disk of charged dust in general relativity)

• Example 4: hyperbolic equation  
(conformal Einstein’s field equations, linear problem)

• Example 2: Laplace equation

• Extension to partial differential equations

• Derivatives
• Example 1: eigenvalue problems (Quasi-normal modes)

DERIVATIVES
• Interpolate at any point : ⇠ f̃(⇠) =

NX

i=0

c(N)
i Ti(⇠)

• The derivative reads:
d

d⇠
f̃(⇠) =

NX

i=0

c(N)
i

d

d⇠
Ti(⇠)

DERIVATIVES
• Interpolate at any point : ⇠ f̃(⇠) =

NX

i=0

c(N)
i Ti(⇠)

• The derivative reads:
d

d⇠
f̃(⇠) =

NX

i=0

c(N)
i

d

d⇠
Ti(⇠)

• In particular, the derivative of a Chebyshev Polynomial can
be expressed in terms of the Chebyshev basis

d

d⇠
Ti(⇠) =

NX

j=0

d(N)
ij Tj(⇠)

DERIVATIVES
• Interpolate at any point : ⇠ f̃(⇠) =

NX

i=0

c(N)
i Ti(⇠)

• The derivative reads:
d

d⇠
f̃(⇠) =

NX

i=0

c(N)
i

d

d⇠
Ti(⇠)

• In particular, the derivative of a Chebyshev Polynomial can
be expressed in terms of the Chebyshev basis

d

d⇠
Ti(⇠) =

NX

j=0

d(N)
ij Tj(⇠)

are calculated exactly
using properties of

the Chebyshev
Polynomials

DERIVATIVES
• Interpolate at any point : ⇠ f̃(⇠) =

NX

i=0

c(N)
i Ti(⇠)

• The derivative reads:
d

d⇠
f̃(⇠) =

NX

i=0

c(N)
i

d

d⇠
Ti(⇠)

d

d⇠
f̃(⇠) =

NX

i=0

c(N)
i

NX

j=0

d(N)
ij Tj(⇠)

• In particular, the derivative of a Chebyshev Polynomial can
be expressed in terms of the Chebyshev basis

d

d⇠
Ti(⇠) =

NX

j=0

d(N)
ij Tj(⇠)

DERIVATIVES
• Interpolate at any point : ⇠ f̃(⇠) =

NX

i=0

c(N)
i Ti(⇠)

• The derivative reads:
d

d⇠
f̃(⇠) =

NX

i=0

c(N)
i

d

d⇠
Ti(⇠)

• In particular, the derivative of a Chebyshev Polynomial can
be expressed in terms of the Chebyshev basis

d

d⇠
f̃(⇠) =

NX

j=0

NX

i=0

c(N)
i d(N)

ij

| {z }
c0j

Tj(⇠)

d

d⇠
Ti(⇠) =

NX

j=0

d(N)
ij Tj(⇠)

DERIVATIVES
• Interpolate at any point : ⇠ f̃(⇠) =

NX

i=0

c(N)
i Ti(⇠)

• The derivative reads:
d

d⇠
f̃(⇠) =

NX

i=0

c(N)
i

d

d⇠
Ti(⇠)

DERIVATIVES
• Interpolate at any point : ⇠ f̃(⇠) =

NX

i=0

c(N)
i Ti(⇠)

• The derivative reads:
d

d⇠
f̃(⇠) =

NX

i=0

c0i
(N)Ti(⇠)

DERIVATIVES
• Interpolate at any point : ⇠ f̃(⇠) =

NX

i=0

c(N)
i Ti(⇠)

• The derivative reads:
d

d⇠
f̃(⇠) =

NX

i=0

c0i
(N)Ti(⇠)

Derivative Coefficients algorithm
• Given resolution and Chebyshev Coefficients
• Recurrence relation for derivative coefficients
• Start with
• Run backward for

N c(N)
i

c0(N)
i

c0(N)
N+1 = c0(N)

N = 0

i = N · · · 1

c0i�1 = 2kci + c0k+1

DISCRETE DERIVATIVES
• Consider the derivative at the grid points {⇠k}

d

d⇠
f̃(⇠k) =

NX

j=0

NX

i=0

c(N)
i d(N)

ij Tj(⇠k)

DISCRETE DERIVATIVES
• Consider the derivative at the grid points {⇠k}

d

d⇠
f̃(⇠k)

| {z }
f 0
k

=
NX

j=0

NX

i=0

c(N)
i d(N)

ij Tj(⇠k)| {z }
Tkj

• Consider relation to find coefficients ~c = T̂�1 ~f

DISCRETE DERIVATIVES
• Consider the derivative at the grid points {⇠k}

d

d⇠
f̃(⇠k)

| {z }
f 0
k

=
NX

j=0

NX

i=0

c(N)
i d(N)

ij Tj(⇠k)| {z }
Tkj

• Consider relation to find coefficients

f 0
k =

NX

j=0

NX

i=0

NX

`=0

(T�1)i`f`d
(N)
ij Tkj

c(N)
i =

NX

`=0

(T�1)i`f`

DISCRETE DERIVATIVES
• Consider the derivative at the grid points {⇠k}

d

d⇠
f̃(⇠k)

| {z }
f 0
k

=
NX

j=0

NX

i=0

c(N)
i d(N)

ij Tj(⇠k)| {z }
Tkj

• Consider relation to find coefficients c(N)
i =

NX

`=0

(T�1)i`f`

f 0
k =

NX

`=0

NX

i=0

NX

j=0

Tkjd
(N)
ij (T�1)i`

| {z }
Dk`

f`

DISCRETE DERIVATIVES
• Consider the derivative at the grid points {⇠k}

d

d⇠
f̃(⇠k)

| {z }
f 0
k

=
NX

j=0

NX

i=0

c(N)
i d(N)

ij Tj(⇠k)| {z }
Tkj

• Consider relation to find coefficients c(N)
i =

NX

`=0

(T�1)i`f`

• Spectral differentiation matrices: D̂

f 0
k =

NX

`=0

Dk`f`) ~f 0 = D̂ ~f

DISCRETE DERIVATIVES
• Continuous derivative operator: @µ

• Discrete derivative operator: D̂µ

DISCRETE DERIVATIVES
• Continuous derivative operator: @µ

• Discrete derivative operator: D̂µ

➡ Dense matrix

DISCRETE DERIVATIVES
• Continuous derivative operator: @µ

• Discrete derivative operator: D̂µ

➡ Dense matrix

➡ Eventually one needs to invert such matrices:
numerically expansive procedure

DISCRETE DERIVATIVES
• Continuous derivative operator: @µ

• Discrete derivative operator: D̂µ

➡ Dense matrix

➡ Eventually one needs to invert such matrices:
numerically expansive procedure

➡ Contains a lot of information (see example
eigenvalue problem)

DISCRETE DERIVATIVES

DISCRETE DERIVATIVES

 For each
derivative,
approximately
two digits of
accuracy are
lost

•Perturbation Theory: typical problem

EXAMPLE 1: QNM

 Stationary (black-hole) spacetime as background
 Consider fields propagating on background
 Linearise or consider a linear theory
 Wave equation
 Take boundary conditions into account
 Fourier (or Laplace) transformation
Non-trivial solutions to the homogenous equation (eigenvalue
problem)

•Perturbation Theory: typical problem

EXAMPLE 1: QNM

 Stationary (black-hole) spacetime as background
 Consider fields propagating on background
 Linearise or consider a linear theory
 Wave equation
 Take boundary conditions into account
 Fourier (or Laplace) transformation
Non-trivial solutions to the homogenous equation (eigenvalue
problem)

Boundary conditions are regularity conditions

EXAMPLE 1: QNM 
M. AMMON, S.GRIENINGER, A.J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

•Black brane background spacetime: Schwarzschild-AdS in 5D

ds

2 =
1

⇢

2

�
�f(⇢)dv2 � 2 dvd⇢+ dx

2 + dy

2 + dz

2
�

H+ H+

AA

r = 0 i−

r = 0i+ i+

i−

H−H−

•Coordinates: Ingoing Eddington-Finkelstein
(horizon penetrating) ⇢ = 1

f(⇢) = 1� ⇢4

•Null Infinity: AdS boundary
(time-like surface)

⇢ = 0

EXAMPLE 1: QNM 
M. AMMON, S.GRIENINGER, A.J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

•Black brane background spacetime: Schwarzschild-AdS in 5D

ds

2 =
1

⇢

2

�
�f(⇢)dv2 � 2 dvd⇢+ dx

2 + dy

2 + dz

2
�

H+ H+

AA

r = 0 i−

r = 0i+ i+

i−

H−H−

•Coordinates: Ingoing Eddington-Finkelstein
(horizon penetrating) ⇢ = 1

f(⇢) = 1� ⇢4

•Null Infinity: AdS boundary
(time-like surface)

⇢ = 0

Motivation AdS/CFT Correspondence
• Introduction gauge/gravity duality (O. Miskovic)
• Time evolution of the chiral magnetic effect in the
presence of time dependent axial charges

EXAMPLE 1: QNM 
M. AMMON, S.GRIENINGER, A.J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

•Black brane background spacetime: Schwarzschild-AdS in 5D

ds

2 =
1

⇢

2

�
�f(⇢)dv2 � 2 dvd⇢+ dx

2 + dy

2 + dz

2
�

H+ H+

AA

r = 0 i−

r = 0i+ i+

i−

H−H−

•Coordinates: Ingoing Eddington-Finkelstein
(horizon penetrating) ⇢ = 1

f(⇢) = 1� ⇢4

•Null Infinity: AdS boundary
(time-like surface)

⇢ = 0

EXAMPLE 1: QNM 
M. AMMON, S.GRIENINGER, A.J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

•Black brane background spacetime: Schwarzschild-AdS in 5D

ds

2 =
1

⇢

2

�
�f(⇢)dv2 � 2 dvd⇢+ dx

2 + dy

2 + dz

2
�

H+ H+

AA

r = 0 i−

r = 0i+ i+

i−

H−H−

•Coordinates: Ingoing Eddington-Finkelstein
(horizon penetrating) ⇢ = 1

f(⇢) = 1� ⇢4

•Null Infinity: AdS boundary
(time-like surface)

⇢ = 0

•Wave equation:

�⇢ (1� ⇢4)

@2

@⇢2
�

�
3� 7⇢4

� @

@⇢
+ (8 + �2) ⇢3

�
U(v, ⇢) +


2 ⇢

@

@⇢
+ 3

�
U̇(v, ⇢) + S(v, ⇢) = 0.

EXAMPLE 1: QNM 
M. AMMON, S.GRIENINGER, A.J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

•Black brane background spacetime: Schwarzschild-AdS in 5D

ds

2 =
1

⇢

2

�
�f(⇢)dv2 � 2 dvd⇢+ dx

2 + dy

2 + dz

2
�

H+ H+

AA

r = 0 i−

r = 0i+ i+

i−

H−H−

•Coordinates: Ingoing Eddington-Finkelstein
(horizon penetrating) ⇢ = 1

f(⇢) = 1� ⇢4

•Null Infinity: AdS boundary
(time-like surface)

⇢ = 0

•Wave equation:

�⇢ (1� ⇢4)

@2

@⇢2
�

�
3� 7⇢4

� @

@⇢
+ (8 + �2) ⇢3

�
U(v, ⇢) +


2 ⇢

@

@⇢
+ 3

�
U̇(v, ⇢) + S(v, ⇢) = 0.

time-derivative

EXAMPLE 1: QNM 
M. AMMON, S.GRIENINGER, A.J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

•Black brane background spacetime: Schwarzschild-AdS in 5D

ds

2 =
1

⇢

2

�
�f(⇢)dv2 � 2 dvd⇢+ dx

2 + dy

2 + dz

2
�

H+ H+

AA

r = 0 i−

r = 0i+ i+

i−

H−H−

•Coordinates: Ingoing Eddington-Finkelstein
(horizon penetrating) ⇢ = 1

f(⇢) = 1� ⇢4

•Null Infinity: AdS boundary
(time-like surface)

⇢ = 0

•Wave equation:

�⇢ (1� ⇢4)

@2

@⇢2
�

�
3� 7⇢4

� @

@⇢
+ (8 + �2) ⇢3

�
U(v, ⇢) +


2 ⇢

@

@⇢
+ 3

�
U̇(v, ⇢) + S(v, ⇢) = 0.

time-derivative
second order

EXAMPLE 1: QNM 
M. AMMON, S.GRIENINGER, A.J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

•Black brane background spacetime: Schwarzschild-AdS in 5D

ds

2 =
1

⇢

2

�
�f(⇢)dv2 � 2 dvd⇢+ dx

2 + dy

2 + dz

2
�

H+ H+

AA

r = 0 i−

r = 0i+ i+

i−

H−H−

•Coordinates: Ingoing Eddington-Finkelstein
(horizon penetrating) ⇢ = 1

f(⇢) = 1� ⇢4

•Null Infinity: AdS boundary
(time-like surface)

⇢ = 0

•Laplace transformation (homogenous equation):

�⇢ (1� ⇢4)

@2

@⇢2
�

�
3� 7⇢4

� @

@⇢
+ (8 + �2) ⇢3

�
Ū(⇢) + s


2 ⇢

@

@⇢
+ 3

�
Ū(⇢) = 0.

EXAMPLE 1: QNM 
M. AMMON, S.GRIENINGER, A.J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

•Problem: find complex s-values for which equation has a
non-vanishing regular solution

�⇢ (1� ⇢4)

@2

@⇢2
�

�
3� 7⇢4

� @

@⇢
+ (8 + �2) ⇢3

�
Ū(⇢) + s


2 ⇢

@

@⇢
+ 3

�
Ū(⇢) = 0.

EXAMPLE 1: QNM 
M. AMMON, S.GRIENINGER, A.J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

•Problem: find complex s-values for which equation has a
non-vanishing regular solution

�⇢ (1� ⇢4)

@2

@⇢2
�

�
3� 7⇢4

� @

@⇢
+ (8 + �2) ⇢3

�
Ū(⇢) + s


2 ⇢

@

@⇢
+ 3

�
Ū(⇢) = 0.

•Numerical solution with spectral methods:

1. Discretise domain with Lobatto-grid (include end points)
leads to and

⇢ 2 [0, 1]

Ū(⇢) ! ~U @⇢ ! D̂

EXAMPLE 1: QNM 
M. AMMON, S.GRIENINGER, A.J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

•Problem: find complex s-values for which equation has a
non-vanishing regular solution

�⇢ (1� ⇢4)

@2

@⇢2
�

�
3� 7⇢4

� @

@⇢
+ (8 + �2) ⇢3

�
Ū(⇢) + s


2 ⇢

@

@⇢
+ 3

�
Ū(⇢) = 0.

•Numerical solution with spectral methods:

1. Discretise domain with Lobatto-grid (include end points)
leads to and

⇢ 2 [0, 1]

Ū(⇢) ! ~U @⇢ ! D̂
h
�⇢ (1� ⇢4) D̂ · D̂ �

�
3� 7⇢4

�
D̂ + (8 + �2) ⇢3 · 1

i
~U + s

h
2 ⇢ D̂ + 3 · 1

i
~U = 0.

EXAMPLE 1: QNM 
M. AMMON, S.GRIENINGER, A.J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

•Problem: find complex s-values for which equation has a
non-vanishing regular solution

�⇢ (1� ⇢4)

@2

@⇢2
�

�
3� 7⇢4

� @

@⇢
+ (8 + �2) ⇢3

�
Ū(⇢) + s


2 ⇢

@

@⇢
+ 3

�
Ū(⇢) = 0.

•Numerical solution with spectral methods:

1. Discretise domain with Lobatto-grid (include end points)
leads to and

⇢ 2 [0, 1]

Ū(⇢) ! ~U @⇢ ! D̂

↵̂~U + s�̂ ~U = 0.

EXAMPLE 1: QNM 
M. AMMON, S.GRIENINGER, A.J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

•Problem: find complex s-values for which equation has a
non-vanishing regular solution

�⇢ (1� ⇢4)

@2

@⇢2
�

�
3� 7⇢4

� @

@⇢
+ (8 + �2) ⇢3

�
Ū(⇢) + s


2 ⇢

@

@⇢
+ 3

�
Ū(⇢) = 0.

•Numerical solution with spectral methods:

1. Discretise domain with Lobatto-grid (include end points)
leads to and

⇢ 2 [0, 1]

Ū(⇢) ! ~U @⇢ ! D̂

↵̂~U + s�̂ ~U = 0.

2. Ask your favourite mathematical software to solve the
(generalised) eigenvalue problem

EXAMPLE 1: QNM 
M. AMMON, S.GRIENINGER, A.J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

•Remarks:
N N

s0

s1

s2

s3

s4

20 25 30 35 40

10-24

10-19

10-14

10-9

10-4

10

N

Error = |s(High Res) - s(N)|

EXAMPLE 1: QNM 
M. AMMON, S.GRIENINGER, A.J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

•Remarks:
1. Given numerical resolution leads to “eigenvalues” N

2. However, most of them are rubbish
N

3. One must study the convergence to see which values are stable
and converge to a fixed value as we increase the resolution

s0

s1

s2

s3

s4

20 25 30 35 40

10-24

10-19

10-14

10-9

10-4

10

N

Error = |s(High Res) - s(N)|

EXAMPLE 1: QNM 
M. AMMON, S.GRIENINGER, A.J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

•Remarks:
1. Given numerical resolution leads to “eigenvalues” N

2. However, most of them are rubbish
N

3. One must study the convergence to see which values are stable
and converge to a fixed value as we increase the resolution

s0

s1

s2

s3

s4

20 25 30 35 40

10-24

10-19

10-14

10-9

10-4

10

N

Error = |s(High Res) - s(N)|

SOLUTION ALGORITHM
• Problem: find solution for a function with  

which satisfies a given ordinary differential equation subject
to boundary conditions (BC)

f(x) x 2 [a, b]

• Extra issues: sometimes the problem involves extra unknown
parameters, (indirectly) subject to subsidiary conditions

SOLUTION ALGORITHM
• Problem: find solution for a function with  

which satisfies a given ordinary differential equation subject
to boundary conditions (BC)

(x = cos ✓)

f(x) x 2 [a, b]

• Example: Legendre equation
(1� x

2)f 00 � 2xf 0 + �f = 0
x 2 [�1, 1]

• Extra issues: sometimes the problem involves extra unknown
parameters, (indirectly) subject to subsidiary conditions

SOLUTION ALGORITHM
• Problem: find solution for a function with  

which satisfies a given ordinary differential equation subject
to boundary conditions (BC)

(x = cos ✓)

BC: regularity condition

f(x) x 2 [a, b]

• Example: Legendre equation
(1� x

2)f 00 � 2xf 0 + �f = 0
x 2 [�1, 1]

2f 0
|�1 + �f|�1 = 0

�2f 0
|1 + �f|1 = 0

• Extra issues: sometimes the problem involves extra unknown
parameters, (indirectly) subject to subsidiary conditions

SOLUTION ALGORITHM
• Problem: find solution for a function with  

which satisfies a given ordinary differential equation subject
to boundary conditions (BC)

(x = cos ✓)

BC: regularity condition

f(x) x 2 [a, b]

• Example: Legendre equation
(1� x

2)f 00 � 2xf 0 + �f = 0
x 2 [�1, 1]

2f 0
|�1 + �f|�1 = 0

�2f 0
|1 + �f|1 = 0

• Extra issues: sometimes the problem involves extra unknown
parameters, (indirectly) subject to subsidiary conditions

extra unknown parameter �

SOLUTION ALGORITHM
• Problem: find solution for a function with  

which satisfies a given ordinary differential equation subject
to boundary conditions (BC)

(x = cos ✓)

BC: regularity condition

f(x) x 2 [a, b]

• Example: Legendre equation
(1� x

2)f 00 � 2xf 0 + �f = 0
x 2 [�1, 1]

2f 0
|�1 + �f|�1 = 0

�2f 0
|1 + �f|1 = 0

• Extra issues: sometimes the problem involves extra unknown
parameters, (indirectly) subject to subsidiary conditions

extra unknown parameter �

subsidiary condition:
normalisation f(1) = 1

SOLUTION ALGORITHM

with boundary conditions

• Notation: consider the second order differential
equation in the form

Fa(f(a), f
0(a);�) = 0 Fb(f(b), f

0(b);�) = 0

and eventual complementary condition
F⇤(f(x⇤), f

0(x⇤), f
00(x⇤);�) = 0

F (f, f 0
, f

00;x,�) = 0

SOLUTION ALGORITHM

with boundary conditions

• Notation: consider the second order differential
equation in the form

Fa(f(a), f
0(a);�) = 0 Fb(f(b), f

0(b);�) = 0

and eventual complementary condition
F⇤(f(x⇤), f

0(x⇤), f
00(x⇤);�) = 0

• Numerical implementation: fix resolution and consider
a vector with all unknowns:

~XT = (f0 · · · fN |�)

N

F (f, f 0
, f

00;x,�) = 0

SOLUTION ALGORITHM

with boundary conditions

• Notation: consider the second order differential
equation in the form

Fa(f(a), f
0(a);�) = 0 Fb(f(b), f

0(b);�) = 0

and eventual complementary condition
F⇤(f(x⇤), f

0(x⇤), f
00(x⇤);�) = 0

• Numerical implementation: fix resolution and consider
a vector with all unknowns:

~XT = (f0 · · · fN |�)

N

function values at grid points

F (f, f 0
, f

00;x,�) = 0

SOLUTION ALGORITHM

with boundary conditions

• Notation: consider the second order differential
equation in the form

Fa(f(a), f
0(a);�) = 0 Fb(f(b), f

0(b);�) = 0

and eventual complementary condition
F⇤(f(x⇤), f

0(x⇤), f
00(x⇤);�) = 0

• Numerical implementation: fix resolution and consider
a vector with all unknowns:

~XT = (f0 · · · fN |�)

N

function values at grid points
eventual extra parameters

F (f, f 0
, f

00;x,�) = 0

SOLUTION ALGORITHM

with boundary conditions

• Notation: consider the second order differential
equation in the form

Fa(f(a), f
0(a);�) = 0 Fb(f(b), f

0(b);�) = 0

and eventual complementary condition
F⇤(f(x⇤), f

0(x⇤), f
00(x⇤);�) = 0

• Numerical implementation: fix resolution and consider
a vector with all unknowns:

~XT = (f0 · · · fN |�)

N

F (f, f 0
, f

00;x,�) = 0

• Dimension: total number of unknown n
total

= n
fields

(N + 1) + n
par

SOLUTION ALGORITHM

with boundary conditions

• Notation: consider the second order differential
equation in the form

Fa(f(a), f
0(a);�) = 0 Fb(f(b), f

0(b);�) = 0

and eventual complementary condition
F⇤(f(x⇤), f

0(x⇤), f
00(x⇤);�) = 0

• Numerical implementation: fix resolution and consider
a vector with all unknowns:

~XT = (f0 · · · fN |�)

N

F (f, f 0
, f

00;x,�) = 0

From any such vector we can compute the spectral coefficients
and the corresponding derivatives ~f, ~f 0, ~f 00

SOLUTION ALGORITHM
• With , we evaluate the differential equation, boundary

conditions and eventual subsidiary equations at the grid points
and obtain the vector

~f, ~f 0, ~f 00

~FT = (F
0

· · ·F
Ntotal

)

whose components are

• The system correspond to an algebraic system
~F (~X) = 0

Fk =

8
>><

>>:

Fa(f0, f 0
0

;�) k = 0
F (fk, f 0

k, f
00
k ;�) 0 < k < N

Fb(fN , f 0
N ;�) k = N

F⇤(f⇤, f 0
⇤;�) k = N

total

SOLUTION ALGORITHM
• Example: Legendre equation

(1� x

2)f 00 � 2xf 0 + �f = 0

(1� x

2
k)f

00
k � 2xkf

0
k + �fk = 0

• Discretisation: Lobatto grid (end points included)

• Normalisation

SOLUTION ALGORITHM
• Example: Legendre equation

(1� x

2)f 00 � 2xf 0 + �f = 0

f0 � 1 = 0

(1� x

2
k)f

00
k � 2xkf

0
k + �fk = 0

• Discretisation: Lobatto grid (end points included)

• Normalisation

SOLUTION ALGORITHM
• Example: Legendre equation

(1� x

2)f 00 � 2xf 0 + �f = 0

f0 � 1 = 0

• Here, the discrete algebraic system is formed as ~F (~X)

Fk =

(
(1� x

2
k)

⇣
D̂

2
~

X

⌘

k
� 2xk

⇣
D̂

~

X

⌘

k
+XN+1Xk 0  k  N

X0 � 1 k = N + 1

(1� x

2
k)f

00
k � 2xkf

0
k + �fk = 0

• Discretisation: Lobatto grid (end points included)

• Normalisation

SOLUTION ALGORITHM
• Example: Legendre equation

(1� x

2)f 00 � 2xf 0 + �f = 0

f0 � 1 = 0

• Here, the discrete algebraic system is formed as ~F (~X)

Linear X Non-Linear

(i) Originally, the Legendre equation is linear on the
unknown function

(ii) However, we incorporate also as a variable
(iii) Coupling between and leads to a non-linear

equation
f(x)

�

f(x)

�

Fk =

(
(1� x

2
k)

⇣
D̂

2
~

X

⌘

k
� 2xk

⇣
D̂

~

X

⌘

k
+XN+1Xk 0  k  N

X0 � 1 k = N + 1

SOLUTION ALGORITHM
• We find a solution using the Newton-Raphson method: ~X(sol)

SOLUTION ALGORITHM
• We find a solution using the Newton-Raphson method: ~X(sol)

• Newton method: find roots a function
x

(sol)

F (x)

SOLUTION ALGORITHM
• We find a solution using the Newton-Raphson method: ~X(sol)

• Newton method: find solution to the equationx

(sol)

F (x) = 0

SOLUTION ALGORITHM
• We find a solution using the Newton-Raphson method: ~X(sol)

• Newton method: find solution to the equationx

(sol)

F (x) = 0

SOLUTION ALGORITHM
• We find a solution using the Newton-Raphson method: ~X(sol)

• Newton method: find solution to the equationx

(sol)

F (x) = 0

1.Give initial guess
x

(0)

SOLUTION ALGORITHM
• We find a solution using the Newton-Raphson method: ~X(sol)

• Newton method: find solution to the equationx

(sol)

F (x) = 0

1.Give initial guess
2. Calculate

x

(0)

f(x(0))

SOLUTION ALGORITHM
• We find a solution using the Newton-Raphson method: ~X(sol)

• Newton method: find solution to the equationx

(sol)

F (x) = 0

1.Give initial guess
2. Calculate
3. Calculate derivative

x

(0)

f(x(0))

f

0(x(0))

SOLUTION ALGORITHM
• We find a solution using the Newton-Raphson method: ~X(sol)

• Newton method: find solution to the equationx

(sol)

F (x) = 0

1.Give initial guess
2. Calculate
3. Calculate derivative
4. Identify via  
 

x

(0)

f(x(0))

f

0(x(0))

x

(1)

x

(1) = x

(0) �
⇥
f

0(x0)
⇤�1

f(x(0))

SOLUTION ALGORITHM
• We find a solution using the Newton-Raphson method: ~X(sol)

• Newton method: find solution to the equationx

(sol)

F (x) = 0

1.Give initial guess
2. Calculate
3. Calculate derivative
4. Identify via  
 

5. Start again until

x

(0)

f(x(0))

f

0(x(0))

x

(1)

x

(1) = x

(0) �
⇥
f

0(x0)
⇤�1

f(x(0))

f(x(sol)) ⇡ 0

SOLUTION ALGORITHM
• We find a solution using the Newton-Raphson scheme: ~X(sol)

SOLUTION ALGORITHM
• We find a solution using the Newton-Raphson scheme:

- Given initial-guess (in general)~X(0) ~F (~X0) 6= 0

~X(sol)

SOLUTION ALGORITHM
• We find a solution using the Newton-Raphson scheme:

where the Jacobian matrix is given by

- Given initial-guess (in general)
- Iterate to find a solution via

~X(0) ~F (~X0) 6= 0

~X(m+1) = ~X(m) �
h
Ĵ
⇣
~X(m)

⌘i�1
· ~F (~X(m))

Jij =
@Fi

@Xj

~X(sol)

SOLUTION ALGORITHM
• We find a solution using the Newton-Raphson scheme:

where the Jacobian matrix is given by

- Given initial-guess (in general)
- Iterate to find a solution via

~X(0) ~F (~X0) 6= 0

~X(m+1) = ~X(m) �
h
Ĵ
⇣
~X(m)

⌘i�1
· ~F (~X(m))

Jij =
@Fi

@Xj

- Solution is determined by ~F (

~X(sol)

) < Tolerance

~X(sol)

SOLUTION ALGORITHM
• We find a solution using the Newton-Raphson scheme:

where the Jacobian matrix is given by

• Note that for the convergence of the scheme, a “good” initial guess is
necessary

- Given initial-guess (in general)
- Iterate to find a solution via

~X(0) ~F (~X0) 6= 0

~X(m+1) = ~X(m) �
h
Ĵ
⇣
~X(m)

⌘i�1
· ~F (~X(m))

Jij =
@Fi

@Xj

~X(0)

- Solution is determined by ~F (

~X(sol)

) < Tolerance

~X(sol)

SOLUTION ALGORITHM
• We find a solution using the Newton-Raphson scheme:

where the Jacobian matrix is given by

• Note that for the convergence of the scheme, a “good” initial guess is
necessary

• In higher dimensions, inverting the Jacobian matrix is expensive and we
need to make use of further iterative methods to speed up the algorithm

- Given initial-guess (in general)
- Iterate to find a solution via

~X(0) ~F (~X0) 6= 0

~X(m+1) = ~X(m) �
h
Ĵ
⇣
~X(m)

⌘i�1
· ~F (~X(m))

Jij =
@Fi

@Xj

~X(0)

- Solution is determined by ~F (

~X(sol)

) < Tolerance

~X(sol)

SOLUTION
ODE (EIGENVALUE PROBLEM)

• Input: parameter to indicate the order of the eigenvalue`

• Input: initial guess for the Newton-Raphson Scheme
f

(0)(x) = x

` � x

`�2 + x

`�4 � · · · �(0) = `2

1.00e-16

1.00e-15

1.00e-14

1.00e-13

1.00e-12

-1 -0.5 0 0.5 1
x

l = 10

|f(x) - Pl(x)|
|lambda - l(l+1)|

Error

SOLUTION
ODE (EIGENVALUE PROBLEM)

• Input: parameter to indicate the order of the eigenvalue`

• Input: initial guess for the Newton-Raphson Scheme
f

(0)(x) = x

` � x

`�2 + x

`�4 � · · · �(0) = `2

1.00e-18

1.00e-16

1.00e-14

1.00e-12

1.00e-10

1.00e-08

1.00e-06

1.00e-04

1.00e-02

1.00e+00

 0 5 10 15 20 25 30
i

l = 10

|ci|

HIGHER DIMENSION
• Extend the same idea to higher dimension:

x

y

i
0N1

N2

j

0

HIGHER DIMENSION
• Extend the same idea to higher dimension:

- Vector stores all unknown of the system ~X

x

y

i
0N1

N2

j

0
~

X =

0

BBBBBBBBBBBBBBB@

f(x0, y0)

.

.

.

f(x0, yN2)

.

.

.

f(xN1 , y0)

.

.

.

f(xN1 , yN2)

��
extra unknown

1

CCCCCCCCCCCCCCCA

HIGHER DIMENSION
• Extend the same idea to higher dimension:

- Vector stores all unknown of the system ~X

- Algebraic system is composed by the partial differential
equations, boundary conditions and subsidiary conditions

~F (~X)

x

y

i
0N1

N2

j

0
~

X =

0

BBBBBBBBBBBBBBB@

f(x0, y0)

.

.

.

f(x0, yN2)

.

.

.

f(xN1 , y0)

.

.

.

f(xN1 , yN2)

��
extra unknown

1

CCCCCCCCCCCCCCCA

F

k

(

~

X) =

8
>>>>>><

>>>>>>:

BC

x0(yj) i = 0 0  j  N2

BC

xN1
(y

j

) i = N1 0  j  N2

BC

y0(xi

) 1  i  N1 � 1 j = 0

BC

yN2
(x

i

) 1  i  N1 � 1 j = N2

PDE(x

i

, y

k

) 1  i  N1 � 1 1  j  N2 � 1

subsidiary equations k = extra components

HIGHER DIMENSION
• Extend the same idea to higher dimension:

- Vector stores all unknown of the system ~X

- Algebraic system is composed by the partial differential
equations, boundary conditions and subsidiary conditions

~F (~X)

- Solution is found via Newton-Raphson scheme (eventually
with further tricks to speed up the inversion of the Jacobian
Matrix)

x

y

i
0N1

N2

j

0
~

X =

0

BBBBBBBBBBBBBBB@

f(x0, y0)

.

.

.

f(x0, yN2)

.

.

.

f(xN1 , y0)

.

.

.

f(xN1 , yN2)

��
extra unknown

1

CCCCCCCCCCCCCCCA

F

k

(

~

X) =

8
>>>>>><

>>>>>>:

BC

x0(yj) i = 0 0  j  N2

BC

xN1
(y

j

) i = N1 0  j  N2

BC

y0(xi

) 1  i  N1 � 1 j = 0

BC

yN2
(x

i

) 1  i  N1 � 1 j = N2

PDE(x

i

, y

k

) 1  i  N1 � 1 1  j  N2 � 1

subsidiary equations k = extra components

