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ANNALS OF PHYSICS: 29, 304-331 (1964)

j The Two-Body Problem in Geometrodynamics

Use conr SusaN G Hamy elated to
(numerical 3 International Business Machines Corporation, New York, New York elativity

AND

Ricaarp W. LiNnDpQuUisT

Adelphi University, Garden City, New York

' S ' The problem of two interacting masses is investigated within the framework 64) '
of geometrodynamics. It is assumed that the space-time continuum is free of
all real sources of mass or charge; particles are identified with multiply con-
nected regions of empty space. Particular attention is focused on an asymp-
totically flat space containing a ‘“‘handle’ or ‘“wormhole.”” When the two
“mouths’’ of the wormhole are well separated, they seem to appear as two cen-
ters of gravitational attraction of equal mass. To simplify the problem, it is
assumed that the metric is invariant under rotations about the axis of sym-
metry, and symmetric with respect to the time ¢ = 0 of maximum separation
of the two mouths. Analytic initial value data for this case have been ob-
tained by Misner; these contain two arbitrary parameters, which are uniquely
determined when the mass of the two mouths and their initial separation have
been specified. We treat a particular case in which the ratio of mass to initial
separation is approximately one-half. To determine a unique solution of the
remaining (dynamie) field equations, the coordinate conditions go, = —&, are
imposed; then the set of second order equations is transformed into a quasi-
linear first order system and the difference scheme of Friedrichs used to ob-
tain a numerical solution. Its behavior agrees qualitatively with that of the
one-body problem, and can be interpreted as a mutual attraction and pinching-
off of the two mouths of the wormhole.
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Use computers to solve Equations related to
(numerical algorithms) General Relativity

* Motivation: two body problem
. S.G. Hahn and R.W. Lindquist, Ann. Phys. 29, 304 (1964).
* Breakthrough: - Pretorius, Phys. Rev. Lett. 95, [21 101 (2005)

PHYSICAL REVIEW LETTERS week ending

PRL 95, 121101 (2005) 16 SEPTEMBER 2005

Evolution of Binary Black-Hole Spacetimes

Frans Pretorius'>*

"Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125, USA

“Department of Physics, University of Alberta, Edmonton, AB T6G 2J1 Canada
(Received 6 July 2005; published 14 September 2005)

We describe early success in the evolution of binary black-hole spacetimes with a numerical code based
on a generalization of harmonic coordinates. Indications are that with sufficient resolution this scheme is
capable of evolving binary systems for enough time to extract information about the orbit, merger, and
gravitational waves emitted during the event. As an example we show results from the evolution of a
binary composed of two equal mass, nonspinning black holes, through a single plunge orbit, merger, and
ringdown. The resultant black hole is estimated to be a Kerr black hole with angular momentum parameter
a = 0.70. At present, lack of resolution far from the binary prevents an accurate estimate of the energy
emitted, though a rough calculation suggests on the order of 5% of the initial rest mass of the system is
radiated as gravitational waves during the final orbit and ringdown.
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Use computers to solve Equations related to
(numerical algorithms) General Relativity

* Field: solve numerically the complete (non-linear) system of Einstein's equation

- Binary systems (black hole, neutron stars, black hole-neutron stars):
inspiral, collision and emission of gravitational waves

- Neutron stars: supernova explosions, gamma-ray bursts.. ..
- Cosmology: structure formation, multiple black holes.. ..

- Anti de Sitter spacetime: AdS/CFT correspondence (numerical holography)
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Computer science:
- Codes development

- Super computers

- - New technology (graphic card)
- Visualisation

- Formulation of equa%
- Non-linear PDE: well-posedness, existence

- Elliptic and strongly hyperbolic systems

- Lorentzian Geometry: causal structure, trapped surfaces

- Conformal transformation

Numerical
Relativity

- General Relativity

-

~Bimesyklaelettle dynamics

- Neutron Stars

| - Gravitational Waveg
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Long tradition on
Exact Solutions of
Einstein’s Field Equations

Generation techniques (P, Letelier)
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o sees 1het the reulting Fiec temsor i is exactly of the Jocm
Ry = 20,495 (10.212;
privided the Fanction £ sutiefics the equation
N, = 20 2W o, — a W) (WA W) (10 215
Note thet only she metric function W enters this equation: (M drope ous)
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a 5T fiead Hyy = 20 .00 ore sebisficd by the metric d3* waich difers
Jroan D 17.1] by tae sobstiiution A M 151, ufere @ ond 52 are seludiona
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The Neugebauer-Meinel rotating
disk solution

Exact Solutions are only found
under very special assumptions
and simplifications

8545 V4 Appicoticn of genereéion focfmiaues fo generad relolionfy

<
W ccmccnnna Ep=1
P=¢" Yoot
3o - Fe=N
T '
—_—. - F
i 4
o e o i o S %

Rotuning disz o™ tlust

Fig. 315, The paramotens omd 2oundary conditions for the rotating dizo
ol qut

L{anke €1 al (194%), Braten B. ard Manko (wu:). Menko ard Kuinz
(-998), Manko (.996) and Lianko et al. (1999]) wnd the renraces g,vc'l
the\ain Mzny of 1ha—>a papees daal ulth the eguilibchen problem of n
bodics on ue axks, me.wding somo sclitions not nndl..l wiven by otlar

4.0 2 The Newgehaner fdeme! rotaling disc slulaon
e et end Meirel (1993. 1904, 195) and \_L;cx&u ot 1'

lineer vr‘bcm " ; SR, (0T a g ]ly xotat nx
dioc of dust, ke >ouniary caza ix .n.ch o configurotion arc shown in
g 345,

Firct, (34.70° arc so.ved on she ocordinote axds p = () and the counto
r:al plane & — ) wheee they reduca o crcinary ciffarential agquations, 0
particulor, e Eraot potoatial on the axds, £(o = O, 3), is given i torms
o s solunon, 2z of s hnesr wctogra. equstion the cetals of which can
boe fourd in tho criginal papess. The Ermst potential can, soooeding 2o
(34 81), be resd off rom the mairx P\, p 2) evauarad at A — 1, For
a-bitrary fized walues of p end 2 the mutrix O is regular overyalxre in
tho complex A-plsana axcopt on the curve

T: A=z + zx — 0)/(z + puz + p.,

(24.22)
e L ReA>Dors >0
Can D, € nurps in a well-defined wey, te
[€(A)], = Aig) [O(A)]_ — Bz ({—A) (34..23)



HISTORICAL BACKGROUND

*  Department for Theoretical Physics (Uni Jena): M. Ansorg, B. Brigmann

Shift from exact to numerical solution

(%1970; $2016)



HISTORICAL BACKGROUND

*  Department for Theoretical Physics (Uni Jena): M. Ansorg, B. Brigmann

Shift from exact to numerical solution

If not exact, then nhumerical.
If numerical, then as exact as

possible

(%1970; $2016)



HIGH ACCURACY METHODS

If not exact, then numerical.
If numerical, then as exact as possible

Spectral Methods

Spectral methods for numerical relativity, G. Granclemént and J. Novak
Living Reviews in General Relativity



HIGH ACCURACY METHODS

If not exact, then numerical.
If numerical, then as exact as possible

Spectral Methods

Spectral methods for numerical relativity, G. Granclemént and J. Novak
Living Reviews in General Relativity

v Physical scenarios (l.e., special regions of parameter space
studies) that do require robust and accurate methods
v Infer mathematical properties of the solution



HIGH ACCURACY METHODS

If not exact, then numerical.
If numerical, then as exact as possible

Spectral Methods

Spectral methods for numerical relativity, G. Granclemént and J. Novak
Living Reviews in General Relativity

v Physical scenarios (l.e., special regions of parameter space
studies) that do require robust and accurate methods
v Infer mathematical properties of the solution

® Numerically expensive (there are faster algorithms)
® Relies on regularity properties of solution (be careful with
discontinurties)
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Z (N>qbz —I—R(N)( ) N :expansion order

A |
i . spectral coefficients

RW)(z) : Residual Term

* What are the functions ¢;(x)?

(N)
e How to calculate the coefficients ¢ ?

* Does the series converge! At which rate?
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* Spectral expansion of a real valued function f(x), = € |a, b]

Z (N>qbz —I—R(N)( ) N :expansion order

(V) .
C; " spectral coefficients

Basis Functions RW)(z) : Residual Term

* Orthogonal basis functions {¢:(z)} : solutions of eigenvalue
problem of Sturm-Lioville- Theory

Legendre,

» The spectral basis function @i(x) are chosen accordingly to the
underlying properties of the original function f(z)

f(x) is defined on sphere
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* Spectral expansion of a real valued function f(x), = € |a, b]

Z (N>qbz —I—R(N)( ) N :expansion order

(V) .
C; " spectral coefficients

Basis Functions RW)(z) : Residual Term

* Orthogonal basis functions {¢:(x)} : solutions of elgenvalue
problem of Sturm-Lioville-Theory

Chebyscheyv,

» The spectral basis function @i(x) are chosen accordingly to the
underlying properties of the original function f(z)

A= ... whatever
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' MORAL PRINCIPLE I:
(J.R Boyd: Chebyshev and Fourier Spectral Methods)
(1) When In doubt, use Chebyshev polynomials unless
the solution In spatially periodic, in which case an

ordinary Fourier series Is better.

Unless you're sure another set of basis functions is

petter, use Chebyshev Polynomials

) Unless you're really, really sure that another set of

basis functions is better, use Chebyshev polynomials. §

‘ &

BN ........ whatever



CHEBYSHEV POLYNOMIALS

e Basis functions: @;(x) = T;(&(z)). Linear map € : |a,b] — [—1,1]

 Chebyshev Polynomials of first kind ~ T;(§) = cos(z arccos &)
if &€ =cos(), 0 € |0, n]

To(€)
- T;(0) = cos(i6)
T3(¢)
| 7a(®) * Orthogonality
N | LT (6 Tw(€)
dé = N;0;4
/ [ B ns,

Sy o



SPECTRAL METHODS

* Spectral expansion of a real valued function f(x), = € |a, b]

Z (N>qbz —I—R(N)( ) N :expansion order

(V) .
C; " spectral coefficients

(N) . '
Spectral Coefficients R (x) :Residual Term

* Different approaches leads to different methods:
Galerkin Method, Tau-method, Collocation method
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e Discrete domain:
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e Determine ¢! : residual B (¢) = (N) 5
? Al . Tz _ g
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i Tki
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* Invert the equation (use o
known properties of basis) c=1T""f
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COLLOCATION METHOD

* Spectral Representation f(£) = Z AT (€) + R (6)

on domain [-1,1] o
* Discrete domain:
orid points {6k} k=0...N
« Determine ¢ residual R (¢) al
: : Z C(N) CFZ — T
vanishes at the grid points f Z ——
* Invert the equation (use -
known properties of basis) c=T"1f
* Approximation: interpolate £(6) =i6§N)Ti(€) N
at any point § =0

* Truncation error IR = 11£&) — £ \‘/
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. roots of the Chebyshev polynomial
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N+1



GRID POINTS

* Discrete set of points {&k } within the domain[—1, 1]
= (Gauss grid: roots of the Chebyshev polynomial

z  k+1/2
SR O o

e
= | obatto grid: extrema of the Chebyshev polynomial L -
| £l = COS | TT—




e Discrete set o

GRID POINTS

“points {&x} within the domain [—1, 1]

= (5auss gric

1 0.5

= | obatto gr

-1 0.5

= Right-Rada

-1 0.5

. roots of the Chebyshev polynomial

£ = COS

0 0.5 1

d: extrema of the Chebyshev polynomial

£ = COS
u grid (half of Fourier grid)

£ = COS

0 0.5 1

k4 1/2




e Discrete set o

GRID POINTS

“points {&x} within the domain [—1, 1]

= (5auss gric

1 0.5

= | obatto gr

-1 0.5

= Right-Rada

-1 0.5

= | oft-Radau

-1 0.5

. roots of the Chebyshev polynomial

ke
: 0 ; Sk = co8 _W ]\;:L/l
id: extrema of the Chebyshev polynomial _ L -
a i '1 £, = cos WN_
u grid (half of Fourier grid) ]
: £, = cos |2 .
e, o "1 1= "ON+1
orid (half of Fourier grid) .
: o 5
: 28 ; e "IN +1.




GRID POINTS

» Discrete set of points 1&x } within the domain[—1, 1]

= (5auss I”IC roots of the Chebyshev pol nomlal

. Discrete orthogonall'ty
1 With respect to grid points

ZT (ENTi (&) = N0,




EXAMPLE: ACCURACY

e Analytical Function: C* f1(x) 1

(Taylor expansion in the neighbourhood of any x € |0, 1]) 1 4 22

1

0.9

0.8

0.7

0.6

0.5




1

1e-08

1e-10

1e-12 |

DURP S NS W W \

1e-16

1e-18

1e-20

EXAMPLE: ACCURACY

* Analytical Function: C¥

(Taylor expansion in the neighbourhood of any € |0, 1] )
fo(x)=1/(1+x")

f1(z)

N 1
14 2

BN

- 4N v,
LITOor = (ve

i Exponential

Decay

Coefficients
behaviour
mirrors
error



EXAMPLE: ACCURACY

e Analytical Function (strong gradients): C% fo(x) = S

(Taylor expansion in the neighbourhood of any = € [0,1]) €1+ X
L ! . .

: £=1 —_—
¢ = 0.01
0.8 |\ SN (20,001 ——

N

Error = ae P

07 N .................................................................................................... .................................................. - Exponential
% ? Decay

0.6

1

0.5

oa b N

_ | Coefficients

b\ T~ .| behaviour

5 5 mirrors
error

0.3

1

0.1 |

0 .
0 0.25 0.5 0.75 1



* Analytical Function (strong gradients): C%
(Taylor expansion in the neighbourhood of any € |0, 1] )

0.01

0.0ccC1

1e-06

1e-08

1e-10

1e-12

1e-14

EXAMPLE: ACCURACY

e =0.01, /Ck(:cw/ ——

fo(x)=e/(e+x)
':: .... '...l..' ..... l
\‘\ ...‘..;. Moo, e, e,
! 3 :
S N T
- ‘."- l
0

K/n

€
€+ x

fa(z) =

| £=0001, Ry ™ -

BN

- 4N v,
LITOor = (ve

e = 0.001, [, [TV —o—

£ = 0'01’ Rmax(n) - -

Exponential
Decay

e =01, Rma_x(") -
(slower slope)

e =0. 1, /Ck(‘:co‘)/ ——

e=1,  Rpyy™ =
a1, o o Coefficients
behaviour
mirrors
error



EXAMPLE: ACCURACY

» Continuous (-differentiable Functions: C* gr(z) = 2" Inx
(€*)

g;(x)=x 1ln(x)
0.0e+00 T T T T

-5.0e-02

-1.0e-01

-1.5e-01

-2.0e-01

-2.5e-01

-3.0e-01

-3.5e-01

4.06-01 | | | |



1.0e+00

EXAMPLE: ACCURACY

 Continuous /-differentiable Functions: C*

g;(x)=x 1ln(x)

gr(z) = 2" Inx

| | |
\ Rmax(n) e
EUSRUp==——— T .
| (100)
C e —
Lree o L e e .
L T . e .
. S wanns Sreteee
1.0@-05 | . .
1,0@-06 | e SR, .
1.0e-07 | | | |
20 40 60 80 100

i/n

)

Error = AN P

Algebraic
Decay

C; — AP

Coefficients
behaviour
similar to

error



 Continuous /-differentiable Functions: C*

1.0e+00 ¢ , —
] Rmax(n) e

1,0€-01 o™ G R

| (100)

c ) —
Preiz b e i N e, S .
Lo e e Sl S R, SRR, S
B T Ny, e
L L
1,0@-06 | R B R
1.0e-07 ' - —

10 100

EXAMPLE: ACCURACY

g;(X)=x 1ln(x)

gr(z) = 2" Inx

)

Error = AN P

Algebraic
Decay

C; — AP

Coefficients
behaviour
similar to

error



 Continuous /-differentiable Functions: C*

1.0e+00 r
1.0e-01 -
1.0e-02 —
1.0e-03 -
1.0e-04 —
1.0e-05 -
1.0e-06 -

1.0e-07

EXAMPLE: ACCURACY

gr(z) = 2" Inx

)

Error = AN P
D=

Algebraic
Decay

C;, — Ai_ﬁ
p=2k+1
Coefficients
behaviour

similar to
error
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SUMMARY: ACCURACLY

* Decay rate of error (as a function of truncation error N) or
discrete set of Chebyshev coefficients (fixed truncation error N)
oives mathematical information about the underlying function

* Method provides a physical and mathematical “numerical-lab”™

e Efficient way to identify bugs:

= Assume: (1) There are theorems that guarantees the regularity of
solution for differential equations

(1) We know them (i) We understand them

= (Chebyshev coefficients must decay exponentially
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1=0
N
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e The derivative reads: — f(§) = CfEN) —T;(¢)
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DERIVATIVES

* Interpolate at any point § : f&) = ZCEN)Ti(f)
1=0
N
d - d
e The derivative reads: — f(§) = CgN) —T;(¢)
d§ - dg

* In particular, the derivative of a Chebyshev Polynomial can

be expressed in terms of the Chebyshev basis
N are calculated exactly

d _ (V) using properties of
7e [1(8) = Z diy T5 (&) the Chebyshev

Polynomials
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DERIVATIVES

* Interpolate at any point § : f(€) = ZCEN)Ti(f)
1=0
N
d - d
e The derivative reads: — f(§) = CfEN) —T;(¢)
d§ - dg

* In particular, the derivative of a Chebyshev Polynomial can
be expressed I terms of the Chebyshev basis

Zd(N)T
¢

.- Z Z Mg 7
f (

7=0 1=0
| S

/
C'.
J
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DERIVATIVES

* Interpolate at any point § : f&) = ZCEN)Ti(f)
1=0
> i N
e The derivative reads: d—gf(@ = Z ;N (€)
i=0

" Derivative Coefficients algorhm

(V)

1

* Given resolution )y and Chebyshev Coefficients ¢

e Recurrence relation for derivative coefficients C’gN)

o Start with C/%\L — c'g\],v) — ()

 Run backward for 4 = N...1

/ e /
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» Consider the derivative at the grid points {&x }

dg LL (M) g (¢

71=0 1=
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» Consider the derivative at the grid points {&x }

d%f ) LL NN T (¢

N y 7=0 =0 T“
kj
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A —

e Consider relation to find coefficients ¢ = [~ f



DISCRETE DERIVATIVES

» Consider the derivative at the grid points {&x }

d%f £) LL <N>d<N>T

\—— 7=0 1=0
1Y

f

N
e Consider relation to find coefficients CgN) = Z(T_l)i£f€
¢=0




DISCRETE DERIVATIVES

» Consider the derivative at the grid points {&x }

d%f £) LL MM T

\—— 7=0 1=0
1Y

f

N
e Consider relation to find coefficients CgN) = Z(T_l)i£f£
¢=0




DISCRETE DERIVATIVES

» Consider the derivative at the grid points {&x }

d%f £) LL N a7 (¢

N—— 7=0 1=0 Th,
/i
N
e Conslider relation to find coefficients C Z

N
fi=> Dufe=f =Df
¢=0

» Spectral differentiation matrices: D
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DISCRETE DERIVATIVES

e Continuous derivative operator: 0,

A

* Discrete derivative operator: D,

= [Dense matrix

= Fventually one needs to invert such matrices:
numerically expansive procedure

= Contains a lot of information (see example
eigenvalue problem)



DISCRETE DERIVATIVES

f(x)=1/(14x")
100 . , | ; | l

o, (35 N
0.01 -
. (35)
0.0001 : Ck —

1e-06

1e-12

1€-08 . ¢, 2%
fe-10 -

le-14 | y 0 M MR

1e-18



100

0.01

0.0001

1e-08

1e-10 S S ST, O

1e-12 “”mwmum”m_m”m“m“g“m”w”m”mimumuwpu”m;m“mnm”i”m”m_m“mnm ST

le-14

1e-16 A SO SRS SURTURURRT.. SR S <UL, WOR 45 VRN A0 [

1e-18

|

10

35

DISCRETE DERIVATIVES

F(x)=1/(14X°)

For each
derivative,
approximately
two digits of
accuracy are
lost



EXAMPLE [ QONM

*Perturbation Theory: typical problem

¢ Stationary (black-hole) spacetime as background

¢ Consider fields propagating on background

¢ Linearise or consider a linear theory

¢ VWave equation

¢ lake boundary conditions into account

¢ Fourier (or Laplace) transformation

¢ Non-trivial solutions to the homogenous equation (eigenvalue

problem)
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¢ Linearise or consider a linear theory
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¢ Fourier (or Laplace) transformation

¢ Non-trivial solutions to the homogenous equation (eigenvalue

problem)
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M. AMMON, S.GRIENINGER A J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

* Black brane background spacetime: Schwarzschild-AdS in 5D

ds® = % (—f(p)dv2 — 2dvdp + dz* + dy* + sz) o =1l — o
Z-+ g r=0 -
H ,H * Coordinates: Ingoing Eddington-Finkelstein
§ (horizon penetrating)  p =1
’ x %A * Null Infinity: AdS boundary  p =20
H H (time-like surface)



EXAMPLE [ QNM

M. AMMON, S.GRIENINGER A J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) |31

* Black brane background spacetime: Schwarzschild-AdS in 5D

1
ds® = e (—f(,o)alv2 — 2dvdp + dz* + dy* + dzZ) il =1 — o'

“+

“Motivation AdSFTCorrespodene
* Introduction gauge/gravity duality (O. Miskovic)

* [iIme evolution of the chiral magnetic effect In the

_presence of time dependent axial charges
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EXAMPLE | QNM

M. AMMON, S.GRIENINGER A J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

* Black brane background spacetime: Schwarzschild-AdS in 5D
1

ds? = e (—f(,o)alv2 — 2dvdp + dx* + dy* + sz) o= 1l— ¢
T i = it
H ,H * Coordinates: Ingoing Eddington-Finkelstein

% (horizon penetrating)  p =1
/i A
ey * Null Infinity: AdS boundary  p =10

(time-like surface)

i r=0 t

‘Wave equation:

—p(1—p )W—(3—7,04) agp+(8+)\2)p3} U(v,p) + [2,0(%+3] U(v, p) + S(v,p) = 0.



EXAMPLE | QNM

M. AMMON, S.GRIENINGER A J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

* Black brane background spacetime: Schwarzschild-AdS in 5D

ds® = iz (—f(p)dv2 — 2dvdp + dz* + dy* + sz) o =1l — o
o 5 r=0 o
‘ e ,H * Coordinates: Ingoing Eddington-Finkelstein
§ (horizon penetrating)  p =1
’ x %A * Null Infinity: AdS boundary p=20
H H (time-like surface)
- o

i r=0 t

‘Wave equation:

—+(8+)\2)p3] U(v, p) + [2p3+3] U(v, p) + S(v,p) = 0.

. | 1 e 4
p(1 p)ap2 (3—17p) 5

\Atime-derivative



EXAMPLE | QNM

M. AMMON, S.GRIENINGER A J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

* Black brane background spacetime: Schwarzschild-AdS in 5D

ds® = % (—f(p)dv2 — 2dvdp + dz* + dy* + sz) o =1l — o
o g r=0 o
‘ e ,H * Coordinates: Ingoing Eddington-Finkelstein
§ (horizon penetrating)  p =1
’ x %A * Null Infinity: AdS boundary p=20
H H (time-like surface)
- o

i r=0 t

‘Wave equation:

—+(8+)\2)p3] U(v, p) + [2p3+3] U(v, p) + S(v,p) = 0.

dp
\‘x‘time-derivative

second order

—p(1—p )a—pg—(3—7p4)
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M. AMMON, S.GRIENINGER A J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

* Black brane background spacetime: Schwarzschild-AdS in 5D

ds® = iz (—f(p)dv® —2dvdp + dz* + dy* +dz*)  f(p)=1—p
Z-+ 5 r=0 -
H ,H * Coordinates: Ingoing Eddington-Finkelstein
§ (horizon penetrating)  p =1
’ x %A * Null Infinity: AdS boundary  p =20
H H (time-like surface)

‘Laplace transformation (homogenous equation):

—p(1—0p );22 (3— 7,0)(%+(8+)\2) ](_](p)+s[2p—+3](_](p):().
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M. AMMON, S.GRIENINGER A J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

*Problem: find complex s-values for which equation has a
non-vanishing regular solution

(0" s = (3= 16) o+ 8+ )| U +5 205 +3| OG0 =0
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*Problem: find complex s-values for which equation has a

non-vanishing regular solution

82

[ p(1—p )5—(3 7p") aap

(8—|—)\2)p3] U(p) + s [2p—+3] U(p) = 0.

*Numerical solution with spectral methods:

|. Discretise domain p € |0, 1] with Lobat

eadsto U(p) — U and 9, — D

0-grid (Include end points)
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M. AMMON, S.GRIENINGER A J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

*Problem: find complex s-values for which equation has a
non-vanishing regular solution

82

[ p(L—p )5—(3 7/))3a

; (8—|—)\2)p3] U(p) + s [2p—+3] U(p) = 0.

*Numerical solution with spectral methods:

|. Discretise domain p € |0, 1] with Lobatto-grid (include end points)
eadsto U(p) — U and 9, — D

[—p(l—p4)l§-l§—(3—7p4) ZA?+(8+)\2),03']1}(74—3{2,0154—3-]1](720.
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M. AMMON, S.GRIENINGER A J. ALBA, RPM, L. MELGAR, JHEP 09 (2016) 131

*Problem: find complex s-values for which equation has a
non-vanishing regular solution

82

[ p(L—p )5—(3 7/))8a

; (8+)\2)p3] U(p) + s [2p—+3] U(p) = 0.

*Numerical solution with spectral methods:

|. Discretise domain p € |0, 1] with Lobatto-grid (include end points)
eadsto U(p) — U and 9, — D

(34(7%-33(72 0.

2. Ask your favourite mathematical software to solve the

(generalised) eigenvalue problem
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 Remarks:

Quasi-Normal Modes (N = 20)
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 Remarks:

Given numerical resolution NV

2. However, most of them are ru

bbish

eads to IV “eigenvalues”

3. One must study the convergence to see which values are stable

Im(s)

and converge to a fixed value as we Increase the resolution
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