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Algebra and geometry
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Tropical algebra

e Tropical addition : “a + b" = max(a, b)

Ex:"3+2"=3

e Tropical mulitplication : “ab" = a -+ b

Ex:"3x2"=5



Tropical geometry

“x +y + 0" = max(x,y,0)
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Tropical geometry

A line A conic A cubic A sextic

A plane A quadric



Applications

The tropical world sits at the frontier of the classical world
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Maslov dequantization
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Maslov dequantization
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——log = log, : Ryg — R
log t
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Amoeba of the line L defined by z — w +1=0

Log(L)

Log: (C*)? — R?
(z,w) +— (log(|z]), log(|wl))
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Log(L) Log(L)
Log:: (C*)? — R?
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Amoeba of the line L defined by z — w +1=0

Log(L) Log:(L) Log:(L)
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Amoeba of the line L defined by z — w +1=0

Log(L) Log:(L) Log:(L) lim:—oo Loge(L)
Log:: (C*)? — R?
(z,w) (|0g(|2|) |0g(\W|))
) logt > logt



Amoeba of the conic C; defined by

—14+z4+w— 224+ zw— w?=0
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LOgt(Ct) ||mt_>oo LOgt(Ct)



Amoeba of a cubic C; defined by
—14z+w—t 222+t lzw—t %2+t 823+

Log:(Ct) lim¢ o0 Logt(Ct)
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Tropical curves : combinatorial description

Définition
A tropical curve C in R" is a finite balanced graph, i.e.
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Tropical curves : combinatorial description

Définition
A tropical curve C in R" is a finite balanced graph, i.e.

e each edge of C is endowed with a weight, i.e. an integer
we € N;

e each edge is contained in a line defined over Z ;

e each vertex v of C satisfies the balancing condition :
=2

Sk Ve, € Z" primitive

E We,- Ve,— = 0 11



What is tropical geometry ?

Combinatoric

Algebraic geometry

Tropical algebra
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Application to enumerative geometry

Theorem (Mikhalkin, 2004)
Tropical computation of Gromov-Witten invariants

counting algebraic curves = counting tropical curves
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Application to enumerative geometry

Theorem (Mikhalkin, 2004)
Tropical computation of Gromov-Witten invariants

counting algebraic curves = counting tropical curves

Theorem (B-Mikhalkin, 2007)
Tropical curves enumeration using floor diagrams.
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Enumerative geometry

How many lines through 2 points in the plane?
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Enumerative geometry

How many lines through 2 points in the plane? 1

How many conics through 5 points in the plane? 1

14



Rational curves

P(x), Q(x), R(x) € C[x] of degree d,
¢: C\{R(x)=0} — C?
X s (P(X), Q(X))
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Rational curves

P(x), Q(x), R(x) € C[x] of degree d,

¢: C\{R(x)=0} — C?
x - ()
$: CPl=CU{cc} —» cp?
X — [P(x) @ Q(x) : R(x)]

The image of ¢ is called a rational curve of d.

The space of rational curves of degee d has dimension

3(d+1)—1-3=3d—1

GWep2(d) = number of rational curves of degree d
passing through 3d-1 points. 15



Enumeration of rational tropical curves

How many lines through 2 points?
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Enumeration of rational tropical curves
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Enumeration of rational tropical curves

How many conics through 5 points?
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Enumeration of rational tropical curves

How many conics through 5 points?
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Enumeration of rational tropical curves

How many conics through 5 points? 1
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Enumeration of rational tropical curves

How many cubics through 8 points?
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Enumeration of rational tropical curves

How many cubics through 8 points? 12
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Enumeration of rational tropical curves

How many cubics through 8 points? 12
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Enumeration of rational tropical curves

How many cubics through 8 points? 12

AR E!
TN
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Quantum tropical invariants (Block-Géttsche)

How many cubics through 8 points?

4
%
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Quantum tropical invariants (Block-Géttsche)

How many cubics through 8 points? g ' + 10 + g

4
%

g l+2+gq 19




Heron-Rota-Welsch conjecture

E={w, -+ ,vy} is a set of vectors of a vector space V.
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Example. If the elements of E form a basis of V then
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Xe(q) = (-1)" x> (-1 <k> q“=(q—1)".

k=0
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Heron-Rota-Welsch conjecture

E={w, -+ ,vy} is a set of vectors of a vector space V.
Characteristic polynomial of E :
e(d) = Y2 (1) lqrtere0)
ICE

Example. If the elements of E form a basis of V then

Xe(q) = (-1)" x> (-1 (Z) q“=(q—1)".
k=0
rg : P(E) — N
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A matroid M on a finite set E is a function rg : P(E) - N
satisfying
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A matroid M on a finite set E is a function rg : P(E) - N
satisfying

(R1) rg(l) <[/

(R2) rg(l) < rg(J)sil C J;

(R3) rg(1UJ)+rg(INJ) < rg(l)+ rg(J).
Not all matoid come from linear algebra.

Characteristic polynomial of M :

xm(q) =Y (~1)!lgEE)-rel)
ICE
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Heron-Rota-Welsch conjecture

xm(q) = Y (~1)g=E=s0)
ICE

Conjecture (Heron-Rota-Welsch, 70’s)
The coefficients ay of xpm(q) form a log-concave sequence, i.e.

2
ay = ak-18k+1
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Heron-Rota-Welsch conjecture

xm(q) = Y (~1)g=E=s0)
ICE

Conjecture (Heron-Rota-Welsch, 70’s)
The coefficients ay of xpm(q) form a log-concave sequence, i.e.

2
aj = ak—1ak+1

Theorem (Adiprasito-Katz-Huh, 2015)
The coefficients ay of xpm(q) form a log-concave sequence, i.e.

2
Al = Ak—13k+1

All matroid are realizable in tropical geometry.
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Topology of tropical curves

AL

A line A conic A cubic Another cubic

=AY

One more cubic A cubic again A sextic 23




Topology of tropical curves

Problem
What is the maximal value of the genus of a tropical curve of

degree d in R" 7
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Topology of tropical curves

Problem
What is the maximal value of the genus of a tropical curve of

degree d in R" 7

Theorem (Mikhalkin-Sturmfels, ~2000)
The maximal genus of a tropical curve of degree d in R? is

(d ~1)(d - 2)
-2
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A cubic of genus 2
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Topology of tropical curves

Theorem (Bertrand-B-Lépez de Medrano)
There exists a tropical plane L C R" such that for any d > 1, L

contains a tropical curve C C L of degree d with

(d — 1)(d ~2)

g(C) = (n-1)- ==
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Topology of tropical curves

Theorem (Bertrand-B-Lépez de Medrano)
There exists a tropical plane L C R" such that for any d > 1, L

contains a tropical curve C C L of degree d with

(d — 1)(d ~2)

g(C) = (n-1)- ==

+ Higher dimensional generalizations.
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