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Laboratoire de Mathématiques Jean Leray

Nantes Université
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Algebra and geometry

x + 2y − 2 = 0
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Tropical algebra

� Tropical addition : “a+ b”= max(a, b)

Ex : “3 + 2”= 3

� Tropical mulitplication : “ab”= a+ b

Ex :“3× 2”= 5
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Tropical geometry

“x + y + 0”= max(x , y , 0)
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Tropical geometry

A line A conic A cubic A sextic

A plane A quadric
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Applications

The tropical world sits at the frontier of the classical world

Combinatoric Game theory
Algebraic

geometry

←−− ←
−

←−−
Optimization ←−− Tropical geometry −−→ Physic

←−− ←
−

←−−

Real geometry
non-Archimedean

geometry
Biology
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Maslov dequantization

1

log t
log =

logt : R>0
∼−→ R

“x +t y”= logt(t
x + ty ) “x ×t y”= logt(t

x × ty )

= x + y

(R,“ +t ”,“×t ”) ≃ (R>0,+,×)

max(x , y) ≤“x +t y”≤ max(x , y) + logt(2)

“x + y”= lim
t→+∞

“x +t y”
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Amoeba of the line L defined by z − w + 1 = 0

Log(L)

Log : (C∗)2 −→ R2

(z ,w) 7−→ (log(|z |), log(|w |))
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Amoeba of the line L defined by z − w + 1 = 0

Log(L) Logt(L) Logt(L) limt→∞ Logt(L)

Logt : (C∗)2 −→ R2

(z ,w) 7−→ ( log(|z|)log t , log(|w |)
log t )
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Amoeba of the conic Ct defined by

−1 + z + w − t−2z2 + t−1zw − t−2w 2 = 0

Logt(Ct) limt→∞ Logt(Ct)
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Amoeba of a cubic Ct defined by

−1 + z +w − t−2z2 + t−1zw − t−2y2 + t−8z3 + t−5z2w + t−5zw2 + t−8w3 = 0

Logt(Ct) limt→∞ Logt(Ct)
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Tropical curves : combinatorial description

Définition
A tropical curve C in Rn is a finite balanced graph, i.e.

� each edge of C is endowed with a weight, i.e. an integer

we ∈ N ;

� each edge is contained in a line defined over Z ;

� each vertex v of C satisfies the balancing condition :

1

2

i

k

e

e

e

e

v

3

v⃗ei ∈ Zn primitive

∑
wei v⃗ei = 0
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What is tropical geometry ?

Tropical algebra

Algebraic geometry

Combinatoric
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Application to enumerative geometry

Theorem (Mikhalkin, 2004)
Tropical computation of Gromov-Witten invariants

counting algebraic curves = counting tropical curves

Theorem (B-Mikhalkin, 2007)
Tropical curves enumeration using floor diagrams.
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Enumerative geometry

How many lines through 2 points in the plane ?

How many conics through 5 points in the plane ? 1
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Rational curves

P(x),Q(x),R(x) ∈ C[x ] of degree d ,

ϕ : C \ {R(x) = 0} −→ C2

x 7−→
(
P(x)
R(x) ,

Q(x)
R(x)

)

ϕ : CP1 = C ∪ {∞} −→ CP2

x 7−→ [P(x) : Q(x) : R(x)]

The image of ϕ is called a rational curve of d .

The space of rational curves of degee d has dimension

3(d + 1)− 1− 3 = 3d − 1

GWCP2(d) = number of rational curves of degree d

passing through 3d-1 points.

15
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Enumeration of rational tropical curves

How many lines through 2 points ?

1
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Enumeration of rational tropical curves

How many conics through 5 points ?
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Enumeration of rational tropical curves

How many conics through 5 points ?
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Enumeration of rational tropical curves

How many cubics through 8 points ?

12

1 1 1 1 1

2

1 1 1 4 12
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Quantum tropical invariants (Block-Göttsche)

How many cubics through 8 points ?

q−1 + 10 + q

1 1 1 1 1

2

1 1 1 q−1 + 2 + q 19



Quantum tropical invariants (Block-Göttsche)
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Heron-Rota-Welsch conjecture

E = {v1, · · · , vn} is a set of vectors of a vector space V .

Characteristic polynomial of E :

χE (q) =
∑
I⊂E

(−1)|I |qrg(E)−rg(I )

Example. If the elements of E form a basis of V then

χE (q) = (−1)n ×
n∑

k=0

(−1)k
(
n

k

)
qk = (q − 1)n.

rg : P(E ) −→ N

20
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Matroid

A matroid M on a finite set E is a function rg : P(E )→ N
satisfying

(R1) rg(I ) ≤ |I | ;
(R2) rg(I ) ≤ rg(J) si I ⊂ J ;

(R3) rg(I ∪ J) + rg(I ∩ J) ≤ rg(I ) + rg(J).

Not all matoid come from linear algebra.

Characteristic polynomial of M :

χM(q) =
∑
I⊂E

(−1)|I |qrg(E)−rg(I )

21
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Heron-Rota-Welsch conjecture

χM(q) =
∑
I⊂E

(−1)|I |qrg(E)−rg(I )

Conjecture (Heron-Rota-Welsch, 70’s)
The coefficients ak of χM(q) form a log-concave sequence, i.e.

a2k ≥ ak−1ak+1

Theorem (Adiprasito-Katz-Huh, 2015)
The coefficients ak of χM(q) form a log-concave sequence, i.e.

a2k ≥ ak−1ak+1

All matroid are realizable in tropical geometry.
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Topology of tropical curves

A line A conic A cubic Another cubic

2

One more cubic A cubic again A sextic 23



Topology of tropical curves

Problem
What is the maximal value of the genus of a tropical curve of

degree d in Rn ?

Theorem (Mikhalkin-Sturmfels, ∼2000)
The maximal genus of a tropical curve of degree d in R2 is

(d − 1)(d − 2)

2
.
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A cubic of genus 2

3

25



Topology of tropical curves

Theorem (Bertrand-B-López de Medrano)
There exists a tropical plane L ⊂ Rn such that for any d ≥ 1, L

contains a tropical curve C ⊂ L of degree d with

g(C ) = (n − 1) · (d − 1)(d − 2)

2
.

+ Higher dimensional generalizations.
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There exists a tropical plane L ⊂ Rn such that for any d ≥ 1, L

contains a tropical curve C ⊂ L of degree d with

g(C ) = (n − 1) · (d − 1)(d − 2)

2
.

+ Higher dimensional generalizations.

26


