Spectrum of combinatorial *k*–systoles on Schottky surface of rank 2

El Hadji Abdou Aziz Diop UCAD

joint work with Masseye Gaye and Abdoul Karim Sané

Self-intersection and combinatorial length 0000000000

Combinatorial k-systoles

SCHOTTKY SURFACE OF RANK 2 Let *S* be a Schottky surface of rank 2.

Hyperbolic torus

Pair of pants with cusp

Pair of pants

COMBINATORIAL k-SYSTOLE

Let $\mathcal{G}^{c}(S)$ be the set of closed geodesics on *S* and $k \in \mathbb{N}$.

$$s_k^c(S) := \inf\{L(\gamma) : \gamma \in \mathcal{G}^c(S); \ i(\gamma; \gamma) \ge k\}$$

- $L(\gamma)$ is the combinatorial length of γ
- $i(\gamma; \gamma)$ self-intersection numbers of γ .

Definition 1

A closed geodesic γ on S is a **combinatorial** k-systole if $L(\gamma) = s_k^c(S)$ and $i(\gamma; \gamma) \ge k$.

EXAMPLE OF COMBINATORIAL k-systole

4

The closed geodesic $a(a\overline{b})^2$ on a pair of pants is a combinatorial 5-systole with 6 self-intersections.

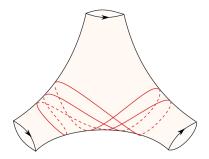


Figure - 5-systole with 6 self-intersections

COMBINATORIAL k-SYSTOLE

 $I_k^c(S) = \max\{i(\gamma; \gamma): \gamma \text{ combinatorial } k\text{-systole}\}$

Question

▶ What is the asymptotic behaviour of *I*_k(*S*)?

Answer

•
$$I_k^c(S) \sim k$$
 and $\limsup_{k \to +\infty} I_k^c(S) - k = +\infty$.

Question

Let *m* be an integer of [k, I^c_k(S)], does it exist a combinatorial k-systole γ such that : i(γ, γ) = m?

PLAN

Coding the limit set

Self-intersection and combinatorial length

Combinatorial k-systoles

Coding the limit set

Self-intersection and combinatorial length

Combinatorial k-systoles

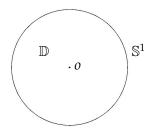
Self-intersection and combinatorial length

Combinatorial *k*-systoles

8

POINCARÉ DISK

$$\mathbb{D} = \{ z = x + iy \in \mathbb{C}, |z| \le 1 \} \quad ds^2 = 4 \frac{dx^2 + dy^2}{(1 - |z|^2)^2}$$

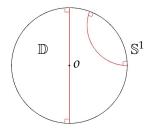


GEODESICS

Coding the limit set

9

$$\mathbb{D} = \{ z = x + iy \in \mathbb{C}, \ |z| \le 1 \} \quad ds^2 = 4 \frac{dx^2 + dy^2}{(1 - |z|^2)^2}$$



Combinatorial k-systoles

10

ISOMETRY

 $g:\mathbb{D}\longrightarrow\mathbb{D}$ is an isometry of the Poincaré disk if and only if

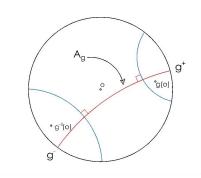
$$g(z) = \frac{az + \overline{c}}{cz + \overline{a}}$$
 or $g(z) = \frac{a\overline{z} + \overline{c}}{c\overline{z} + \overline{a}} \forall z \in \mathbb{D}$

where $a, c \in \mathbb{C}$ and $|a|^2 - |c|^2 = 1$.

HYPERBOLIC ISOMETRY

g an isometry which does not fix 0.

$$C(g) = \{z \in \mathbb{D} : d(o,z) = d(g(o),z)\}$$

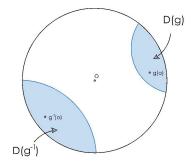


HYPERBOLIC ISOMETRY

g an isometry which does not fix o.

$$C(g) = \{z \in \mathbb{D}: d(o, z) = d(g(o), z)\}$$

$$D(g) = \{ z \in \mathbb{D} : d(g(o), z) \le d(o, z) \}$$



DYNAMIC OF HYPERBOLIC ISOMETRY

13

 $Ext(D(g)) = \mathbb{D} \setminus D(g) \quad g(D(g^{-1})) = Ext(D(g))$

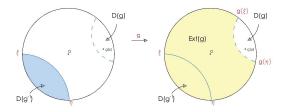


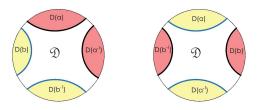
Figure – dynamic of hyperbolic isometry

Self-intersection and combinatorial length 0000000000

Combinatorial k-systoles

14

SCHOTTKY GROUP



Definition 2

Let *a* et *b* be two hyperbolic isometries satisfying the following separation hypothesis :

$$\overline{D(a)\cup D(a^{-1})}\cap \overline{D(b)\cup D(b^{-1})}=\emptyset.$$

The group $\Gamma := \langle a, b \rangle$ is a Schottky group of rank 2.

REDUCED WORDS

15

 $\overline{\Gamma} := \{a, \overline{a}, b, \overline{b}\}$ where $\overline{a} = a^{-1}$ and $\overline{b} = b^{-1}$.

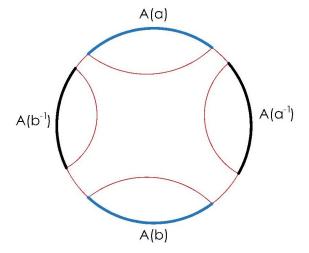
Definition 3

- A finite word e₁e₂ ··· e_n, e_j ∈ Γ is said to be reduced if e_j ≠ ē_{j+1} for every j = 1, ··· n − 1 and cyclically reduced if it is reduced and e_n ≠ ē₁.
- An infinite word $e_1e_2\cdots$ or a bi-infinite word $\cdots e_{-1}e_0e_1\cdots$ is reduced if each of its finite subword is reduced.

Combinatorial k-systoles

16

FIRST ORDER INTERVAL For $e \in \overline{\Gamma} = \{a, \overline{a}, b, \overline{b}\}, A(e) = \overline{D(e)} \cap \mathbb{S}^1$: first order interval



M-TH ORDER INTERVAL

If $e_1e_2 \cdots$ is a reduced word in $\overline{\Gamma}$, then $A(e_1e_2 \cdots e_n) = e_1e_2 \cdots e_{n-1}A(e_n)$ is *m*-th order interval.

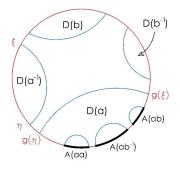


Figure – second order interval

$$A(e_1e_2\cdots e_n)\subset A(e_1e_2\cdots e_{n-1})\subset \cdots \subset A(e_1)$$

Combinatorial k-systoles

LIMIT SET

18

Definition 4

The limit set of the group Γ is the set $\Lambda = \overline{\Gamma.o} \setminus \Gamma.o$

Proposition 5

$$\bigcap_{n=1}^{\infty} A(e_1 e_2 \cdots e_n) = \lim_{n \to +\infty} e_1 e_2 \cdots e_n . o \in \Lambda.$$

$$\Lambda = \bigcap_{n=1}^{\infty} \bigcup_{e_1e_2\cdots \in W_+} A(e_1e_2\cdots e_n).$$

 $W_+ := set \ of \ infinite \ reduced \ words$

CODING THE LIMIT SET

- From now on we write $\eta = e_1 e_2 \cdots$ if $\eta = \lim_{n \to +\infty} e_1 e_2 \cdots e_n . o$.
- $\bar{e}_1\eta = e_2e_3\cdots$ and if $f\in\overline{\Gamma}$, $f\neq\bar{e}_1$ then $f\eta = fe_1e_2\cdots$.
- ▶ If η is fixed by a hyperbolic isometry, then $\exists g \in \Gamma$ such that $g(\eta)$ is **periodic**. We write $g(\eta) = e_1e_2\cdots e_m$ where $e_1e_2\cdots e_m$ is the period of the word .

CODING ORIENTED GEODESICS

20

- ► Each reduced bi-infinite word $\mathbf{e} = \cdots e_{-1}e_0e_1\cdots$ determines a unique oriented geodesic with positive endpoint $e_1e_2\cdots$ and negative endpoint $\overline{e}_0\overline{e}_{-1}\cdots$. We denote this geodesic $\gamma(\mathbf{e})$.
- ► Let $\sigma^n(\mathbf{e})$, $n \in \mathbb{Z}$ be the word whose j th entry is in position j + n in \mathbf{e} . Then $\gamma(\sigma^n(\mathbf{e})) = (e_1 \cdots e_n)^{-1} \gamma(\mathbf{e})$.

Self-intersection and combinatorial length 0000000000

Combinatorial k-systoles

21

CYCLIC LEXICOGRAPHICALLY ORDERING

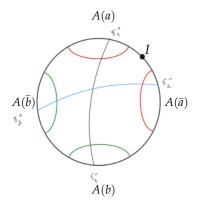


Figure – The order $<_I$ defined by a fixed point $I \in \partial \mathbb{D}$.

$$A_a = \{a, \bar{b}, b, \bar{a}\}, A_{\bar{b}} = \{\bar{b}, b, \bar{a}, a\}, A_b = \{b, \bar{a}, a, \bar{b}\} \text{ and } A_{\bar{a}} = \{\bar{a}, a, \bar{b}, b\}.$$

BIRMAN-SERIES THEOREM

Let $\eta = e_1 e_2 \cdots$ and $\zeta = f_1 f_2 \cdots$ be distinct points of the limit set Λ . Then η precedes ζ in anticlockwise order around \mathbb{S}^1 starting from the point I (see figure 5) if and only if either :

- 1. e_1 precedes f_1 in the alphabet A_a , or
- 2. $e_i = f_i$ for each $i = 1, \dots, m$ and e_{m+1} precedes f_{m+1} in the alphabet $A_{\overline{e}_m}$.

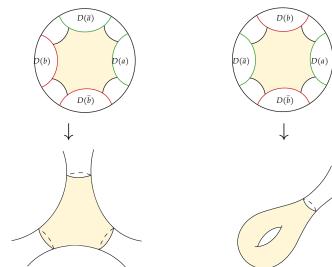
Coding the limit set

Self-intersection and combinatorial length

Combinatorial k-systoles

SCHOTTKY SURFACE OF RANK 2

 $\Gamma := \langle a, b \rangle$ a Schottky group of rank 2. $S = \mathbb{D}/\Gamma$ is a **Schottky** surface of rank 2.



CODING OF CLOSED GEODESICS

25

COMBINATORIAL LENGTH

- Let w = e₁e₂ ··· e_n be a cyclically reduced word and W = ··· www ···.
 The endpoints of γ(W) is fixed by the isometries w and w⁻¹. Thus these isometries fix the geodesic γ(W).
- The projection of the geodesic γ(w) to S is a closed geodesic of S.
- ▶ This closed geodesic is associated to the word *w*.

Definition 6

The **combinatorial length** of a closed geodesic γ of *S* is the length of the word associated to γ . We denote it by $L(\gamma)$.

SELF-INTERSECTION

26

$$\gamma \in \mathcal{G}^c(S) \longrightarrow w = e_1 e_2 \cdots e_m.$$

$$\gamma_i(e_ie_{i+1}\cdots e_{i-1}; \quad \overline{e}_{i-1}\cdots \overline{e}_{i+1}\overline{e}_i), \quad i=1,\cdots,m.$$

Proposition 7

The geodesics γ_i , $1 \leq i \leq m$, are the unique lifts of γ on \mathbb{D} which intersect the fundamental domain of Γ .

The number of self-intersections of the closed geodesic γ is given by :

$$i(\gamma;\gamma) = \#\{\gamma_i \cap \gamma_j \cap \mathcal{D} \neq \emptyset; \ 1 \le i < j \le L(\gamma)\}.$$

EXAMPLE

27

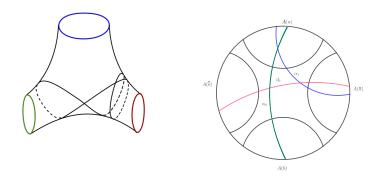


Figure – self-intersections of the geodesic $a^2 \bar{b}$ on a pair of pants

EQUIVALENCE RELATION

28

$$A_{\gamma} = \{ \gamma_i \cap \gamma_j : \quad 1 \le i < j \le L(\gamma) \}$$

 $i(\gamma;\gamma) = #(A_{\gamma} \cap \mathcal{D}).$

We define the following equivalence relation on A_{γ} :

$$\gamma_i \cap \gamma_j \sim \gamma_k \cap \gamma_l \iff \exists g \in \Gamma \mid g(\gamma_i) = \gamma_k \text{ and } g(\gamma_j) = \gamma_l.$$

Thus the number of self-intersections of the closed geodesic γ is given by :

$$i(\gamma;\gamma) = \#(A_{\gamma}/\sim).$$

SELF-INTERSECTIONS ON PAIR OF PANTS

Theorem 8 (E.A.A.D- M.Gaye)

Let γ be a closed geodesic on **a pair of pants** associated to the word $w = s_1^{i_1} r_1^{j_1} \cdots s_n^{i_n} r_n^{j_n}$, then

$$i(\gamma;\gamma) = nL(\gamma) - 2n^2 + H(w) - \sum_{k=1}^n \sum_{l=k+1}^n |i_k - i_l| + |j_k - j_l|.$$

Self-intersections on pair of pants

Question 1

What is the maximal number of self-intersections of a closed geodesic γ of combinatorial length L(γ)?

PAIR OF PANTS

Lemma 9

For any word $w = s_1^{i_1} r_1^{j_1} \cdots s_n^{i_n} r_n^{j_n}$, there exists a permutation σ of $\{i_1, i_2, \cdots, i_n\}$ and a permutation τ of $\{j_1, j_2, \cdots, j_n\}$ such that :

$$H(w) \leq H\left(a^{\sigma(i_1)}\bar{b}_1^{\tau(j_1)}\cdots a^{\sigma(i_n)}\bar{b}^{\tau(j_n)}\right).$$

 $i(\gamma;\gamma) \le nL(\gamma) - n^2.$

PAIR OF PANTS

Theorem 10 (E.A.A.D- Masseye Gaye 2021) Let γ be a closed geodesic on **a pair of pants** and $L(\gamma)$ the combinatorial length of γ . Then

$$i(\gamma;\gamma) \leq \left\{ \begin{array}{ll} \frac{L^2(\gamma)}{4} - 1 & \mbox{if } L(\gamma) \mbox{ is even} \\ \\ \frac{L^2(\gamma) - 1}{4} & \mbox{if } L(\gamma) \mbox{ is odd} \end{array} \right.$$

HYPERBOLIC TORUS

33

Theorem 11 (M.Chas-A.Phillips 2008)

Let γ *be a closed geodesic on* **a hyperbolic torus** *and* $L(\gamma)$ *the combinatorial length of* γ *. Then*

$$i(\gamma;\gamma) \leq \begin{cases} \frac{\left(L(\gamma)-2\right)^2}{4} & \text{if } L(\gamma) \text{ is even} \\\\ \frac{\left(L(\gamma)-1\right)\left(L(\gamma)-3\right)}{4} & \text{if } L(\gamma) \text{ is odd} \end{cases}$$

Coding the limit set

Self-intersection and combinatorial length

Combinatorial k-systoles

DEFINITION OF A COMBINATORIAL *k*-systole 35

S : Schottky surface of rank 2. $\mathcal{G}^{c}(S)$: closed geodesics on *S*.

$$s_k^c(S) := \inf\{L(\gamma) : \gamma \in \mathcal{G}^c(S); \ i(\gamma; \gamma) \ge k\}$$

Definition 12

A **combinatorial** *k***-systole** is a closed geodesic γ on *S* such that $L(\gamma) = s_k^c(S)$ and $i(\gamma; \gamma) \ge k$.

Self-intersection and combinatorial length 0000000000

Combinatorial k-systoles

EXAMPLE OF COMBINATORIAL k-systole

36

The closed geodesic $a(a\bar{b})^2$ on a pair of pants is a combinatorial 5-systole and $i(a(a\bar{b})^2, a(a\bar{b})^2) = 6$.

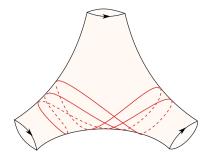


Figure - 5-systole with 6 self-intersections

COMBINATORIAL k-SYSTOLE

Definition 13 Let *k* be a positive integer. A **combinatorial** k-**systole** γ_k is **exact** if $i(\gamma_k; \gamma_k) = k$. For $k \in \mathbb{N}$,

$$I_k^c(S) = \max\{i(\gamma; \gamma) : \gamma \text{ combinarial k-systole}\}.$$

Question 2

▶ What is the asymptotic behaviour of *I_k(S*)?

PAIR OF PANTS

Let *S* be a pair of pants and *n* an integer.

- ▶ $n^2 < k \le n^2 + n \implies s_k^c(S) = 2n + 1$. In particular, the closed geodesic $a(a\overline{b})^n$ is a combinatorial *k*-systole and $n^2 \le k \le I_k^c(S) = n^2 + n$.
- ▶ $n^2 n < k \le n^2 1 \implies s_k^c(S) = 2n$. In particular, the closed geodesic $a\bar{b}(a\bar{b})^{n-1}$ is a combinatorial *k*-systole and $n^2 n \le k \le I_k^c(S) = n^2 1$.

HYPERBOLIC TORUS

Let *S* be a hyperbolic torus and *n* an integer.

- 1. $n^2 < k \le n^2 + n \implies s_k^c(S) = 2n + 3$. In particular, the closed geodesic $a^{n+1}b^{n+2}$ is a combinatorial *k*-systole and $n^2 < k \le I_k^c(S) = n^2 + n$.
- 2. Si $n^2 n < k \le n^2 \implies s_k^c(S) = 2n + 2$. In particular, the closed geodesic $a^{n+1}b^{n+1}$ is a combinatorial *k*-systole and $n^2 n < k \le I_k^c(S) = n^2$.

COMBINATORIAL *k*-systole

40

Theorem 14 (E.A.A.D-M.Gaye-A.K.Sané) Let S be a Schottky surface of rank 2.Then

$$\lim_{k \to +\infty} \frac{I_k^c(S)}{k} = 1.$$

 $\liminf_{k\to+\infty} \ I_k^c(S)-k=0 \ et \ \limsup_{k\to+\infty} \ I_k^c(S)-k=+\infty.$

SPECTRUM OF COMBINATORIAL k-systoles

Question 3

Let *m* be an integer of [k, I^c_k(S)], does it exist a combinatorial k-systole γ such that : i(γ, γ) = m?

SPECTRUM OF COMBINATORIAL k-SYSTOLES Hyperbolic surface

Theorem 15 (E.A.A.D-M.Gaye-A.K.Sané)

Let *S* be a hyperbolic torus and $k \in \mathbb{N}$. Then for any integer *m* of $[k, I_k^c(S)]$, there exists a combinatorial *k*-systole γ such that $i(\gamma, \gamma) = m$.

SPECTRUM OF COMBINATORIAL k-SYSTOLES Pair of pants

Theorem 16 (E.A.A.D-M.Gaye-A.K.Sané)

Let S be a pair of pants and $k \in \mathbb{N}$ *.*

- 1. If $s_k^c(S)$ is odd, then for any integer *m* of $[k, I_k^c(S)]$, there exists a combinatorial *k*-systole γ such that $i(\gamma; \gamma) = m$.
- 2. If $s_k^c(S)$ is even, then for any odd integer m of $[k, I_k^c(S)]$, there exists a combinatorial k-systole γ such that $i(\gamma; \gamma) = m$.

GEOMETRIC LENGTH Erlandsonn-Parlier conjecture

▶ V.Erlandsson- H.Parlier- T.H.Vo : Σ hyperbolic surface with at least one cusp, $\exists K_0 \in \mathbb{N}$ such that for any $k \ge K_0$, the *k*-systoles are exacts

$$\lim_{k \to +\infty} I_k(\Sigma) - k = 0.$$

Conjecture (Erlandsson-Parlier) If Σ is a compact hyperbolic surface, then

$$\limsup_{k \to +\infty} I_k(\Sigma) - k = +\infty.$$

COUNTING CLOSED GEODESICS

$\#\mathcal{G}(L,K) = \{ \gamma \in \mathcal{G}^{c}(S); \quad L(\gamma) \leq L; \ i(\gamma,\gamma) \leq k \}$

Question 4

• What is the asymptotic behaviour of #G(L, K)?

Coding the limit set	
0000000000000000000000	

Merci!!!!

