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Motivation



What is a Calabi-Yau ?

Definition
By a Calabi-Yau threefold we mean a smooth projective complex
variety X of dimension 3 with trivial canonical bundle (i.e
KX = ∧3T ∗X = OX ) and H1(X ,OX ) = H2(X ,OX ) = 0.

complete intersection

A smooth projective variety X ⊂ Pn is called complete intersection
if X = V (f1, · · · , fcodim(X )) . The canonical bundle of a complete

intersection is given by KX = OX (−n − 1 +

codim(X )∑
i=1

di ).



Example: complete intersection Calabi-Yau

1. A quintic hypersurface in P4 i.e X = V (f ) with deg(f ) = 5
and KX = OX (−4− 1 + 5) = OX ;

2. In P5 we have :

2.1 the intersection of a quadric and a quartic i.e X = V (f 2, f 4)
with KX = OX (−6 + 2 + 4);

2.2 the intersection of two cubics i.e X = V (f 3, f 3) with
KX = OX (−6 + 3 + 3);

3. in P6 we have the intersection of two quadrics and a cubic i.e
X = V (f 2, g2, f 3) with KX = OX (−7 + 2 + 2 + 3).

4. In product of projective spaces, complete intersections
Calabi-Yau where studied in
P. Candelas, A. M. Dale, C.A. lütken, R. Schimmrigk,
Complete Intersection Calabi-Yau Manifolds. UTTG-10-87.



Main goal

Our main goal in this project is to investigate and discuss all
codimension 3 non-complete intersection Calabi-Yau threefold in
product of projective spaces. We are mostly interested by :

1. P2 × P4;

2. P1 × P5;

3. P3 × P3;

4. P2 × P2 × P2;

5. P1 × P2 × P3;

6. P1 × P1 × P1 × P3;

7. P1 × P1 × P2 × P2;

8. P1 × P1 × P1 × P1 × P2;

9. P1 × P1 × P1 × P1 × P1 × P1;



Motivation

Buschbaum and Eisenbud

1. Let X ⊂ Pn be a pfaffian variety associated to (t,E ,N). X is
then the degeneracy locus of the skew-symmetric map N and
if N is generically of rank 2r it degenerates to rank 2r − 2 in
the expected codimension 3, in which case, the pfaffian
complex gives the self-dual resolution of the ideal sheaf of X .
Moreover, X is locally Gorenstein, subcanonical with
KX = OX (t + 2s − n − 1).

2. Every codimension 3, Gorenstein varieties arise in this way.



Pfaffian varieties



Investigation

Given a vector t = (t1, t2) ∈ Z2 and a decomposable vector bundle
F of odd rank 2u + 1 on Y = P2 × P4, a global section
N ∈ H0(Y ,∧2F (t)) defines an alternating morphism
N : F ∗(t) → F . The pfaffian complex associated to (t,F ,N) is
given by the exact sequence

0 // OY (−t − 2s)
Pt
// F ∗(−t − s)

N //// F (−s)
P //// OY

where s = (s1, s2) ∈ N2 and

si = c1(F )i + u · ti for i = 1, 2.

P =
1

u!
∧2 N



Pfaffian varieties

A projective variety X ⊂ Y is called the pfaffian variety associated
to (t,F ,N) if the structure sheaf OX is given by Coker(P). In this
case we have the exact sequence

0 // OY (−t − 2s)
Pt
// F ∗(−t − s)

N //// F (−s)
P ////

OY
// OX

// 0

The sheaf Im(P) ⊂ OY is called the pfaffian ideal sheaf of X and
denoted by IX .



Pfaffian manifolds

The Pfaffian variety X ⊂ Y satisfies then the exact sequence

0 // OY (−t − 2s)
Pt
// F ∗(−t − s)

N //// F (−s)
P //// IX // 0

Pfaffian Calabi-Yau
A pfaffian variety X ⊂ Y is called Calabi-Yau if its canonical
bundle KX = OX (−3 + t1 + 2s1,−5 + t2 + 2s2) is trivial i.e
KX = OX that is :

s1 =
3− t1

2
, s2 =

5 + 1− t2
2

.

For simplicity, choose t1 = t2 = 1 so that s1, s2 are integers. In this
case s1 = 1, s2 = 2. Since si = c1(E )i + u · ti then

c1(E )i = si − u · t



Investigation in P2 × P4

Assume that F =
2u+1⊕
i=1

OX (ai , bi ), then

2u+1∑
i=1

ai = 1− u

2u+1∑
i=1

bi = 2− u



Investigation in P2 × P4

For u = 2 we have F =
5⊕

i=1

OX (ai , bi ) and

{
a1 + · · ·+ a5 = −1
b1 + · · ·+ b5 = 0

Theorem
Let X ⊂ Y be a non-complete intersection pfaffian Calabi-Yau
threefold associated to ((1, 1),E ,N). Then

−2 ≤ ai ≤ 1 ∀ i = 1, . . . , 5

−3 ≤ bi ≤ 2 ∀ i = 1, . . . , 5.



Investigation in P2 × P4

The possible solutions are ”

P2 P4

(−2,−2, 1, 1, 1) (−3,−3, 2, 2, 2)

(−2,−1, 0, 1, 1) (−3,−2, 1, 2, 2)

(−2, 0, 0, 0, 1) (−3,−1, 0, 2, 2)

(−1,−1, 0, 0, 1) (−3,−1, 1, 1, 2)

(−1, 0, 0, 0, 0) (−3, 0, 0, 1, 2)

(−2,−2, 1, 1, 2)

(−2,−1, 1, 1, 1)

(−2,−1, 0, 1, 2)

(−1,−1, 0, 1, 1)

(−1,−1, 0, 0, 2)

(−1, 0, 0, 0, 1)

(0, 0, 0, 0, 0)



Investigation in P2 × P4

We want a bundle F =
5⊕

i=1

OX (ai , bi ) whose matrix

N : F ∗(−1,−1) → F is given by

N =


0 (c12, d12) (c13, d13) (c14, d14) (c15, d15)

(c12, d12) 0 (c23, d23) (c24, d24) (c25, d25)
(c13, d13) (c23, d23) 0 (c34, d34) (c35, d35)
(c14, d14) (c24, d24) (c34, d34) 0 (c45, d45)
(c15, d15) (c25, d25) (c35, d35) (c45, d45) 0


where cij = ai + aj + 1, dij = bi + bj + 1, 1 ≤ i < j ≤ 5 and
X = V (f1, . . . , f5) is given by the maximal pfaffians of N.



Investigation in P2 × P4

Bundle Matrix Pfaffian Smoothness

(−1, 0), (−1, 0), (0, 0), (0, 0), (1, 0)


0 0 01 01 11

0 01 01 11
0 11 21

0 21
0

 V (22, 22, 12, 12, 02) Smooth

(−1, 2), (0, 1), (0, 1), (0,−2), (0,−2)


0 04 04 01 01

0 13 10 10
0 10 10

0 0
0

 V (20, 11, 11, 14, 14) Smooth

(−1,−1), (0, 1), (0, 1), (0, 1), (0,−2)


0 01 01 01 0

0 13 13 10
0 13 10

0 10
0

 V (23, 11, 11, 11, 14) Smooth

(−1, 0), (−1, 0), (0, 1), (0, 0), (1,−1)


0 0 02 01 10

0 02 01 10
0 12 21

0 20
0

 V (22, 22, 11, 12, 03) Smooth



Investigation in P2 × P4

Bundle Matrix Pfaffian Smoothness

(−1, 2), (0, 0), (0, 0), (0,−1), (0,−1)


0 03 03 02 02

0 11 10 10
0 10 10

0 0
0

 V (20, 12, 12, 13, 13) Smooth

(−1, 1), (0, 0), (0, 0), (0, 0), (0,−1)


0 02 02 02 01

0 11 11 10
0 11 10

0 10
0

 V (21, 12, 12, 12, 13) smooth

(−1, 0), (0, 0), (0, 0), (0, 0), (0, 0)


0 01 01 01 01

0 11 11 11
0 11 11

0 11
0

 V (22, 12, 12, 12, 12) smooth

(−1, 0), (−1, 0), (0, 1), (0, 0), (1,−1)


0 0 02 01 10

0 02 01 10
0 12 21

0 20
0

 V (22, 22, 11, 12, 03) Smooth



Hodge diamonds in P2 × P4



Hodge diamonds

Let X ⊂ Y be Calabi-Yau threefold and 0 ≤ p, q ≤ 3, define

hp,q(X ) = dimC(H
q(X ,Ωp

X )).

Our goal is to compute

h1,1(X ) = dimC(H
1(X ,ΩX )) and h1,2(X ) = dimC(H

2(X ,ΩX ))

for each Calabi-Yau X .



Hodge diamonds
To compute H1(X ,ΩX ) and H2(X ,ΩX ), consider the inclusion
i : X → Y leading to the short exact sequence

0 → TX → TY|X → NX|Y → 0

whose dual gives

0 → N ∗
X|Y

→ ΩY|X → ΩX → 0

leading to the long exact sequence (1) on cohomology

0 → H0(X ,N ∗
X|Y

) → H0(X ,ΩY|X ) → H0(X ,ΩX )︸ ︷︷ ︸
0

→

H1(X ,N ∗
X|Y

) → H1(X ,ΩY|X ) → H1(X ,ΩX ) →

H2(X ,N ∗
X|Y

) → H2(X ,ΩY|X ) → H2(X ,ΩX ) →

H3(X ,N ∗
X|Y

) → H3(X ,ΩY|X ) → H3(X ,ΩX )︸ ︷︷ ︸
0

→ 0



Euler sequence

In order to compute H i (X ,ΩY|X ), let us consider the dual version
of the Euler sequence :

0 −→ ΩY|X −→ OX (−1, 0)3 ⊕OX (0,−1)5︸ ︷︷ ︸
S

−→ O2
X −→ 0

leading to the long exact sequence (2)

0 −→ H0(X ,ΩY|X
) −→ H0(X , S)︸ ︷︷ ︸

0

−→ H0(X ,OX ⊕ OX )︸ ︷︷ ︸
C2

−→

H1(X ,ΩY|X
) −→ H1(X , S)︸ ︷︷ ︸

0

−→ H1(X ,OX ⊕ OX )︸ ︷︷ ︸
0

−→

H2(X ,ΩY|X
) −→ H2(X , S)︸ ︷︷ ︸

0

−→ H2(X ,OX ⊕ OX )︸ ︷︷ ︸
0

−→

H3(X ,ΩY|X
) −→ H3(X , S)︸ ︷︷ ︸

34

−→ H3(X ,OX ⊕ OX )︸ ︷︷ ︸
C2

−→ 0



Hodge diamaonds
Sequences (1) and (2) lead to the following observation :

(3)



H0(X ,N ∗
X|Y

) ∼= H0(X ,ΩY|X ) = 0

H2(X ,ΩY|X ) = 0

H1(X ,ΩY|X )
∼= C2

0 → H1(X ,N ∗
X|Y

) → C2 → H1(X ,ΩX ) → H2(X ,N ∗
X|Y

) → 0

0 → H3(X ,ΩY|X ) → H3(X , S) → C2 → 0

0 → H2(X ,ΩY ) → H3(X ,N ∗
X|Y

) → H3(X ,ΩY|X ) → 0

and therefore

dim(H3(X ,ΩY|X )) = dim(H3(X ,S))− 2 = 32 (4)

and
h1,2(X ) = dim(H3(X ,N ∗

X|Y
))− dim(H3(X ,ΩY|X ))

h1,2(X ) = dim(H3(X ,N ∗
X|Y

))− dim(H3(X ,S)) + 2

= dim(H3(X ,N ∗
X|Y

))− 32 (5)



Conormal bundle

The second conormal bundle short exact sequence is given by :

0 −→ I2
X −→ IX −→ N∗

X/Y −→ 0

which leads to the sequence (6)

0 −→ H0(Y , I2
X ) −→ H0(Y , IX ) −→ H0(Y ,N∗

X/Y ) −→

H1(Y , I2
X ) −→ H1(Y , IX ) −→ H1(Y ,N∗

X/Y ) −→

H2(Y , I2
X ) −→ H2(Y , IX ) −→ H2(Y ,N∗

X/Y ) −→

H3(Y , I2
X ) −→ H3(Y , IX ) −→ H3(Y ,N∗

X/Y ) −→

H4(Y , I2
X ) −→ H4(Y , IX ) −→ H4(Y ,N∗

X/Y ) −→

H5(Y , I2
X ) −→ H5(Y , IX ) −→ H5(Y ,N∗

X/Y ) −→

H6(Y , I2
X ) −→ H6(Y , IX ) −→ H6(Y ,N∗

X/Y ) −→ 0

we see that the computation of H i (Y ,N∗
X/Y ) requires H i (Y , I2

X ) and H i (Y , IX ).



Cohomology of the ideal sheaf

From the resolution of the sheaf ideal IX we obtain the short exact
sequences{

0 −→ OY (−3,−5) −→ F ∗(−2,−3) −→ M −→ 0
0 −→ M −→ F (−1,−2) −→ IX −→ 0

leading to

H i (Y , IX ) =
{

C if i = 4
0 otherwise

Theorem
Let X ⊂ Y be a codimension 3 Calabi-Yau variety. Then

H i (Y , IX ) =
{

C if i = 4
0 otherwise



Cohomology of the square of the ideal sheaf

The ideal I2
X satisfies the resolution

0 // ∧3E
v3 // L(4,1)(E )⊗OY (3, 5)

v2 //// S2(E )
v1 //// I2

X
//// 0

where E = F (−1,−2). This can be separated in two shorts exact
sequences :

0 // ∧3(E )
v3 //// L(4,1)(E )⊗OY (3, 5) // M //// 0

0 // M //// S2(E )
v1 // I2

X
//// 0

Leading to to H i (Y , I2
X ) = 0 ∀ i = 0, 1, 2, 3, 6 and

0 → H4(Y , I2
X ) → H6(Y ,∧3E ) → H6(Y , L(4,1)(E )⊗OY (3, 5))

→ H5(Y , I2
X ) → 0

and this case happen when H6(Y , S2E ) = 0 in each case we have :



E = OY (−2,−2)⊕2 ⊕OY (−1,−2)⊕2 ⊕OY (0,−2)
0 → H4(Y , I2

X ) → H6(Y ,∧3E)︸ ︷︷ ︸
125

→ H6(Y , L(4,1)(E) ⊗ OY (3, 5))︸ ︷︷ ︸
38

→ H5(Y , I2
X ) → 0.

The map in the middle is surjective, leading to H5(Y , I2
X ) = 0 and

H4(Y , I2
X ) = ker(H6(Y ,∧3E ) → H6(Y , L(4,1)(E )⊗OY (3, 5)))

that is
dim(H4(Y , I2

X )) = 87.

The sequence (6) leads to the exact sequence

0 → H3(Y ,N ∗
X/Y ) → H4(Y , I2

X )︸ ︷︷ ︸
87

→ H4(Y , IX )︸ ︷︷ ︸
C

→ H4(Y ,N ∗
X/Y )︸ ︷︷ ︸

0

→ 0

and
dim((H3(Y ,N ∗

X/Y )) = 86

and since H3(X ,N ∗
X/Y ) = H3(Y ,N ∗

X/Y ) and

h1,2X = dim((H3(Y ,N ∗
X/Y ))− 32 then

h1,2X = 86− 32 = 54.



E = OY (−2, 0)⊕OY (−1,−1)⊕2 ⊕OY (−1,−4)⊕2

0 → H4(Y , I2
X ) → H6(Y ,∧3E)︸ ︷︷ ︸

267

→ H6(Y , L(4,1)(E) ⊗ OY (3, 5))︸ ︷︷ ︸
148

→ H5(Y , I2
X ) → 0.

The map in the middle is surjective, leading to H5(Y , I2
X ) = 0 and

H4(Y , I2
X ) = ker(H6(Y ,∧3E ) → H6(Y , L(4,1)(E )⊗OY (3, 5)))

that is
dim(H4(Y , I2

X )) = 119.

The sequence (6) leads to the exact sequence

0 → H3(Y ,N ∗
X/Y ) → H4(Y , I2

X )︸ ︷︷ ︸
119

→ H4(Y , IX )︸ ︷︷ ︸
C

→ H4(Y ,N ∗
X/Y )︸ ︷︷ ︸

0

→ 0

and
dim((H3(Y ,N ∗

X/Y )) = 118

h1,2X = dim((H3(Y ,N ∗
X/Y ))− 32 then

h1,2X = 118− 32 = 86.



E = OY (−2,−3)⊕OY (−1,−1)⊕3 ⊕OY (−1,−4)

0 → H4(Y , I2
X ) → H6(Y ,∧3E )︸ ︷︷ ︸

339

→ H6(Y , L(4,1)(E )⊗OY (3, 5))︸ ︷︷ ︸
250

→ 0

H i (Y , I2
X ) = 0 ∀ i = 0, 1, 2, 3, 5

dim(H6(Y , I2
X )) = dim(H6(Y ,S2E )) = 30

H4(Y , I2
X ) = ker(H6(Y ,∧3E ) → H6(Y , L(4,1)(E )⊗OY (3, 5)))

that is
dim(H4(Y , I2

X )) = 89.

0 → H3(Y ,N ∗
X/Y ) → H4(Y , I2

X )︸ ︷︷ ︸
89

→ H4(Y , IX )︸ ︷︷ ︸
C

→ H4(Y ,N ∗
X/Y )︸ ︷︷ ︸

0

→ 0

and
dim((H3(Y ,N ∗

X/Y )) = 88

h1,2X = dim((H3(Y ,N ∗
X/Y ))− 32 then

h1,2X = 88− 32 = 56.



E = OY (−2, 0)⊕OY (−1,−2)⊕2 ⊕OY (−1,−3)⊕2

0 → H4(Y , I2
X ) → H6(Y ,∧3E)︸ ︷︷ ︸

127

→ H6(Y , L(4,1)(E) ⊗ OY (3, 5))︸ ︷︷ ︸
28

→ H5(Y , I2
X ) → 0.

The map in the middle is surjective, leading to H5(Y , I2
X ) = 0 and

H4(Y , I2
X ) = ker(H6(Y ,∧3E ) → H6(Y , L(4,1)(E )⊗OY (3, 5)))

that is
dim(H4(Y , I2

X )) = 99.

The sequence (6) leads to the exact sequence

0 → H3(Y ,N ∗
X/Y ) → H4(Y , I2

X )︸ ︷︷ ︸
99

→ H4(Y , IX )︸ ︷︷ ︸
C

→ H4(Y ,N ∗
X/Y )︸ ︷︷ ︸

0

→ 0

and
dim((H3(Y ,N ∗

X/Y )) = 98

h1,2X = dim((H3(Y ,N ∗
X/Y ))− 32 then

h1,2X = 98− 32 = 66.



E = OY (−2,−1)⊕OY (−1,−2)⊕3 ⊕OY (−1,−3)
0 → H4(Y , I2

X ) → H6(Y ,∧3E)︸ ︷︷ ︸
104

→ H6(Y , L(4,1)(E) ⊗ OY (3, 5))︸ ︷︷ ︸
25

→ H5(Y , I2
X ) → 0.

The map in the middle is surjective, leading to H5(Y , I2
X ) = 0 and

H4(Y , I2
X ) = ker(H6(Y ,∧3E ) → H6(Y , L(4,1)(E )⊗OY (3, 5)))

that is
dim(H4(Y , I2

X )) = 79.

The sequence (6) leads to the exact sequence

0 → H3(Y ,N ∗
X/Y ) → H4(Y , I2

X )︸ ︷︷ ︸
79

→ H4(Y , IX )︸ ︷︷ ︸
C

→ H4(Y ,N ∗
X/Y )︸ ︷︷ ︸

0

→ 0

and
dim((H3(Y ,N ∗

X/Y )) = 78

and since H3(X ,N ∗
X/Y ) = H3(Y ,N ∗

X/Y ) and

h1,2X = dim((H3(Y ,N ∗
X/Y ))− 32 then

h1,2X = 78− 32 = 46.



E = OY (−2,−2)⊕OY (−1,−2)⊕4

0 → H4(Y , I2
X ) → H6(Y ,∧3E)︸ ︷︷ ︸

110

→ H6(Y , L(4,1)(E) ⊗ OY (3, 5))︸ ︷︷ ︸
28

→ H5(Y , I2
X ) → 0.

The map in the middle is surjective, leading to H5(Y , I2
X ) = 0 and

H4(Y , I2
X ) = ker(H6(Y ,∧3E ) → H6(Y , L(4,1)(E )⊗OY (3, 5)))

that is
dim(H4(Y , I2

X )) = 82.

The sequence (6) leads to the exact sequence

0 → H3(Y ,N ∗
X/Y ) → H4(Y , I2

X )︸ ︷︷ ︸
82

→ H4(Y , IX )︸ ︷︷ ︸
C

→ H4(Y ,N ∗
X/Y )︸ ︷︷ ︸

0

→ 0

and
dim((H3(Y ,N ∗

X/Y )) = 81

h1,2X = dim((H3(Y ,N ∗
X/Y ))− 32 then

h1,2X = 81− 32 = 49.



Thank you for your kind attention!.
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