On the existence of η -Einstein contact metric structures

Ameth Ndiaye

Université Cheikh Anta Diop de Dakar FASTEF, Département de Mathématiques Conférence AFRIMath 2023: Topologie et Géométrie, Sept. 11-15, Dangbo, Bénin

15 septembre 2023

- The so-called Goldberg conjecture asserts that any compact almost Kähler-Einstein manifold is necessarily Kähler-Einstein.
- This conjecture was established by in the particular case of Einstein metrics having nonnegative scalar curvature¹.
- Odd-dimensional analogues of almost Kähler and Kähler structures are K-contact and Sasakian structures, respectively.
- A formulation of an analogue of Goldberg conjecture for odd-dimensional manifolds is that any compact K-contact manifold M having an Einstein metric is necessarily Sasakian-Einstein see²

- 1. K. Sekigawa, On some compact Einstein almost Kähler manifolds, J. Math. Soc. Japan 39 (1987), 677-684.

1/38

3

- It is known that any K-contact structure on a closed manifold can be approximated by quasi-regular K-contact structures whose characteristic orbit spaces are symplectic orbifolds³.
- Boyer and Galicki adapt Sekigawa's proof to symplectic orbifolds and use it to prove a contact metric analogue of Goldberg conjecture⁴. They essentially prove that every compact K-contact-Einstein manifold is Sasakian-Einstein.

- 3. P. Rukimbira, Properties of K-contact manifolds. Journal de la Faculté des Sciences de l'U.C.A.D. 11(2015) no.3 23–33.

- A naive extension of Goldberg's conjecture would states that every compact Einstein contact metric manifold is Sasakian-Einstein. However, such a statement is false in general since Blair and Sharma⁵ give a counter-example on the flat torus T³ by presenting a contact metric structure on T³ which is not K-contact (thus not Sasakian).
- Observe that this counter-example cannot be extended to higher dimension since no contact manifold of dimension ≥ 5 admits a flat contact metric structure⁶.

^{5.} Three-dimensional locally symmetric contact metric manifolds. Bolll. Un. Mat. Ital. A (7) 4 (1990), 385-390.

^{6.} D.E. Blair, On the non-existence of flat contact metric structures. Tohoku Math. J. 28 (1976), 373-379.

- Motivated by Blair and Sharma counter-example, we attempt to find criteria for the non-existence of Sasakian-Einstein structures on compact contact metric manifolds.
- In this talk, we give results that are analogous to those obtained by Banyaga and Massamba⁷ in their work on the non-existence of Einstein metrics on some symplectic manifolds.
- First, from a Riemannian metric g_0 on a contact manifold (M, η) , we construct a contact metric g called η -compatible metric.
- Secondly, we find a necessary and sufficient condition for the existence of a transverse Einstein metric on a contact manifold (M, η) .
- Finally, we use this result to recover a result by Boyer and Galicki where they extended the Goldberg's conjecture to η-Einstein metrics on K-contact manifolds.

4/38

^{7.} A. Banyaga and F. Massamba, Non-existence of certain Einstein metrics on some symplectic manifolds. Forum Math. 28 (2016), 527-537.

1 Definitions and basic results

Plan

< 🗇 🕨

-

э

э

Plan

Plan

Application to Goldberg's conjecture

Contact structures

Definition

A contact manifold is a (2n + 1)-dimensional smooth manifold M endowed with a 1-form η such that $\eta \wedge (d\eta)^n \neq 0$ everywhere in M.

- A There exist a unique vector field ξ associated with η satisfying : $d\eta(\xi, X) = 0$ and $\eta(\xi) = 1$. Such a vector field ξ is called the Reeb vector field of (M, η) .
- & By the characteristic foliation of (M, η) , we mean the 1-dimensional foliation \mathcal{F}_{ξ} generated by ξ .

Quasi-regular contact form

Definition

 η is called *quasi-regular* if there is a positive integer k such that each point $x \in M$ admits a coordinate chart $(U, x_1, \dots, x_n, y_1, \dots, y_n, t)$ such that each leaf of \mathcal{F}_{ξ} passes through U at most k times.

When k = 1, η is simply called *regular*. We say that η is irregular if it is not quasi-regular.

Contact metric structure

Definition

A contact metric structure on M is defined by a contact form η with its Reeb vector field, a Riemannian metric g and a (1, 1)-tensor field ϕ such that :

$$\phi^2 X + X = \eta(X)\xi, \qquad (1)$$

$$d\eta(X,Y) = 2g(X,\phi Y), \qquad (2)$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \qquad (3)$$

for all vector fields X, Y on M, where $d\eta(X, Y) = X\eta(Y) - Y\eta(X) - \eta([X, Y])$.

Notice that identity (1) implies that $\phi \xi = 0$ and $\eta \circ \phi = 0$. We say that (M, η, ξ, g, ϕ) is K-contact manifod if the Reeb field ξ is Killing, i.e. $L_{\xi}g = 0$.

Contact metric structure

Proposition (Boyer-Galicki)

Let (M, η) be a compact quasi-regular contact manifold. Then there exists a Riemannian metric g and a (1, 1)-tensor field ϕ such that (M, η, ξ, g, ϕ) is K-contact manifold.

 \clubsuit A *Sasakian* manifold is a *K*-contact manifold (M, η, ξ, g, ϕ) satisfying :

$$(\nabla_X \phi) Y = g(X, Y) \xi - \eta(Y) X, \tag{4}$$

for arbitrary vector fields X and Y on M, where ∇ denotes the Levi-Civita connection of the metric g.

In dimension 3, K-contact structures are the same as Sasakian ones but, in dimensions d ≥ 5, K-contact structures can be viewed as bridges between contact metric and Sasakian structures.

η -Einstein contact metric

Definition

A contact metric manifold (M, η, ξ, ϕ, g) is called η -Einstein if its Ricci tensor Ric_g can be written as :

$$\operatorname{Ric}_{g}(X,Y) = \alpha g(X,Y) + \beta \eta(X) \eta(Y), \qquad (5)$$

for some real numbers α and β . When $\beta = 0$, g is simply called an Einstein metric.

- Starting from an arbitrary metric g_0 a contact manifold (M, η) , one can construct a contact metric g, i.e. g satisfies the conditions (1)-(3).
- ♣ Let (M, η) be a contact manifold with its Reeb vector field ξ and set $D = \text{Ker}(\eta)$. Pick a Riemannian metric g_0 such that $g_0(\xi, X) = \eta(X)$, for all vector fields X on M. Notice that $g_0(\xi, .) = \eta$ is the only requirement on the metric g_0 .
- ♣ Since $d\eta$ is nondegenerate on *D*, we can define a (1,1) tensor field *A* : *D* → *D* by setting :

$$d\eta(X,Y) = 2g_0(X,AY),\tag{6}$$

for all smooth sections X, Y of D.

By construction A is skew-symmetric, that is $A^* = -A$ with A^* being the adjoint of A with respect to g_0 . Moreover, A^*A is symmetric and positive definite :

$$g_0(X, A^*AX) = g_0(AX, AX) > 0,$$
 (7)

for any nonzero section X of D.

🐥 We set

$$B:=\sqrt{A^*A},\qquad \text{and}\qquad \phi=B^{-1}A:D\to D.$$

On the one hand, *B* commutes with both *A* and *A*^{*}. On the other hand, ϕ is an isometry with respect to g_0 (by definition). Moreover $\phi^*\phi = I$ since

$$\phi^* = A^* (B^{-1})^* = -AB^{-1} = -B^{-1}A = -\phi.$$

So we have $\phi^2 = -Id$ on D.

17

Next, we extend ϕ and B on TM by setting $\phi(\xi) = 0$ and $B\xi = 0$. Then, we obtain :

$$\phi^{2}X = \phi^{2}(X - \eta(X)\xi + \eta(X)\xi) = \phi^{2}(X - \eta(X)\xi) = -X + \eta(X)\xi, \quad (8)$$

for all $X \in \mathfrak{X}(M)$. We also get $\eta \circ B = 0$. Finally, define the metric g by setting :

$$g(X,Y) := g_0(X,BY) + \eta(X)\eta(Y), \tag{9}$$

 $\forall X, Y \in \mathfrak{X}(M).$ In particular, for $X = \xi$ we get

$$g(\xi, Y) = \eta(BY) + \eta(Y) = \eta(Y),$$

for all $X \in \mathfrak{X}(M)$. Thus $g(\xi, \cdot) = \eta$.

Construction of contact metric structures

Proposition (2)

Under the above notations, (η, ξ, g, ϕ) is a contact metric structure on M.

18

Construction of contact metric structures

Démonstration.

First of all , since $g(\xi,X)=\eta(X)$ for all $X\in\mathfrak{X}(M)$ we get :

$$2g(\xi, \phi X) = 2\eta(\phi X) = 0 = d\eta(\xi, X).$$
(10)

Therefore,

$$2g(X,\phi Y) = 2g((X - \eta(X)\xi + \eta(X)\xi,\phi Y))$$

= 2g(X - \eta(X)\xi,\phi Y)

for all $X, Y \in \mathfrak{X}(M)$. We deduce :

$$2g(X, \phi Y) = 2g_0((X - \eta(X)\xi, B\phi Y)) \\ = 2g_0(X - \eta(X)\xi, AY) \\ = d\eta(X - \eta(X)\xi, Y) \\ = d\eta(X, Y),$$

Démonstration.

for all $X, Y \in \mathfrak{X}(M)$. Hence (2) is satisfied. Moreover, for all $X, Y \in \mathfrak{X}(M)$, we have :

$$g(\phi X, \phi Y) = g_0(\phi X, B\phi Y) = g_0(\phi^2 X, \phi B\phi Y)$$

since ϕ is an isometry with respect to g_0 . Furthermore,

$$\phi^2 X = -X + \eta(X)\xi, \quad \eta \circ \phi = 0 \quad \text{and} \quad \phi B \phi Y = \phi^2 B Y = -BY$$

it follows

$$g(\phi X, \phi Y) = g_0(X, BY) = g(X, Y) - \eta(X)\eta(Y).$$

This completes the proof.

э

- & Given a metric g_0 on a contact manifold (M, η) , we call g_0^T , its associated transverse metric, that is, the restriction of g_0 to $D = \ker \eta$.
- **&** Using the Levi Civita connection ∇^0 of g_0 , we define a connection $(\nabla^0)^{^{T}}$ on D as follows :

$$egin{array}{rcl} (
abla^0)_X^ op Y &=&
abla^0_X Y - \eta(
abla^0_X Y)\xi, & orall X, Y \in \Gamma(D) \ (
abla^0)_\xi^ op Y &=& [\xi,Y] - \eta([\xi,Y])\xi, & orall Y \in \Gamma(D) \end{array}$$

• The connection $(\nabla^0)^{^{T}}$ is called the *transverse connection* associated with g_0 . Define its *transverse curvature tensor* $(R^0)^{^{T}}$ as follows :

$$(R^{0})^{^{T}}(X,Y)Z = (\nabla^{0})^{^{T}}_{X} \circ (\nabla^{0})^{^{T}}_{Y}Z - (\nabla^{0})^{^{T}}_{Y} \circ (\nabla^{0})^{^{T}}_{X}Z - (\nabla^{0})^{^{T}}_{[X,Y]}Z,$$

for all $Z \in \Gamma(D)$.

Examples

In our second example, we take the 3-dimensional Lie group Sol_3 , that is, the space \mathbb{R}^3 with coordinates (x, y, z) and the group multiplication :

$$(x, y, z) \cdot (a, b, c) = (x + e^{-z}a, y + e^{z}b, z + c).$$

It can also be viewed as the closed subgroup of $\mathrm{GL}(3,\mathbb{R})$ consisting of matrices of the form :

$$\left(egin{array}{ccc} e^{-z} & 0 & x \ 0 & e^z & y \ 0 & 0 & 1 \end{array}
ight) \quad x,y,z\in\mathbb{R}.$$

Consider the metric of Sol_3 defined by :

$$g_0 = e^{2z} dx^2 + e^{-2z} dy^2 + dz^2.$$
 (11)

Examples

The following left invariant vector fields form an orthonormal basis with respect to g_0 .

$$e_1 = e^{-z}\partial_x, \ e_2 = e^z\partial_y, \ e_3 = \partial_z.$$

Define the skew symmetric operator A by setting :

$$g_0(X,AY) = \frac{1}{2}d\eta(X,Y)$$

where η is the left invariant contact form on ${\rm Sol}_3$ defined by :

$$\eta = \frac{1}{\sqrt{2}} \left(e^z dx + e^{-z} dy \right). \tag{12}$$

We obtain that

$$A = \frac{1}{2\sqrt{2}} \left(\begin{array}{rrr} 0 & 0 & 1 \\ 0 & 0 & -1 \\ -1 & 1 & 0 \end{array} \right).$$

Examples

24

By using $B = \sqrt{A^t A}$ in our construction we get

$$B = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 & 0\\ -1 & 1 & 0\\ 0 & 0 & 2 \end{pmatrix}$$
(13)

in the basis $\{e_1, e_2, e_3\}$. We have ker $\eta = Vect\{e_3, e_1 - e_2\}$ and the Reeb field is given by :

$$\xi = \frac{1}{\sqrt{2}} \left(e^{-z} \partial_x + e^z \partial_y \right) = \frac{1}{\sqrt{2}} \left(e_1 + e_2 \right). \tag{14}$$

ヨト・イヨト

Examples

From the relation :

$$g(X, Y) = g_0(X, BY) + \eta(X)\eta(Y),$$

for all $X, Y \in \mathfrak{X}(Sol_3)$, it follows

$$g(e_3, e_3) = g_0(e_3, Be_3) = \sqrt{2}.$$

By similar computations, we get :

$$g(e_1, e_1) = g(e_2, e_2) = \frac{2 + \sqrt{2}}{2\sqrt{2}}, \qquad g(e_1, e_2) = g(e_2, e_1) = \frac{-2 + \sqrt{2}}{2\sqrt{2}},$$
$$g(e_1, e_3) = g(e_3, e_1) = g(e_2, e_3) = g(e_3, e_2) = 0.$$

Then the metric g is given by the matrix

$$g = \begin{pmatrix} \frac{2+\sqrt{2}}{2\sqrt{2}} & \frac{-2+\sqrt{2}}{2\sqrt{2}} & 0\\ \frac{-2+\sqrt{2}}{2\sqrt{2}} & \frac{2+\sqrt{2}}{2\sqrt{2}} & 0\\ 0 & 0 & \sqrt{2} \end{pmatrix}.$$
 (15)

Examples

The almost complex structure ϕ on $\text{Ker}(\eta)$, which is extended on $\mathfrak{X}(\text{Sol}_3)$, is defined by :

$$\phi(e_1) = -e_3, \quad \phi(e_2) = e_3, \quad 2\phi(e_3) = e_2 - e_1.$$

Proposition 6 ensures that (η, ξ, g, ϕ) is a contact metric structure on Sol₃.

Main Results

Proposition (3)

Let g_0 be a Riemannian metric on a contact manifold (M, η) with $g_0(\xi, \cdot) = \eta$. Let B be its (1, 1)-tensor field defined as above and let g the η -compatible metric derived from g_0 , i.e.

$$g(X, Y) := g_0(X, BY) + \eta(X)\eta(Y),$$

 $\forall X \text{ and } Y$. Denote by ∇^0 and ∇ the Levi Civita connections of g_0 and g, respectively and R^0 , R the curvature tensors of g_0 , g, respectively. If $\nabla^0 B = 0$ then we have

$$\nabla_X^{^{\mathsf{T}}}Y = (\nabla^0)_X^{^{\mathsf{T}}}Y, \qquad (16)$$

$$B(R^{T}(X,Y)Z) = (R^{0})^{T}(X,Y)BZ$$
(17)

Main Results

To prove Relation (16), it is enough to show that :

$$g(\nabla_X^T Y, Z) = g((\nabla^0)_X^T Y, Z)$$
(18)

for all $X, Y \in \Gamma(D)$ and for all $Z \in \mathfrak{X}(M)$. Since every $V \in \mathfrak{X}(M)$ can be written as $V = \eta(V)\xi + Z$ and $Z \in \Gamma(D)$. We will distinguish two cases :

♣ We ssume $V = \xi$.

$$g((\nabla^0)_X^{^{\mathsf{T}}}Y,\xi) = \eta((\nabla^0)_X Y) - \eta((\nabla^0)_X Y) = 0.$$
(19)

and we show that

$$g(\nabla_X^{^{T}}Y,\xi) = g((\nabla^0)_XY,\xi) = 0.$$
 (20)

A Now we assume $X, Y, Z \in \Gamma(D)$. Notice that, in this case,

$$g(\nabla_X^T Y, Z) = g((\nabla^0)_X^T Y, Z) \iff g(\nabla_X Y, Z) = g_0(B\nabla_X^0 Y, Z).$$
(21)

Main Results

We only have to show that

$$g(\nabla_X Y, Z) = g_0(B\nabla_X^0 Y, Z).$$
⁽²²⁾

To do so, we start by writing a Koszul type formula for both g_0 and g, and we subtract $2g(\nabla_X Y, Z)$ from $2g(\nabla_X^0 Y, Z)$ with the use of the hypothesis $\nabla^0 B = 0$ we get the result.

Main Results

30

For the second relation we obtain :

$$B(R^{T}(X,Y)Z) = B(\nabla_{X}^{T} \circ \nabla_{Y}^{T}Z - \nabla_{Y}^{T} \circ \nabla_{X}^{T}Z - \nabla_{[X,Y]}^{T}Z)$$

= $B((\nabla^{0})_{X}^{T} \circ (\nabla^{0})_{Y}^{T}Z) - B((\nabla^{0})_{Y}^{T} \circ (\nabla^{0})_{X}^{T}Z) - B((\nabla^{0})_{[X,Y]}^{T}Z).$

Since $\nabla^0 B = 0$, Equation $(\nabla^0_X BY = B\nabla^0_X Y + (\nabla^0_X B)Y = B\nabla^0_X Y)$ implies,

$$B(R^{^{T}}(X,Y)Z) = (\nabla^{0})_{X}^{^{T}} \circ (\nabla^{0})_{Y}^{^{T}}BZ - (\nabla^{0})_{Y}^{^{T}} \circ (\nabla^{0})_{X}^{^{T}}BZ - (\nabla^{0})_{[X,Y]}^{^{T}}BZ$$

= $(R^{0})^{^{T}}(X,Y)BZ.$

4 **B b** 4 **B b**

э

Main Results

Proposition (4)

Let g_0 be a Riemannian metric on a contact manifold (M, η) such that $g_0(\xi, \cdot) = \eta$, where ξ is the Reeb field. Let (η, ξ, g, ϕ) be the associated contact metric defined as in Proposition 2, i.e.,

$$g(X,Y) := g_0(X,BY) + \eta(X)\eta(Y),$$

for all vector fields X and Y on M. Assume $(\nabla^0)^T B = 0$ and there is a smooth function α such that $\operatorname{Ric}_{g_0^T} = \alpha g_0^T$ then $\operatorname{Ric}_{g^T} = \alpha g^T$. If in addition (η, ξ, g, ϕ) is K-contact then g is η -Einstein.

Where $\operatorname{Ric}_{g_0^{T}}$ be the Ricci curvature of the transverse metric associated with g_0 .

Main Results

Proof :

For each $x \in M$, there is a coordinate neighborhood U around x and a local orthonormal basis $(e_1, ..., e_{2n}, \xi)_x$ of $T_x M$ with respect to both g and g_0 .

$$\begin{aligned} \operatorname{Ric}_{g^{T}}(X,Y) &= \left(\sum_{i=1}^{2n} g^{T} \left(R^{T}(e_{i},X)Y,e_{i} \right) \right) \\ &= \left(\sum_{j=1}^{2n} g_{0}^{T} \left(BR^{T}(e_{i},X)Y,e_{i} \right) \right) \\ &= \left(\sum_{j=1}^{2n} g_{0}^{T} \left((R^{0})^{T}(e_{i},X)BY,e_{i} \right) \right) \\ &= \operatorname{Ric}_{g_{0}^{T}}(X,BY), \end{aligned}$$

for any X, Y vector fields tangent to D.

So using the assumtion we have,

$$\operatorname{Ric}_{g^{T}}(X, Y) = \operatorname{Ric}_{g_{0}^{T}}(X, BY)$$
$$= \alpha g_{0}^{T}(X, BY))$$
$$= \alpha g^{T}(X, Y),$$

for all $X, Y \in \Gamma(D)$.

Now, assume (η, ξ, g, ϕ) is *K*-contact then, by a result of **Boyer-Galicki**⁸ (see Theorem 7.3.12), the Ricci curvature Ric_g of g satisfies :

$$\operatorname{Ric}_{g}(X,Y) = \operatorname{Ric}_{g^{T}}(X,Y) - 2g(X,Y) \quad \text{and} \quad \operatorname{Ric}_{g}(Z,\xi) = 2n\eta(Z), \quad (23)$$

for all $X, Y \in \Gamma(D)$ and for all $Z \in \mathfrak{X}(M)$. Relations (23) imply that g is η -Einstein if and only if g^T is Einstein.

^{8.} C. P. Boyer and K. Galicki, Sasakian geometry. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2008. xii+613 pp.

Main Results

(24)

Theorem (1)

Consider a contact manifold (M, η) . The existence of a contact metric structure g on (M, η) whose associated transverse metric g^T is Einstein is equivalent to the existence of a Riemannian metric g_0 such that $\operatorname{Ric}_{g_0^T} = \alpha g_0^T$ for some constant α and

$$(\nabla^0)^T B(g_0) = 0$$

where ∇^0 is the Levi Civita connection of g_0 .

Main Results

Proof :

Suppose (η, ξ, g, ϕ) is a contact metric structure on M, where g^T satisfies $\operatorname{Ric}_{g^T} = \alpha g^T$ for some $\alpha \in \mathbb{R}$.

Then we can take $g = g_0$, i.e. g coincides with the metric g_0 derived from it. In this case, A would be the identity operator \mathbb{I} on D and $B(g_0) = \mathbb{I} - \eta \otimes \xi$ so that $B\xi = \xi - \xi = 0$.

Then

$$(\nabla^0)^T B = 0$$
, i.e., $B\left((\nabla^0)_X^T Y\right) = (\nabla^0)_X^T B Y$,

for all $X \in \mathfrak{X}(M)$, $Y \in \Gamma(D)$. Indeed, $(\nabla^0)_X^T Y \in \Gamma(D)$ and since $B(g_0) = \mathbb{I}$ on $\Gamma(D)$,

we get

$$B\Big((\nabla^0)_X^T Y\Big) = (\nabla^0)_X^T Y \quad \text{and} \quad (\nabla^0)_X^T B Y = (\nabla^0)_X^T Y.$$

Main Results

Conversely, assume that (M, η) is a contact manifold that admits a metric g_0 satisfying Equation (24) and $\operatorname{Ric}_{g_0^T} = \alpha g_0^T$, for some constant α then the associated quadruple (η, ξ, g, ϕ) described by Proposition 2 defines a contact metric structure on M.

As in the proof of Proposition 4, we see that the derived metric g satisfies $\operatorname{Ric}_{g^T} = \alpha g^T$.

Application to Goldberg's conjecture

In **Boyer-Galicki**⁹, Boyer and Galicki extend the study of an odd-dimensional analogue of Goldberg's conjecture in the more general framework of η -Einstein metrics. They prove the following result :

Theorem (Boyer-Galicki)

If (M, η, g) be a compact K-contact manifold, where g is η -Einstein with $\alpha > -2$ then (M, η, g) is Sasakian. Moreover, if we take $g' = \lambda g + \lambda(\lambda - 1)\eta \otimes \eta$, where $\lambda = \frac{\alpha+2}{2n+2}$ then (M, η, g') is Sasakian-Einstein.

9. C. P. Boyer and K. Galicki, Sasakian geometry. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2008. xii+613 pp.

Application to Goldberg's conjecture

Before stating our next result, we recall the structure theorem for K-contact manifolds

Theorem (Boyer-Galicki book)

Let (M, η, ξ, g, ϕ) be a compact quasi-regular K-contact manifold. Then the following properties hold :

- The leaf space $\mathcal{Z} := M/\mathcal{F}_{\xi}$ is an almost Kähler orbifold whose induced almost Kähler metric will be denoted by h
- **2** (M, η, ξ, g, ϕ) is Sasakian if and only if (\mathcal{Z}, ω, h) is Kähler.
- **9** The metric g is η -Einstein if and only if and only if h is Einstein.

Application to Goldberg's conjecture

Now, we will give another proof of Boyer and Galicki's result where the K-contact assumption is replaced by a condition of quasi-regularity. We have :

Theorem (2)

Let (M, η) be a compact quasi-regular contact manifold of dimension 2n + 1 > 3. If (M, η) admits an η -Einstein metric \tilde{g} with $\alpha > -2$ then M is Sasakian.

Application to Goldberg's conjecture

For the proof

- & Consider a compact quasi-regular contact manifold (M, η) of dimension 2n + 1 > 3 that admits an η -Einstein metric \tilde{g} with $\alpha > -2$.
- ***** Then Proposition 1 ensures that there is a compatible *K*-contact structure (M, η, ξ, g) .
- Apply the previous Theorem to obtain its associated compact almost Kähler orbifold (Z, ω, h).
- ♣ We know that any η-Einstein metric \tilde{g} on (M, η) satisfying $\alpha > -2$ induces an Einstein metric \tilde{h} on Z whose Ricci curvature Ric_{\tilde{h}} is positive.

- Now assume there is no Sasakian structure on M or equivalently (Z, ω) has no Kähler structure.
- Since the proof of Theorem 5.4 in Banyaga-Massamba¹⁰ uses only local connection computations, it can be carried over to the orbifold case.
- ♣ We deduce that there is no Einstein \tilde{h} on (\mathcal{Z}, ω) with $\operatorname{Ric}_{\tilde{h}} > 0$.
- ♣ This contradicts our assumption that (M, η) admits an η-Einstein metric \tilde{g} such that $\alpha > -2$ because, in this case, the transverse metric \tilde{g}^T is Einstein and the almost Kähler orbifold (\mathcal{Z}, \tilde{h}) (with $\pi^* \tilde{h} = \tilde{g}$) is Kähler (where $\pi : (M, g) \to (\mathcal{Z}, h)$ is the canonical projection map). So *M* must be Sasakian.

^{10.} Non-existence of certain Einstein metrics on some symplectic manifolds, Forum Math 28000

Thanks

э

1

Merci pour votre attention !!!