
Symplectic Geometry

Uli = Ulrich Krähmer (TU Dresden & CIMPA)

This is a micro-course given at the CIMPA school “Harmonic Analysis
and Mathematical Physics” held in Abidjan in 2025. The lectures were
prepared last minute as I substituted for a lecturer who cancelled, and I
am not an expert in the field. So the chance that there are still mistakes
is high and I’d be grateful for any corrections and remarks!
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Lecture 1 + Tutorial
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Commutative algebras
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K and A

1 Let A be a commutative ring and K Ď A be a subring.

2 A becomes a K-module via multiplication in A,

K ˆ A Ñ A, pλ, aq ÞÑ λa.

3 The multiplication in A is then a K-bilinear map

A bK A Ñ A,
ÿ

i

ai bK bi ÞÑ
ÿ

i

aibi ,

so A becomes a commutative K-algebra.
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Examples from algebraic geometry

1 Example: The tensor algebra of a K-module V is

TKV :“ K ‘ V ‘ pV bK V q ‘ . . . .

It is noncommutative, but the symmetric algebra

SKV :“ TKV {xu bK v ´ v bK u | u, v P V y

is the free commutative algebra on V : expressing a
commutative algebra A as pSKV q{I for an ideal I ◁ SKV with
V X I “ 0 means choosing a K-module V Ď A that generates A.

2 If V – Kd is a free K-module with basis x1, . . . , xd , then
SKV – Krx1, . . . , xds (polynomials in variables xi with coeff.s in K).
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Examples from geometry

1 Smooth maniolds M : K “ R field of real numbers, A “ C8pMq

ring of smooth R-valued functions on M .
2 Affine varieties M : K any field, M Ď Kd given by polynomial

equations, A “ KrMs ring polynomial functions M Ñ K.
3 Affine schemes: If M is the set M of irreducible representations

(simple modules) p of any A, then the module is a field A{I and the
residue class ras “ a ` I P K is the “value” of a P A in p P M .

4 Alternatively, take M to be the set of algebra morphisms A Ñ K,
i.e. A-modules whose underlying K-module is K. Often this is the
same set, see e.g. Hilbert’s Nullstellensatz.
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A mix

1 Let π : E Ñ M is a vector bundle, A “ C8pMq, and V “ ΓpE q be
the A-module of smooth sections of E .

2 Then elements of SAV ˚ can be interpreted as functions on E that
are smooth along the base and polynomial along the fibre,

”

ÿ

ai1...inαi1 bA ¨ ¨ ¨ bA αin

ı

: v ÞÑ

´

ÿ

ai1...inαi1pvq ¨ ¨ ¨αinpvq

¯

pπpvqq.
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Poisson algebras
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Poisson algebras

1 Definition: A Poisson bracket on A is a Lie bracket

t´,´u : A bK A Ñ A

such that for all a P A, the adjoint action

ta,´u : A Ñ A, b ÞÑ ta, bu

is a K-linear derivation, that is, is an element of

DerKpAq

:“ tB P HomKpA,Aq | @b, c P A : Bpbcq “ bBpcq ` Bpbqcu.

Poisson algebra := commutative algebra with a Poisson bracket.
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Recap: vector fields

1 Let M be a smooth manifold and ΓpTMq be the vector fields on
M . Recall this is a C8pMq-module via

pavqppq :“ appqvppq, a P C8
pMq, v P ΓpTMq, p P M .

2 Thm: The map

ΓpTMq Ñ DerRpC8
pMqq, v ÞÑ Bv, Bvpf q :“ df pvq.

is an isomorphism of C8pMq-modules.
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Hamiltonian mechanics

1 Definition: A Poisson manifold is a smooth manifold M together
with a Poisson bracket on C8pMq.

2 Any a P C8pMq then yields a dynamical system:

db

dt
“ ta, bu, b P C8

pMq.

3 Interpretation: M is the set of states of some dynamical system, a
is its Hamiltonian that governs its dynamics, bppq is the value of an
observable b in p P M .

4 For any Poisson algebra pA, t´,´uq I call ta,´u P DerKpAq the
Hamiltonian vector field associated to a P A.
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The Poisson bivector (field)
1 Remark: Since t´,´u is a derivation in each entry, a Poisson

bracket on C8pMq is always of the form

ta, bu “
ÿ

i

pdapuiqdbpviq ´ dbpuiqdapviqq

for a unique bivector (field) called the Poisson bivector,

Π “
ÿ

i

ui ^ vi “ r
ÿ

i

ui b vi s P Λ2
C8pMqΓpTMq.

2 Here V “ ΓpTMq is viewed as module over A “ C8pMq and
ΛAV “ TAV {xv bA v | v P V y is the exterior algebra of V .

3 Remark: If you take any bivector and define t´,´u as above, this
is a Poisson bracket iff rΠ,Πs “ 0 (Schouten-Nijnhuis bracket).
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Examples

1 Exercise 1: There is a unique Poisson bracket on the polynomial
algbera A “ Krx , y s for which tx , yu “ xy .

2 Exercise 2: If g is a Lie algebra over K, then A :“ SKg carries a
unique Poisson bracket for which

tιpuq, ιpvqu “ ιpru, vsq, u, v P g.

Here ι : V Ñ SV is the canonical embedding.
3 Exercise 3: If K “ R, we may view M “ g˚ “ HomRpg,Rq as a

smooth manifold and SKg as a subalgebra of C8pMq consisting of
polynomials in the coordinates v P g on g˚. Show that the Poisson
bracket on SKg extends uniquely to a Poisson bracket on C8pg˚q.
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Filtered algebras

1 Definition: A filtered algebra is an algebra U with a sequence of
K-submodules

0 “ F´1U Ď F0U Ď F1U Ď . . .

such that pFiUqpFjUq Ď Fi`jU .
2 Definition: The associated graded algebra is

grpUq :“
à

iě0

grUi , grUi :“ FiU{Fi´1U

with (graded) product given by

grpUqi bK grpUqj Ñ grpUqi`j , ras bK rbs ÞÑ rabs.
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Example and exercise

1 Definition: U is almost commutative if grpUq is commutative.
2 Exercise 4: In this case, grpUq is a Poisson algebra via

grpUqibKgrpUqj Ñ grpUqi`j´1, rasbKrbs ÞÑ tras, rbsu :“ rab´bas.

3 Example: The Poincaré-Birkhoff-Witt theoem says that the
universal enveloping algbera

Upgq :“ TKg{xu bK v ´ v bK u ´ ru, vs | u, v P gy

of a Lie algebra g that is projective as a K-module (this is
automatic if K is a field) is almost commutative, with
grpUpgqq – SKg. This yields a sophisticated solution to Exercise 2.
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Lie–Rinehart algebras
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Lie–Rinehart algebras

1 Definition: A Lie–Rinehart algebra over A (aka pK,Aq-algebra) is
a Lie algbera V over K equipped with an A-module structure and
an A-linear Lie algebra morphism (called the anchor)

B : V Ñ DerKpAq

such that

rv, aws “ arv,ws ` Bvpaqw, a P A, v,w P V .

2 Definition: When A “ C8pMq,V “ ΓpE q for some vector bundle E ,
then E is called a Lie algebroid over M .
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Examples

1 A Lie algebra over A is the same as a Lie–Rinehart algbera whose
anchor is trivial, meaning that Bv “ 0 for all v P V .

2 Example: The anchor ΓpTMq – DerRpC8pMqq turns ΓpTMq into a
Lie–Rinehart algebra over C8pMq, so TM is a Lie algebroid.
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Poisson algebras as Lie–Rinehart algebras

1 Definition: If A is a Poisson algebra, define

da P DerKpAq
˚

“ HomApDerKpAq,Aq, B ÞÑ dapBq :“ Bpaq

and
V :“ spanAtda | a P Au Ď DerKpAq

˚.

2 Exercise 5: V carries a unique Lie–Rinehart algbera structure with

rda, dbs “ dta, bu, a, b P A.

3 In particular: The cotangent bundle T˚M of a Poisson manifold is
canonicaly a Lie algebroid.
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A theorem of Frobenius

1 A d-dimensional geometric distribution on a manifold M is a
smooth choice of d-dimensional subspaces Ep Ď TpM , p P M .

2 Question: Is there a submanifold N Ď M with Ep “ TpN?
3 Thm: This holds if and only if for all vector fields u, v with

uppq, vppq P Ep for all p P M , we have ru, vsppq P Ep.
4 Upshot: A regular foliation (integrable geometric distribution) is the

same as a sub Lie algebroid of TM .
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Alternating forms

1 Definition: Fix a Lie–Rinehart algebra V and abbreviate

ΩApV q :“ pΛAV q
˚

“ HomApΛAV ,Aq.

2 This is a graded A-module, and we identify ω P Ωp
ApV q “ pΛp

AV q˚

with an alternating p-form, that is, a multilinear map

ω : VbAp “ V bA ¨ ¨ ¨ bA V Ñ A,

for which ωpv1, . . . , vpq “ 0 if vi “ vi`1 for some i .
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Cartan–Chevalley-Eilenberg–De Rham–Rinehart
1 Definition: We define d: Ωp

ApV q Ñ Ωp`1
A pV q by

dωpv1, . . . , vp`1q

“

p`1
ÿ

j“1

p´1q
j`1

Bvjpωpv1, . . . , v̂j , . . . vp`1qq`

ÿ

1ďiăjďp`1

p´1q
i`jωprvi , vjs, v1, . . . , v̂i , . . . , v̂j , . . . , vp`1q,

where v1, . . . , vp`1 P V .

2 Thm/Definition: We have d ˝ d “ 0; the cohomology of V is

HpV ,Aq :“ ker d{im d.
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Example

1 p “ 0: a P A, da P Ω1pV q “ V ˚, dapvq “ Bvpaq.
2 p “ 2: For a bilinear form ω : V bA V Ñ A, we obtain

dωpu, v,wq “ Bupωpv,wqq ´ Bvpωpu,wqq ` Bwpωpu, vqq

´ ωpru, vs,wq ` ωpru,ws, vq ´ ωprv,ws, uq.

3 For A “ C8pMq, V “ ΓpTMq, the cohomology HpV ,Aq is the De
Rham cohomology of the manifold M .

4 For B “ 0, HpV ,Aq is the Lie algebra cohomology of V .
5 For V “ Ω1pMq, M a Poisson manifold, it is the Poisson

cohomology of M .
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The universal enveloping algebra
1 Rinehart has generalised the construction of Upg to universal

enveloping algebras UpV ,Aq of Lie–Rinehart algebras.
2 He also has generalised the Poincaré-Birkhoff-Witt theorem, which

gives for A-projective V a Poisson structure on SAV . We then have

HpV ,Aq – ExtUpV ,AqpA,Aq.

3 Example: For A “ C8pMq, V “ ΓpTMq, UpV ,Aq is the algbera of
differential operators on M . SAV is the algebra of functions on
T˚M that are smooth along M and polynomial along the cotangent
spaces. These are the symbols of differential operators. The
Poisson bracket will be recovered in the next section from the
canonical symplectic form on T˚M .
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Symplectic forms
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Symplectic forms

1 Definition: A symplectic form on a Lie–Rinehart algebra V is an
alternating 2-form ω on V for which

´
5 : V Ñ V ˚, v ÞÑ v5 :“ ωpv,´q

is an isomorphism of A-modules and which is closed,

dω “ 0.

2 Thus ω defines a class rωs P H2pV ,Aq.
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Symplectomorphisms

1 Definition: A symplectomorphism is an A-linear map J : V Ñ W
between symplectic Lie–Rinehart algebras pV , ωq, pW , ηq such that

ηpJu, Jvq “ ωpu, vq @u, v P V .

2 Definition: When V “ W , ω “ η, and J is invertible, we speak of
an automorphism of pV , ωq. We denote the group of all these by

SppV , ωq Ď GLpV q.
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Examples

1 Example: If A “ K is a field, r´,´s “ B “ 0, then V is simply a
K-vector space with a non-degenerate alternating bilinear form ω
on it. We then call pV , ωq a symplectic vector space.

2 Example: If A “ C8pMq,V “ ΓpTMq, we call pM , ωq a symplectic
manifold. In particular, we have:

3 Thm: M “ T ˚N is canonically symplectic.
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Sketch of proof

1 Recall: Local coordinates q1, . . . , qn on N induce local coordinates
q1, . . . , qn, p1, . . . , pn on M , with T ˚

qN Q α “ αidq
i “: pipαqdqi .

2 The form ω :“ dpi ^ dqi is independent of the chosen coordinates.
3 dω “ 0 is obvious from the local represetation.
4 Non-degeneracy follows because in the local coordinates

s1, . . . , s2n “ pi , q
j , the form ω is represented by the matrix

ωij :“ ωp
B

Bs i
,

B

Bs j
q

which is non-singular.
5 Remark: Darboux’s theorem will show that locally, every symplectic

manifold looks like this.
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The Poisson bracket
1 Recall: a P A defines da P V ˚ by dapwq :“ Bwpaq. If ω is a

symplectic form, there is now a unique va P V wtth v5
a “ da.

2 Thm: ta, bu :“ ωpva, vbq is a Poisson bracket on A.
3 By construction, we have Bva “ ta,´u, so va is/represents the

Hamiltonian vector field associated to a P A, and

ta, bu “ Bvapbq “ dbpvaq.

4 Warning: Some authors write ´va for va!
5 So: Every symplectic manifold is canonically a Poisson manifold.
6 Exercise 6: rva, vbs “ vta,bu. When checking this, you automatically

generalise this to arbitrary Poisson algebras: the Hamiltonian vector
fields form a quotient Lie algebra of A with repsect to t´,´u.
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The converse

1 Conversely, if M is a Poisson manifold, let „ be the smallest
equivalence relation on M such that p „ q if they lie on an integral
curve of a Hamiltonian vector field.

2 Thm: The equivalence class rps Ď M of p P M is a submanifold
and carries a unique symplectic form for which the restriction
C8pMq Ñ C8prpsq is a map of Poisson algebras.

3 Upshot: Every Poisson manifold has a (usually singular!) foliation
whose leaves are symplectic manifolds.

4 We will not prove this in general, but show that for M “ g˚, these
leaves are the orbits of the coadjoint action.
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Exercise 7: Maxwell

1 Consider M “ R6 – T ˚N , N “ R3 with coordinates
q1, q2, q3, p1, p2, p3. Fix Bi P C8pNq, i “ 1, 2, 3, in the variables
q1, q2, q3 und put

ω :“ ω0 ´ ωB , ω0 “

3
ÿ

i“1

dqi ^ dpi ,

ωB :“ B1dq
2

^ dq3 ` B2dq
3

^ dq1 ` B3dq
1

^ dq2

Show: ω is symplectic if divB “ 0.
2 Find a formula for the Poisson bracket tf , gu, f , g P C8pMq.
3 Let V P C8pNq be another function and put
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1 Ei :“ ´BV
Bqi , H :“ 1

2

ř3
i“1 p

2
i ` V pq1, q2, q3q.

2 Consider v “ pp1, p2, p3q,E ,B as vectors in R3 and show:

tH , qiu “ pi , tH , piu “ pE ` v ˆ Bqi ,

where ˆ is the vector product in R3.
3 Let γ : R Ñ M be a curve and α : R Ñ N be its projection onto the

first three variables. Show: γ is an integral curve of tH ,´u if and

only if the acceleration d2α
dt2 is given by the Lorentz force (just

google, F “ ma wtth m “ 1).
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Lecture 2
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Darboux’s theorem
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For symplectic vector spaces

1 Thm: If pV , ωq is a finite-dimensional symplectic vector space,
there is a basis ei , vi , i “ 1, . . . , n, with

ωpei , vjq “ δij , ωpei , ejq “ ωpvi , vjq “ 0.

In particular, dimR V “ 2n.
2 Proof: This is a variant of Gram–Schmid: take any e1 ‰ 09 and v1

mit ωpe1, v1q “ 1. Put V1 :“ spanKte1, v1u.
3 Consider π : V Ñ V , u ÞÑ ωpu, v1qe1 ` ωpe1, uqv1. We have
π ˝ π “ π and π|V1

“ id.
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The induction step

1 Put W :“ kerπ. Then V “ V1 ‘ W and ω|W is symplectic: if
e2 P W and v P V with ωpe2, vq “ 1, put

v2 :“ v ´ πpvq P W .

Then we have by the definition of W

ωpe2, v1q “ ωpe2, e1q “ 0 ñ ωpe2, v2q “ ωpe2, vq “ 1,

so ω|W is non-degenerate.
2 Now continue by induction on the dimension.
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Moser’s trick

1 Moser stability: If M is a compact manifold and ωt is a smooth
curve of symplectic forms wit constant cohomology class
rωts “ rω0s, then there exists φ P DiffpMq with φ˚ω1 “ ω0.

2 Proof: This is not entirely trivial (see [McDuff–Salamon]) , but
Brωs

Bt “ 0 shows there are αt P Ω1pMq with

Bωt

Bt
“ dαt .

3 Let vt be a time-dependent vector field and φt its flow, so

Bφt

Bt
“ vt ˝ φt .
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Proof (Moser)

1 Then dωt “ 0 gives

B

Bt
φ˚
tωt “ φ˚

t p
Bωt

Bt
` ivtdωt ` dpivtωtqq “ dφ˚

t pαt ` ivtωtq.

2 If we apply this with vt :“ ´α7
t , the unique vector field for which

αt “ ´ωtpvt ,´q “ ´ivtωt ,

we obtain
B

Bt
φ˚
tωt “ 0.

3 M compact ñ there is φt , φ
˚
tωt “ φ˚

0ω0 “ ω0. Take φ :“ φ1.
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Application: Darboux, global version

1 Thm: If pM , ωq is a symplectic manifold and p P M , there exists a
chart κ : U Ñ R2n with pκ´1q˚ω “ ω0 :“ ωDarboux .

2 Proof: Start with any chart, put q :“ κppq. Wlog (Darboux for
vector spaces, compose κ with φ P Spp2nq if needed) the forms
ω1 :“ pκ´1q˚ω and ω0 agree in q.

3 Put ωt :“ tω0 ` p1 ´ tqω1. In q these are independent of t, so in
some ball B they are symplectic.

4 Since ω1 ´ ω0 is closed, Poincaré’s lemma (H2pBq “ 0) shows
Dα P Ω1pBq : ω1|B ´ ω0|B “ dα. Now Moser.

5 Corollary: ωn “ ω ^ ¨ ¨ ¨ ^ ω is a volume form, so symplectic
manifolds are canonically oriented.
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vector spaces, compose κ with φ P Spp2nq if needed) the forms
ω1 :“ pκ´1q˚ω and ω0 agree in q.

3 Put ωt :“ tω0 ` p1 ´ tqω1. In q these are independent of t, so in
some ball B they are symplectic.

4 Since ω1 ´ ω0 is closed, Poincaré’s lemma (H2pBq “ 0) shows
Dα P Ω1pBq : ω1|B ´ ω0|B “ dα. Now Moser.

5 Corollary: ωn “ ω ^ ¨ ¨ ¨ ^ ω is a volume form, so symplectic
manifolds are canonically oriented.
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The (co)adjoint adctions
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Notation

1 If M is a smooth manifold and p P M , then a tangent vector
v P TpM is an equivalence class rγs of a smooth curve
γ : p´1, 1q Ñ M , γp0q “ p through p. Two curves γ, β are
equivalent if for all f P C8pMq, we have

dpf ˝ γq

dt
|t“0 “

dpf ˝ βq

dt
|t“0 “: dfppvq “: pBvpf qqppq.

2 The derivative of a smooth map φ : M Ñ N in p P M is the map

pφ˚qp : TpM Ñ TφppqN , rγs ÞÑ rφ ˝ γs.
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The adjoint action of G on G

1 Let G be a Lie group and g “ TeG be its Lie algbera (over K “ R).
2 Definition: The adjoint action of G on G is given by

Adg : G Ñ G , h ÞÑ ghg´1.

3 This defines a smooth action of G on itself,

Ad : G Ñ DiffpG q, g ÞÑ Adg , Ade “ idG , Adf ˝ Adg “ Adfg .
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The adjoint action of G on g

1 Definition: Taking the derivative of Adg : G Ñ G in e P G (unit
element in G ) we obtain the adjoint action of G on g,

Adg :“ ppAdgq˚qe : g “ TeG Ñ g, w “ rγs ÞÑ rAdg˝γs “ rgγg´1
s.

Here γ : p´1, 1q Ñ G is a curve through γp0q “ e.
2 By the chain rule ppφ ˝ ψq˚qp “ pφ˚qψppq ˝ pψ˚qp, this is a linear

representation of G ,
Ad : G Ñ GLpgq.
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The adjoint action of g on g

1 We initially define the adjoint action of g on g without any
reference to Ad or Ad by

adv : g Ñ g, w ÞÑ rv,ws.

2 By the Jacobi identity, this is a representation of g as a Lie algebra,

ad : g Ñ glpgq, v ÞÑ adv, adv ˝ adw ´ adw ˝ adv “ adrv,ws.

3 Advantage: Makes sense for abstract Lie algebras, we don’t need G .
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Coadjoint actions

1 Definition: The coadjoint actions of G respecitvely g on g˚ are
simply the dual representation,

pCoad˚
gqpαqpvq “ αpAdg´1pvqq, g P G , α P g˚, v P g.

respectively

pcoadpvqpαqqpwq :“ ´αprv,wsq, v,w P g, α P g˚.
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More notation

1 The Lie bracket on g is obtained by identifying g with the
left-invariant vector fields on G (those ones with pLgq˚v “ v for
all left shifts Lg : G Ñ G , h ÞÑ gh). The isomorphism with TeG is
given by evaluation of a vector field in e P G .

2 The Lie bracket on g is then just the Lie bracket of vector fields. In
other words,

rv,ws “ Lvpwq

is the Lie derivative of w along v.
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Explicitly
1 Thm: advpwq is the differntial of Ad : G Ñ GLpgq, meaning that

advpwq “
B2

BsBt
exppsvq expptwq expp´svq|s,t“0 “ rv,ws.

2 Proof: φv,tpgq “ g exptv (product in G ) is the flow of v starting in
g P G . Now stare for g “ e on (see [Arnold] for the Lie derivative)

rv,wspgq “ pLvwqpgq “
d

ds
pφv,´sq˚pwφv,spgqq|s“0

“
d

ds
pφv,´sq˚pφv,spgqweq|s“0

“
d

ds

d

dt
pφv,´sqpg exppsvq expptwqq|s,t“0.
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The Kostant–Kirillov aka Lie–Poisson form
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Goal

1 We will now show that the orbit

M :“ CoadG pαq Ď g˚

of any α P g˚ under the coadjoint action of G is canonically a
symplectic manifold; as we will see, these are the symplectic leaves
of g˚ with respect to the Poisson bracket defined by r´,´s.

2 We follow Homework 17 in [Da Silva] where this is broken nicely
into several steips.
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Step 1

1 The adjoint representation of G on g associates to v P g an “action
vector field” v̂ on the manifold g whose value in w P g is

v̂pwq “ rγs P Twg, γ : p´1, 1q Ñ g, t ÞÑ Adexp tvpwq.

2 The manifold g is a vector space, which yields an isomorphism
Twg – g, and if we insert our computation of ad as the differential
of g ÞÑ Adg , we conclude that under this identification, we have

v̂pwq “
d

dt
Adexpptvqpwq |t“0“ advpwq “ rv,ws.
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Step 2

1 Now we do the same computation for the coadjoint representation:
for v P g let v̌ be the vector field on the manifold g˚ whose value in
the point α P g˚ is

v̌pαq “ rγs P Tαg
˚, γ : p´1, 1q Ñ g˚, t ÞÑ Coadexpptvqpαq.

2 Now Coadexpptvqpαq P g˚ is given by

pCoadexpptvqpαqqpwq “ αpAdexpptvq´1pwqq “ αpAdexpp´tvqpwqq.

3 Thus taking d
dt in t “ 0 yields under the identification Tαg

˚ – g˚

pv̌pαqqpwq “ αp´rv,wsq “ coadvpαqpwq “ αprw, vsq.
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Step 3
1 The expression

ωαpv,wq :“ αprw, vsq

is clearly an alternating 2-form on g.
2 By Step 2, we have

ωαpv,´q “ 0 ô v̌pαq “ 0.

3 In other words, the radical of ωα is the Lie algebra h Ď g of the
isotropy subgroup (the stabiliser) H Ď G of α P g˚,

H “ tg P G | Coadgpαq “ αu,

h “ tv P g | coadvpαq “ v̌pαq “ 0u.
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Step 4

1 The orbit-stabiliser theorem yields a diffeomorphism

G{H Ñ M , gH ÞÑ Coadgpαq,

and its derivative defines an isomorphism

g{h Ñ TαM , v ` h ÞÑ v̌pαq “ coadvpαq,

where at the end, we identify TαM Ď Tαg
˚ – g˚.

2 So Step 3 shows that ωα descends to a non-degenerate 2-form on
the tangent space TαM , M “ CoadG pαq.
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Step 5

1 For each β P M , we have constructed a non-degenerate 2-form ωβ
on TβM , and this clearly depends smoothly on β. So we have
constructed a non-degenerate 2-form

ω P Ω2
pMq, M “ CoadG pαq – G{H .

Note that ω does not depend on the chosen base point α, it is
canonically defined on M .

2 Our final aim is to show that dω “ 0. So we show that dω “ 0 in α.

Symplectic Geometry Uli Abidjan 2025 56 / 62



Step 5 continued

1 Above, we considered the isomorphism

g{h Ñ TαM Ď Tαg
˚

– g˚, v ` h ÞÑ v̌pαq “ αpr´, vsq.

2 If β “ Coadgpαq P M is another point, then the derivative of

Coadg : M Ñ M

in α maps TαM – g{h to TβM – g{l, where l is the Lie algebra of
tie stabiliser of β, which is L “ gHg´1 “ AdgpHq.

3 As Coadg is a linear map on g˚, the derivative is also Coadg . Let us
compute the corresponding map g{h Ñ g{l.
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Step 5 continued

1 The original derivative Coadg : TαM Ñ TβM is given by

αpr´, vsq “ v̌pαq

ÞÑ Coadgpv̌pαqq “ v̌pαqpAdg´1p´qq “ αprAdg´1p´q, vsq

“ αprAdg´1p´q,Adg´1pAdgpvqqsq

“ αpAdg´1r´,Adgpvqsq

“ Coadgpαqpr´,Adgpvqsq “ βpr´,Adgpvqsq.

So the derivative corresponds simply to

Adg : g{h Ñ g{l, v ` h ÞÑ Adgpvq ` l.
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Step 5...

1 We can now assign to a given v P g a “left-invariant” vector field v̄
on M which in β “ Coadgpαq P M takes the value αpAdg´1p´q, vq,

and this is Adgpvqpβq.
2 In a neighbourhood U of α, these left-invariant vector fields span

the C8pUq-module of all vector fields. As dω is multilinear, it thus
suffices to test dω “ 0 only on such left-invariant vector fields.
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Step 5 continued

1 We have

dωpū, v̄, w̄q “ Būpωpv̄ , w̄qq ´ Bv̄pωpū, w̄qq ` Bw̄pωpū, v̄qq

´ ωprū, v̄ s, w̄q ` ωprū, w̄ s, v̄q ´ ωprv̄ , w̄ s, ūq.

2 We show that the first three terms are individually zero.
3 Indeed, if β “ Coadgpαq P U , then

ωpv̄, w̄qpβq “ CoadgpαqprAdgpwq,Adgpvqsq “ ωpv̄, w̄qpαq.

So this is a constant function whose partial derivatives vanish.
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The end

1 The final three terms can be directly evaluated in α, giving

´αprw, ru, vssq ` αprv, ru,wssq ´ αpru, rv,wsq,

and this is indeed 0 by the Jacobi identity.
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Kostant–Souriau

1 Thm: If H1pg,Rq “ H2pg,Rq “ 0, then there is (up to coverings) a
bijective correspondence between coadjoint orbits and transitive
symplectic G -manifolds.
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