Formal exponential maps and Atiyah class of differential graded manifolds

Mathieu Stiénon

NonCommutative Geometry and Higher Structures Scalea, Italy — 2022/06/08

- **1** Kapranov: $L_{\infty}[1]$ algebra hiding behind Atiyah class of Kähler mfd
- 2 Atiyah class of a dg manifold
- **3** Formal exponential maps
- 4 Formal exponential map on a dg mfd and Kapranov's $L_{\infty}[1]$ algebra

1 Kapranov: $L_{\infty}[1]$ algebra hiding behind Atiyah class of Kähler mfd

- Atiyah class of a holomorphic vector bundle
- Kapranov's theorem
- 2 Atiyah class of a dg manifold
- 3 Formal exponential maps

4 Formal exponential map on a dg mfd and Kapranov's $L_\infty[1]$ algebra

< 67 ▶

Atiyah class of holomorphic vector bundle

- $E \rightarrow X$: holomorphic vector bundle E over complex manifold X
- (smooth) connection $\nabla^{1,0}: \Gamma(E) \to \Omega^{1,0}(E)$ of type (1,0):

$$abla^{1,0}(f \cdot s) = \partial(f) \cdot s + f \cdot
abla^{1,0}(s), \quad \forall s \in \Gamma(E), f \in C^{\infty}(X; \mathbb{C})$$

• Then $\nabla^{1,0}\bar{\partial} + \bar{\partial}\nabla^{1,0}: \Gamma(E) \to \Omega^{1,1}(E)$ can be regarded as a Dolbeault 1-cocycle

 $\mathcal{R} \in \Omega^{1,1}(\operatorname{End}(E)).$

Definition (Atiyah, 1957): The Atiyah class α_E of E is the cohomology class

$$\alpha_{\boldsymbol{E}} = [\mathcal{R}] \in H^1(\boldsymbol{X}; \Omega^1_{\boldsymbol{X}} \otimes \operatorname{End}(\boldsymbol{E}))$$

The Atiyah class α_E captures the obstruction to the existence of a holomorphic connection on *E*.

Mathieu Stiénon (Penn State) Form

Kapranov's theorem (1999)

Theorem (Kapranov): Let X be a Kähler manifold. The Dolbeault complex $\Omega^{0,\bullet}(\mathcal{T}_X^{1,0})$ admits an $L_{\infty}[1]$ algebra structure $(q_k)_{k\geq 1}$ where q_k is the wedge product

$$\Omega^{0,j_1}(\mathcal{T}^{1,0}_X) \odot \cdots \odot \Omega^{0,j_k}(\mathcal{T}^{1,0}_X) \to \Omega^{0,j_1+\cdots+j_k}(\mathcal{S}^k(\mathcal{T}^{1,0}_X))$$

composed with

$$R_k: \Omega^{0,\bullet}(S^k(T_X^{1,0})) \to \Omega^{0,\bullet+1}(T_X^{1,0})$$

where \odot is the graded (w.r.t to j_1, j_2, \cdots) symmetric tensor product and

< A >

1 Kapranov: $L_{\infty}[1]$ algebra hiding behind Atiyah class of Kähler mfd

2 Atiyah class of a dg manifold

- dg manifolds
- Atiyah class of a dg manifold

3 Formal exponential maps

4 Formal exponential map on a dg mfd and Kapranov's $L_\infty[1]$ algebra

< 67 ▶

Differential graded manifolds

Let *M* be a smooth manifold with structure sheaf \mathcal{O}_M .

Definition: A Z-graded manifold \mathcal{M} with body M is a sheaf \mathcal{R} of Z-graded commutative \mathcal{O}_M -algebras over M such that $\mathcal{R}(U) \cong \mathcal{O}_M(U) \hat{\otimes} \hat{S}(V^{\vee})$ for all sufficiently small open subsets U of M — here $\hat{S}(V^{\vee})$ denotes the algebra of formal power series on some fixed Z-graded vector space V. $\mathcal{C}^{\infty}(\mathcal{M}) := \mathcal{R}(M)$

Example: Given a \mathbb{Z} -graded vector bundle $E \to M$, we get a \mathbb{Z} -graded manifold:

$$\mathcal{R}(U) = \Gamma(U; \hat{S}(E^{\vee})).$$

Definition: A dg manifold is a \mathbb{Z} -graded manifold \mathcal{M} endowed with a vector field $Q \in \mathfrak{X}(\mathcal{M})$ of degree +1 such that $[Q, Q] = 2 \ Q \circ Q = 0$.

We say that Q is a *homological* vector field on the graded manifold \mathcal{M} .

< 67 →

Examples of dg manifolds

Example: If \mathfrak{g} is a Lie algebra, then $\mathcal{M} = \mathfrak{g}[1]$ is a dg-manifold.

- $\bullet \text{ its algebra of functions: } \quad C^\infty(\mathfrak{g}[1]) \cong \Lambda^\bullet \mathfrak{g}^\vee$
- its homological vector field: $Q = d_{\rm CE}$ (Chevalley–Eilenberg)

 $C^{\infty}(\mathfrak{g}[1]) = \bigoplus_{k} (\Lambda^{k} \mathfrak{g}^{\vee})[-k]$

 $C^{\infty}(T^{0,1}_{\times}[1]) = \bigoplus_{k} \Omega^{0,k}(X)[-k]$

Example: If M is a smooth manifold, then $\mathcal{M} = \mathcal{T}_M[1]$ is a dg manifold.

• its algebra of functions: $C^{\infty}(T_M[1]) \cong \Omega^{\bullet}(M)$

• its homological vector field: $Q = d_{dR}$ (de Rham) $C^{\infty}(\mathcal{T}_{M}[1]) = \bigoplus_{k} \Omega^{k}(M)[-k]$

Example: If X is a complex mfd, then $\mathcal{M} = \mathcal{T}_X^{0,1}[1]$ is a dg manifold.

• its algebra of functions: $C^{\infty}(\mathcal{T}^{0,1}_X[1]) \cong \Omega^{0,\bullet}(X)$

• its homological vector field: $Q = \overline{\partial}$ (Dolbeault operator)

Affine connection on a graded manifold

Definition: An affine connection on a graded mfd \mathcal{M} is a \Bbbk -linear map

$$\nabla:\mathfrak{X}(\mathcal{M})\otimes\mathfrak{X}(\mathcal{M})\to\mathfrak{X}(\mathcal{M})$$

of degree $0\ {\rm satisfying}$

$$\nabla_{fX} Y = f \nabla_X Y,$$

$$\nabla_X (fY) = X(f) Y + (-1)^{|X||f|} f \nabla_X Y,$$

for all homogeneous $f \in C^{\infty}(\mathcal{M})$ and $X, Y \in \mathfrak{X}(\mathcal{M})$.

Atiyah class of a dg manifold

Choose a torsion-free affine connection

$$\Gamma(\mathcal{T}_{\mathcal{M}}) \times \Gamma(\mathcal{T}_{\mathcal{M}}) \xrightarrow{\nabla} \Gamma(\mathcal{T}_{\mathcal{M}})$$

on the graded manifold \mathcal{M} .

■ Consider the section At[∇]_(M,Q) of Hom (S²(T_M), T_M) of degree +1 defined by

$$\operatorname{At}_{(\mathcal{M},Q)}^{\nabla}(X,Y) = \mathcal{L}_{Q}(\nabla_{X}Y) - \nabla_{\mathcal{L}_{Q}X}Y - (-1)^{|X|}\nabla_{X}(\mathcal{L}_{Q}Y)$$

for all homogeneous $X, Y \in \mathfrak{X}(\mathcal{M})$.

Since $\mathcal{L}_Q \circ \mathcal{L}_Q = 0$, $\operatorname{At}_{(\mathcal{M},Q)}^{\nabla} = \mathcal{L}_Q \nabla$ is a 1-cocycle of the cochain complex

$$\left(\Gamma\left(\operatorname{Hom}(S^{2}(T_{\mathcal{M}}),T_{\mathcal{M}})\right),\mathcal{L}_{Q}\right).$$

< 67 →

Fact: Its cohomology class is independent of the connection ∇ .

Definition: The Atiyah class of the dg manifold (\mathcal{M}, Q)

$$\alpha_{(\mathcal{M},\mathcal{Q})} := [\operatorname{At}_{(\mathcal{M},\mathcal{Q})}^{\nabla}] \in H^1\big(\Gamma(\operatorname{Hom}(S^2(\mathcal{T}_{\mathcal{M}}),\mathcal{T}_{\mathcal{M}})),\mathcal{L}_{\mathcal{Q}}\big)$$

is the obstruction to existence of a connection on \mathcal{M} compatible with the homological vector field Q.

A connection ∇ on a dg manifold (\mathcal{M},Q) is said to be *compatible* with the homological vector field if

$$\mathcal{L}_{Q}(\nabla_{X}Y) = \nabla_{\mathcal{L}_{Q}X}Y + (-1)^{|X|}\nabla_{X}(\mathcal{L}_{Q}Y)$$

for all homogeneous $X, Y \in \mathfrak{X}(\mathcal{M})$.

< 47 →

Example: dg manifold $(\mathbb{R}^{m|n}, Q)$ • $(x_1, \dots, x_m; x_{m+1} \dots x_{m+n})$ are coordinate functions on $\mathbb{R}^{m|n}$ • $Q = \sum_k Q_k(x) \frac{\partial}{\partial x_k}$ • trivial connection $\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j} = 0$ • $\alpha_{\mathbb{R}^{m|n}} \left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}\right) = (-1)^{|x_i| + |x_j|} \sum_k \frac{\partial^2 Q_k}{\partial x_i \partial x_j} \frac{\partial}{\partial x_k}$

Example: g is a finite-dimensional Lie algebra

- $(\mathcal{M}, \mathcal{Q}) = (\mathfrak{g}[1], d_{\mathrm{CE}})$ is corresponding dg manifold
- $T_{\mathcal{M}} \cong \mathfrak{g}[1] \times \mathfrak{g}[1]$ implies

 $H^1\big(\Gamma(\mathcal{S}^2(\mathcal{T}^{\vee}_{\mathcal{M}})\otimes\mathcal{T}_{\mathcal{M}}),\mathcal{L}_Q\big)\cong H^0_{\mathrm{CE}}(\mathfrak{g};\Lambda^2\mathfrak{g}^{\vee}\otimes\mathfrak{g})\cong (\Lambda^2\mathfrak{g}^{\vee}\otimes\mathfrak{g})^{\mathfrak{g}}$

• $\alpha_{\mathfrak{g}[1]} \in (\Lambda^2 \mathfrak{g}^{\vee} \otimes \mathfrak{g})^{\mathfrak{g}}$ is precisely the Lie bracket of \mathfrak{g}

< 17 ×

1 Kapranov: $L_{\infty}[1]$ algebra hiding behind Atiyah class of Kähler mfd

2 Atiyah class of a dg manifold

- 3 Formal exponential maps
 - ordinary manifolds
 - graded manifolds
 - differential graded manifolds

4 Formal exponential map on a dg mfd and Kapranov's $L_\infty[1]$ algebra

< 67 →

Exponential maps arise naturally in relation with linearization problems:

- **1** Lie theory
- 2 smooth manifolds

PBW isomorphism in Lie theory

- g, a finite dimensional Lie algebra
- $\exp: \mathfrak{g} \to G$
- \blacksquare \exp is a local diffeomorphism from nbhd of 0 to nbhd of 1
- induced map on distributions $(\exp)_* : \mathcal{D}'(0) \xrightarrow{\cong} \mathcal{D}'(1)$
- \blacksquare canonical identifications: $\mathcal{D}'(0)\cong\mathcal{Sg}$ and $\mathcal{D}'(1)\cong\mathcal{Ug}$
- $(\exp)_*: S\mathfrak{g} \xrightarrow{\cong} U\mathfrak{g}$ is the symmetrization map

$$X_1 \odot \cdots \odot X_n \longmapsto \frac{1}{n!} \sum_{\sigma \in S_n} X_{\sigma(1)} \cdots X_{\sigma(n)}$$

- Poincaré–Birkhoff–Witt isomorphism
- $S\mathfrak{g} \xrightarrow{\text{pbw}:=(\exp)_*} U\mathfrak{g}$ is an isomorphism of **co**algebras but not a morphism of *algebras*.

< 47 →

Geodesic exponential map and PBW isomorphism

- Choose an affine connection ∇ on smooth manifold M.
- exp: $T_M \to M \times M$ (bundle map) defined by exp $(X_m) = (m, \gamma(1))$ where γ is the smooth path in Msatisfying $\dot{\gamma}(0) = X_m$ and $\nabla_{\dot{\gamma}}\dot{\gamma} = 0$
- $\Gamma(S(T_M))$ seen as space of differential operators on T_M , all derivatives in the direction of the fibers, evaluated along the zero section of T_M
- $\mathcal{D}(M)$ seen as space of differential operators on $M \times M$, all derivatives in the direction of the fibers, evaluated along the diagonal section $M \to M \times M$
- map induced by exp on fiberwise differential operators: $pbw := (exp)_* : \Gamma(S(T_M)) \xrightarrow{\cong} \mathcal{D}(M) \text{ is an isomorphism of left}$ modules over $C^{\infty}(M)$ called Poincaré–Birkhoff–Witt isomorphism

pbw as infinite jet of \exp

The Taylor series of the composition

$$T_mM \xrightarrow{\exp} \{m\} \times M \xrightarrow{f} \mathbb{R}$$

at the point $0_m \in T_m M$ is

$$\sum_{J \in \mathbb{N}_0^n} \frac{1}{J!} \big(\operatorname{pbw}(\partial_x^J) f \big)(m) \cdot y^J \quad \in \hat{S}(T_m^{\vee} M),$$

where

- $(x_i)_{i \in \{1,...,n\}}$ are local coordinates on M
- $(y_j)_{j \in \{1,...,n\}}$ induced local frame of T_M^{\vee} regarded as fiberwise linear functions on T_M

Hence pbw is the fiberwise infinite jet of the bundle map $\exp: T_M \to M \times M$ along the zero section of $T_M \to M$.

Algebraic characterization of pbw

Theorem (Laurent-Gengoux, S, Xu, 2014): This map

$$\Gamma(ST_M) \xrightarrow{\text{pbw}} \mathcal{D}(M)$$

is the unique isomorphism of left $C^{\infty}(M)$ -modules satisfying

$$\begin{split} \mathrm{pbw}(f) &= f, \quad \forall f \in C^{\infty}(M); \\ \mathrm{pbw}(X) &= X, \quad \forall X \in \mathfrak{X}(M); \\ \mathrm{pbw}(X^{n+1}) &= X \cdot \mathrm{pbw}(X^n) - \mathrm{pbw}(\nabla_X X^n), \quad \forall n \in \mathbb{N}. \end{split}$$

Equivalently, for all $n \in \mathbb{N}$ and $X_0, \ldots, X_n \in \mathfrak{X}(M)$, we have

$$\operatorname{pbw}(X_0 \odot \cdots \odot X_n) = \frac{1}{n+1} \sum_{k=0}^n \left\{ X_k \cdot \operatorname{pbw}(X^{\{k\}}) - \operatorname{pbw}\left(\nabla_{X_k}(X^{\{k\}})\right) \right\}$$

where $X^{\{k\}} = X_0 \odot \cdots \odot X_{k-1} \odot X_{k+1} \odot \cdots \odot X_n.$

Example:

- M = G (Lie group)
- Let X^L ∈ 𝔅(G) denote the left invariant vector field associated with a vector X ∈ 𝔅 in the Lie algebra.
- \blacksquare Consider the torsion-free connection ∇ defined by

$$abla_{X^L} Y^L = rac{1}{2} \left[X, Y
ight]^L \qquad orall X, Y \in \mathfrak{g}.$$

The associated formal exponential map is

$$\operatorname{pbw}(X_1 \odot \cdots \odot X_n) = \frac{1}{n!} \sum_{\sigma \in S_n} X_{\sigma(1)}^{\mathcal{L}} \cdots X_{\sigma(n)}^{\mathcal{L}}.$$

< A >

Both $\Gamma(S(T_M))$ and $\mathcal{D}(M)$ are left coalgebras over $C^{\infty}(M)$. Comultiplication by deconcatenation in both $\Gamma(S(T_M))$ and $\mathcal{D}(M)$:

$$\Delta(X_1 \cdots X_n) = 1 \otimes (X_1 \cdots X_n) + \sum_{\substack{p+q=n \\ p,q \in \mathbb{N}}} \sum_{\sigma \in \mathfrak{S}_p^q} (X_{\sigma(1)} \cdots X_{\sigma(p)}) \otimes (X_{\sigma(p+1)} \cdots X_{\sigma(n)}) + (X_1 \cdots X_n) \otimes 1$$

for all $X_1, \ldots, X_n \in \mathfrak{X}(\mathcal{M})$. **Proposition:** $pbw : \Gamma(S(T_M)) \to \mathcal{D}(M)$ is an isomorphism of coalgebras over $C^{\infty}(M)$.

- $pbw^{-1} : \mathcal{D}(M) \to \Gamma(S(T_M))$ takes a differential operator to its complete symbol
- both $\Gamma(S(T_M))$ and $\mathcal{D}(M)$ are bi-algebroids
- $\blacksquare\ pbw$ preserves comultiplication but does not respect multiplication
- Unlike exp, the formal exponential map pbw can be evaluated (recursively) without resorting to points of *M* and geodesic curves of ∇.

< 47 →

Formal exponential maps on graded manifolds

What about replacing the smooth manifold M by a differential graded manifold \mathcal{M} ?

< A >

Definition (Liao, Mehta, S, Xu): Let \mathcal{M} be a graded manifold. The formal exponential map associated to an affine connection ∇ on \mathcal{M} is the morphism of left $C^{\infty}(\mathcal{M})$ -modules

$$\operatorname{pbw}: \Gamma(\mathcal{S}(\mathcal{T}_{\mathcal{M}})) \to \mathcal{D}(\mathcal{M}),$$

inductively defined by the relations

$$\begin{aligned} \mathrm{pbw}(f) &= f \qquad \forall f \in C^{\infty}(\mathcal{M}), \\ \mathrm{pbw}(X) &= X \qquad \forall X \in \Gamma(T_{\mathcal{M}}), \end{aligned}$$

and, for all $n \in \mathbb{N}$ and homogeneous $X_0, \ldots, X_n \in \Gamma(\mathcal{T}_M)$,

$$\operatorname{pbw}(X_0 \odot \cdots \odot X_n) = \frac{1}{n+1} \sum_{k=0}^n \epsilon_k \left\{ X_k \cdot \operatorname{pbw}(X^{\{k\}}) - \operatorname{pbw}(\nabla_{X_k} X^{\{k\}}) \right\}.$$

•
$$\epsilon_k = (-1)^{|X_k|(|X_0|+\cdots+|X_{k-1}|)}$$

• $X^{\{k\}} = X_0 \odot \cdots \odot X_{k-1} \odot X_{k+1} \odot \cdots \odot X_n$

Proposition (Liao, S): The formal exponential map $pbw: \Gamma(S^{\leq k}(\mathcal{T}_{\mathcal{M}})) \to \mathcal{D}^{\leq k}(\mathcal{M})$

is a well defined isomorphism of filtered coalgebras over $C^{\infty}(\mathcal{M})$.

Formal exponential map on diff'l graded manifolds

Given a dg manifold (\mathcal{M}, Q) ,

we get two induced differential graded coalgebras:

)

$$(\Gamma(S(\mathcal{T}_{\mathcal{M}})), L_Q)$$
$$(\mathcal{D}(\mathcal{M}), \mathcal{L}_Q := \llbracket Q, - \rrbracket$$

Question: When is

$$(\Gamma(\mathcal{S}(\mathcal{T}_{\mathcal{M}})), \mathcal{L}_{Q}) \xrightarrow{\text{pbw}} (\mathcal{D}(\mathcal{M}), \mathcal{L}_{Q})$$

an isomorphism of differential graded coalgebras?

< 47 →

Theorem (Seol, S, Xu): The Atiyah class $\alpha_{(\mathcal{M},Q)}$ vanishes if and only if there exists a torsion-free affine connection ∇ on \mathcal{M} such that

 $\operatorname{pbw}:(\Gamma(S(\mathcal{T}_{\mathcal{M}})), L_Q) \to (\mathcal{D}(\mathcal{M}), \mathcal{L}_Q)$

is an isomorphism of differential graded coalgebras over $C^{\infty}(\mathcal{M})$.

1 Kapranov: $L_{\infty}[1]$ algebra hiding behind Atiyah class of Kähler mfd

- 2 Atiyah class of a dg manifold
- 3 Formal exponential maps

4 Formal exponential map on a dg mfd and Kapranov's $L_{\infty}[1]$ algebra

< 67 ▶

In general, the failure of pbw to preserve the dg structure is measured by

$$(\mathrm{pbw})^{-1} \circ \mathcal{L}_{Q} \circ \mathrm{pbw} - \mathcal{L}_{Q} = \sum_{k=0}^{\infty} R_{k}$$

where $R_k \in \Gamma(\operatorname{Hom}(S^k(\mathcal{T}_M), \mathcal{T}_M))$ are sections of degree +1.

$$R_0 = 0$$
, $R_1 = 0$, $R_2 = - \operatorname{At}^{\nabla}$

Theorem (Seol, S, Xu):

- **1** The R_k for $k \ge 2$, together with L_Q induce an $L_\infty[1]$ algebra on the space of vector fields $\mathfrak{X}(\mathcal{M})$.
- 2 The R_k for k ≥ 2 are completely determined by the Atiyah cocycle At[∇], the curvature R[∇], and their exterior derivatives. In particular, if the curvature vanishes (i.e. R[∇] = 0), then

$$R_2 = -\operatorname{At}^{\nabla}, \quad R_{n+1} = \frac{1}{n+1} d^{\nabla} R_n \quad \text{for } n \ge 2$$

< A >

Theorem (Seol, S, Xu):

- Given a Kähler manifold X,
- $(\mathcal{M}, \mathbf{Q}) = (\mathcal{T}_{\mathbf{X}}^{0,1}[1], \bar{\partial})$ is a dg manifold
- and $\mathfrak{X}(\mathcal{M}) = \mathfrak{X}(\mathcal{T}_{X}^{0,1}[1])$ admits an $L_{\infty}[1]$ algebra structure.
- There is an $L_{\infty}[1]$ quasi-isomorphism

$$(\mathfrak{X}(\mathcal{T}_X^{0,1}[1]), \{\mathcal{R}_i\}) \xrightarrow{L_{\infty}[1] \text{ quasi iso.}} (\Omega^{0, \bullet}(\mathcal{T}_X^{1, 0}), \{\lambda_i\})$$

Moreover, our $L_{\infty}[1]$ algebra structure on $\mathfrak{X}(\mathcal{T}_{X}^{0,1}[1])$ can be transferred to Kapranov's $L_{\infty}[1]$ algebra structure on $\Omega^{0,\bullet}(\mathcal{T}_{X}^{1,0})$.

< A >

THANK YOU

- Zhuo Chen, Maosong Xiang, and Ping Xu. "Atiyah and Todd classes arising from integrable distributions." In: J. Geom. Phys. 136 (2019), pp. 52–67. DOI: 10.1016/j.geomphys.2018.10.011.
- [2] Camille Laurent-Gengoux, Mathieu Stiénon, and Ping Xu.
 "Poincaré-Birkhoff-Witt isomorphisms and Kapranov dg-manifolds." In: Adv. Math. 387 (2021), Paper No. 107792, 62 pp. DOI: 10.1016/j.aim.2021.107792.
- [3] Hsuan-Yi Liao and Mathieu Stiénon. "Formal exponential map for graded manifolds." In: Int. Math. Res. Not. IMRN 3 (2019), pp. 700-730. DOI: 10.1093/imrn/rnx130.
- [4] Rajan A. Mehta, Mathieu Stiénon, and Ping Xu. "The Atiyah class of a dg-vector bundle." In: *C. R. Math. Acad. Sci. Paris* 353.4 (2015), pp. 357–362. DOI: 10.1016/j.crma.2015.01.019.
- Seokbong Seol, Mathieu Stiénon, and Ping Xu. "Dg Manifolds, Formal Exponential Maps and Homotopy Lie Algebras." In: *Comm. Math. Phys.* 391.1 (2022), pp. 33–76. DOI: 10.1007/s00220-021-04265-x.
- [6] Mathieu Stiénon and Ping Xu. "Atiyah classes and Kontsevich-Duflo type theorem for DG manifolds." In: Homotopy algebras, deformation theory and quantization. Vol. 123. Banach Center Publ. Polish Acad. Sci. Inst. Math., Co.