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Kapranov: L [1] algebra hiding behind Atiyah class of Kahler mfd
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Kapranov: Lo [1] algebra hiding behind Atiyah class

Kapranov: Ly [1] algebra hiding behind Atiyah class of Kéhler mfd
m Atiyah class of a holomorphic vector bundle

m Kapranov's theorem
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Kapranov: Lo [1] algebra hiding behind Atiyah class ~ Atiyah class of a holomorphic vector bundle

Atiyah class of holomorphic vector bundle

m £ — X : holomorphic vector bundle E over complex manifold X
m (smooth) connection V' : T'(E) — QY (E) of type (1,0):
VIO(f.s)=0(f)-s+f-V(s), VseT(E),fe C®X;C)

m Then V100 + V10 : T(E) — QUY(E) can be regarded as a
Dolbeault 1-cocycle
R € QYY(End(E)).

Definition (Atiyah, 1957):  The Atiyah class ag of E is the
cohomology class

ap = [R] € H'(X; Q) ® End(E))

The Atiyah class ag captures the obstruction to the existence of a
holomorphic connection on E.
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Kapranov: Lo [1] algebra hiding behind Atiyah class Kapranov's theorem

Kapranov’s theorem (1999)

Theorem (Kapranov): Let X be a Kahler manifold.
The Dolbeault complex QO’(T}(’O) admits an L [1] algebra structure
(qk)k>1 where gy is the wedge product

QNTL) © - @ QY(TR) = QT (SH(T)
composed with
Ric: QO (SH(T")) — QO+ (Ty")

where ® is the graded (w.r.t to ji, jo, ) symmetric tensor product and
|| Rl = 6,
BERR=R= RV is an Atiyah cocycle,

m Rop1 =dV °(R,) for n > 2
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Atiyah class of a dg manifold

Atiyah class of a dg manifold
m dg manifolds

m Atiyah class of a dg manifold
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Atiyah class of a dg manifold dg manifolds

Differential graded manifolds

Let M be a smooth manifold with structure sheaf Oy,.

Definition: A Z-graded manifold M with body M is a sheaf R of
Z-graded commutative Oy-algebras over M such that
R(U) = Om(U)2S(VY) for all sufficiently small open subsets U of M —

here S(VV) denotes the algebra of formal power series on some fixed
Z-graded vector space V. C®(M) :=R(M)

Example: Given a Z-graded vector bundle E — M, we get a Z-graded
manifold:

R(U) =T (U; S(EY)).

Definition: A dg manifold is a Z-graded manifold M endowed with a
vector field Q € X(M) of degree +1 such that [Q,Q] =2 Qo Q = 0.

We say that @ is a homological vector field on the graded manifold M.
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Atiyah class of a dg manifold dg manifolds

Examples of dg manifolds

Example: If g is a Lie algebra, then M = g[1] is a dg-manifold.
m its algebra of functions:  C*(g[1]) = A®g"

m its homological vector field: Q@ = dcg (Chevalley—Eilenberg)
C(g[1]) = B (A g")[—4]
Example: If M is a smooth manifold, then M = Ty[1] is a dg manifold.

m its algebra of functions:  C*°(Ty[1]) = Q*(M)
m its homological vector field:  Q = dgr (de Rham)

Co(Tm[1]) = B, 2 (M)[—K]

Example: If X is a complex mfd, then M = Tg’l[l] is a dg manifold.
m its algebra of functions:  C(Ty'[1]) =2 QO*(X)
m its homological vector field: @ = 0 (Dolbeault operator)
(T 1)) = @, QPK(X)[A]

X
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Atiyah class of a dg manifold Atiyah class of a dg manifold

Affine connection on a graded manifold

Definition: An affine connection on a graded mfd M is a k-linear map
V:iX(M)®XM)— XM)
of degree 0 satisfying

VY =fVxY,
Vx(fY) = X(F)Y + (=1)XIFlfuxy,

for all homogeneous f € C*°(M) and X, Y € X(M).

Mathieu Stiénon (Penn State) Formal exp maps and Atiyah class of dg mfds Scalea, Italy — 2022/06/08



Atiyah class of a dg manifold Atiyah class of a dg manifold

Atiyah class of a dg manifold

m Choose a torsion-free affine connection
\%
L(Tam) xT(Tam) — T(Tam)

on the graded manifold M.

m Consider the section At(vjwo) of Hom (SQ(TM), TM) of degree +1
defined by

Atfhgg) (X, Y) = Lo(VxY) = Veox Y — (~1)XIVx(LqY)

for all homogeneous X, Y € X(M).

m Since LooLg =0, At(VM’Q) = LV is a 1-cocycle of the cochain
complex

(F(Hom(52(TM), TM))aEQ)'

m Fact: Its cohomology class is independent of the connection V.
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Atiyah class of a dg manifold Atiyah class of a dg manifold

Definition: The Atiyah class of the dg manifold (M, Q)
am,@) = [Att.@) € H (T(Hom(S*(Ta), Tm)), L)

is the obstruction to existence of a connection on M compatible with the
homological vector field Q.

A connection V on a dg manifold (M, Q) is said to be compatible with
the homological vector field if

Lo(VxY) =VioxY + (~1)XIVx(LoY)

for all homogeneous X, Y € X(M).
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Example: dg manifold (R™", Q)

B (X, ", XmiXm+1 """ Xm+n) are coordinate functions on R™In

m Q= Zk Qk(x )3Xk

m trivial connection Vi% =0

) |X:|+\X\ PQ o
B QRmin (Bx,’ 6)9) ! Z O0x;0x; Oxy

Example: g is a finite-dimensional Lie algebra
m (M, Q) = (g[1], dcg) is corresponding dg manifold
m T = g[l] x g[1] implies

HY(T(S2(TX) ® Tam). Lq) = Hop(e; A%gY @ g) = (A%gY ® g)°

W o) € (A%gY ® g)9 is precisely the Lie bracket of g
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Formal exponential maps

Formal exponential maps
m ordinary manifolds
m graded manifolds

m differential graded manifolds
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Formal exponential maps ordinary manifolds

Exponential maps arise naturally in relation with linearization problems:

Lie theory
smooth manifolds
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Formal exponential maps ordinary manifolds

PBW isomorphism in Lie theory

m g, a finite dimensional Lie algebra
mexp:g— G
m exp is a local diffeomorphism from nbhd of 0 to nbhd of 1
m induced map on distributions (exp), : D’(0) =N D'(1)
m canonical identifications: D’(0) 2 Sg and D'(1) = Ug
m (exp). : Sg =N Ug is the symmetrization map
1
X1 @O Xy — ﬁ Z Xa(l)"'Xa(n)
O'GSn

m Poincaré-Birkhoff-Witt isomorphism

m Sg Ug is an isomorphism of coalgebras but not a
morphism of algebras.

pbw:=(exp)«
_—
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Formal exponential maps ordinary manifolds

Geodesic exponential map and PBW isomorphism

m Choose an affine connection V on smooth manifold M.

mexp: Ty — M x M (bundle map)
defined by exp(Xp) = (m,~(1)) where « is the smooth path in M
satisfying 4(0) = X and V455 =0

m ['(5(Ty)) seen as space of differential operators on Ty, all
derivatives in the direction of the fibers, evaluated along the zero
section of Ty

m D(M) seen as space of differential operators on M x M, all
derivatives in the direction of the fibers, evaluated along the diagonal
section M — M x M

m map induced by exp on fiberwise differential operators:
pbw := (exp). : I'(S(Tp)) — D(M) is an isomorphism of left
modules over C*°(M) called Poincaré-Birkhoff-Witt isomorphism
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Formal exponential maps ordinary manifolds

pbw as infinite jet of exp

The Taylor series of the composition
ToM —2 o Imyx M —— R

at the point 0, € T,,M is

S L (pbw(@)F)(m) -y € S(TyM),
Jeny

where

® (Xi)ig(1,..,n} are local coordinates on M

[ (yj)je{l?_“,,,} induced local frame of T, regarded as fiberwise linear
functions on Ty

Hence pbw is the fiberwise infinite jet of the bundle map
exp: Ty — M x M along the zero section of Ty, — M.
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Formal exponential maps ordinary manifolds

Algebraic characterization of pbw

Theorem (Laurent-Gengoux, S, Xu, 2014):  This map

T(STw) 2% D(M)
is the unique isomorphism of left C°°(M)-modules satisfying

pbw(f)=f, Vfe C(M);
pbw(X) =X, VX e X(M);
pbw(X™1!) = X - pbw(X") — pbw(VxX"), VneN.

Equivalently, for all n € N and X, ..., X, € X(M), we have

Pw(Xo @+ © ) = 7k 3 {Xi pbw(X14) — pbw (Vo (X1) }
k=0

where X = X0 0+ O X1 © Xiy1 @ --- © X,
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Formal exponential maps ordinary manifolds

Example:
m M = G (Lie group)
m Let XL € X(G) denote the left invariant vector field associated with a
vector X € g in the Lie algebra.

m Consider the torsion-free connection V defined by
1
Vi Yh = 51X YI* vX,Y eq.

m The associated formal exponential map is

pPbw(X1 © -+ © Xp) ,,'Z o0 Xa(n):
O'GSn
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Formal exponential maps ordinary manifolds

Both I'(S(Twn)) and D(M) are left coalgebras over C>°(M).
Comultiplication by deconcatenation in both I'(S(Ty)) and D(M):

A Xn) = 1@ (X1 Xn)
+ Y > Xy X)) @ Xo(prny -+ Xo(m)

p+q= "066‘7
p,qEN

+ (X1 X)) ®1

for all X1,...,X, € X(M).

Proposition: pbw : I'(S(Ty)) — D(M) is an isomorphism of coalgebras
over C*(M).
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Formal exponential maps ordinary manifolds

m pbw ' : D(M) — T(S(Ty)) takes a differential operator to its
complete symbol

m both I'(5(Ty)) and D(M) are bi-algebroids
m pbw preserves comultiplication but does not respect multiplication

m Unlike exp, the formal exponential map pbw can be evaluated

(recursively) without resorting to points of M and geodesic curves of
V.
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Formal exponential maps ~ graded manifolds

Formal exponential maps on graded manifolds

WHAT ABOUT REPLACING THE SMOOTH
MANIFOLD M BY A DIFFERENTIAL GRADED
MANIFOLD M?
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Formal exponential maps graded manifolds
Definition (Liao, Mehta, S, Xu): Let M be a graded manifold. The
formal exponential map associated to an affine connection V on M is the
morphism of left C°°(M)-modules

pbw : T'(5(Tpm)) = D(M),
inductively defined by the relations

pbw(f) =f  Vfe C®(M),
pbw(X) =X VX eT(Tm),

and, for all n € N and homogeneous X, ..., X, € I'(Tr),

Pbw(Xo @ O Xp) = 747 Y e {Xk - pbw (X)) — pbw (Vx, XK} }
k=0

m e = (—1)PXK(Xol X))

n X =X0 00X 10X10--- 0O X,
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Formal exponential maps ~ graded manifolds

Proposition (Liao, S):  The formal exponential map
pbw : ['(S*(Tum)) — DK(M)

is a well defined isomorphism of filtered coalgebras over C*°(M).
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Formal exponential maps  differential graded manifolds

Formal exponential map on diff’l graded manifolds

Given a dg manifold (M, Q),
we get two induced differential graded coalgebras:

= (I'(5(Tm))s La)
m (DM), Lo :=[Q,~])

Question: When is

(D(S(Tar))s L) B25 (D(M), Lg)

an isomorphism of differential graded coalgebras?
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Formal exponential maps  differential graded manifolds

Theorem (Seol, S, Xu):  The Atiyah class (a4 q) vanishes if and only
if there exists a torsion-free affine connection V on M such that

pbw : (T(5(Trm)), Lo) = (P(M), Lg)

is an isomorphism of differential graded coalgebras over C*°(M).
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Formal exp’l on dg manifold and Kapranov's L [1] algebra

Formal exponential map on a dg mfd and Kapranov's L[1] algebra
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Formal exp’l on dg manifold and Kapranov's L [1] algebra

In general, the failure of pbw to preserve the dg structure is measured by

(pbw) 'oLgopbw—Lg =) Rk
k=0

where Ry € T'(Hom(S*(Tq), Taq)) are sections of degree +1.
Ry=0, Ri=0Ry=—AtY
Theorem (Seol, S, Xu):
The Ry for k > 2, together with Lo induce an L[1] algebra on the
space of vector fields X(M).
The Ry for k > 2 are completely determined by the Atiyah cocycle
AtY, the curvature RV, and their exterior derivatives.
In particular, if the curvature vanishes (i.e. RY = 0), then

Ry=—AtY, Rny1=17d R, forn>2
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Formal exp’l on dg manifold and Kapranov's L [1] algebra

Theorem (Seol, S, Xu):
m Given a Kahler manifold X,
B (M,Q)=(T 01[1},5) is a dg manifold
mand X(M) = %(Tg’][l}) admits an L [1] algebra structure.

m There is an L [1] quasi-isomorphism

Loo[1] quasi iso.

(X(Tx' 1), {R}) QO (T"), A

Moreover, our L [1] algebra structure on %(Tg’l[l]) can be transferred to
Kapranov's L.[1] algebra structure on QO”(T}(’O).
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THANK YOU
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