L_{∞} extensions for the Poisson algebra of a symplectic manifold

Leonid Ryvkin

j.w. Bas Janssens and Cornelia Vizman

References

- Janssens, Ryvkin, Vizman: The L_{∞}-algebra of a symplectic manifold
- Janssens, Vizman : Central extensions of Lie algebras of symplectic and divergence free vector fields, 2016.
- Barnich, Fulp, Lada, Stasheff : The sh Lie structure of Poisson brackets in field theory, 1998.
- Brylinski : A differential complex for Poisson manifolds, 1988.
- Loday, Vallette. Algebraic operads, 2012.
- Rogers : L_{∞}-algebras from multisymplectic geometry, 2012.

The Problem

Theorem (JV)

Let (M, ω) be symplectic. Then the universal central extension of the Fréchet Lie algebra $\mathfrak{X}_{\text {Ham }}(M, \omega)$ of Hamiltonian vector fields is given by

$$
\frac{\Omega^{1}(M)}{\delta \Omega^{2}(M)}
$$

where $\delta= \pm *_{\omega} d *_{\omega}$ is the Poisson homology differential.

And when we see a Lie algebra on cohomology ... we can not avoid looking for an L_{∞} algebra on the complex.

Question

Is there an according L_{∞}-algebra on $\left(\Omega^{\geq 1}(M), \delta\right)$, and if yes how does it look?

L_{∞}-algebras

Example : The Observable algebra of a multisymplectic manifold

Operators in (symplectic) Poisson homology

The L_{∞}-algebra of a symplectic manifold

What is an L_{∞}-algebra?

Definition : L_{∞}-algebra

L_{i}, I_{i}, with $\left\{L_{i}\right\}=L_{\bullet}$ graded vector space and $I_{i}: \Lambda^{i} L_{\bullet} \rightarrow L_{\bullet}$,
$i \geq 1$ of degrees $2-i$, such that

$$
\begin{aligned}
& \quad 0=\sum_{\substack{i+j, n+1 \\
\sigma \in u s h(i, n-i)}} \pm I_{j}\left(l_{i}\left(x_{\sigma(1)}, \ldots, x_{\sigma(i)}\right), x_{\sigma(i+1)} \ldots, x_{\sigma(n)}\right) \\
& \pm=(-1)^{i(j+1)} \operatorname{sgn}(\sigma) \epsilon(\sigma ; x)
\end{aligned}
$$

- generalization of differential graded Lie algebras
- Q-manifolds over a point
- graded coderivations squaring to zero
- Lie algebras up to homotopy

The transfer theorem

Transfer Theorem (LV)

Let L_{\bullet} be an L_{∞}-algebra and $f: L_{\bullet} \rightarrow R_{\bullet}$ a quasi-isomorphism of complexes. Then there is an L_{∞}-algebra structure on R_{\bullet} and an L_{∞}-morphism $F: L_{\bullet} \rightarrow R_{\bullet}$ refining f.

Theorem (BFLS)

Let $L_{\text {. }}=\left(\ldots \rightarrow L_{1} \rightarrow L_{0} \rightarrow \mathcal{F}\right)$ be a resolution of the Lie algebra \mathcal{F}.

- A skew-symmetric $I_{2}: L_{0} \times L_{0} \rightarrow L_{0}$ covering the Lie bracket on \mathcal{F} can be extended to an L_{∞}-algebra structure on $L_{\text {. }}$.
- If I_{2} is zero on boundaries, then the structure can be chosen such that I_{i} are non-zero only on L_{0}.

This still can work when the complexes are not trival cohomologically.

The multisymplectic L_{∞}-algebra

Theorem (Rogers)

Let (M, ω) be multisymplectic of degree $k+1$. The following forms an L_{∞}-algebra :

- $L_{0}=\left\{\alpha \mid \exists X_{\alpha} \in \mathfrak{X}(M): d \alpha=-\iota_{X_{\alpha}} \omega\right\} \subset \Omega^{k-1}(M)$
- $L_{-i}=\Omega^{k+1-i}(M)$ for $i>1$.
- $I_{1}=d$
- For $i>1, I_{i}: \bigwedge^{i} L_{0} \rightarrow L_{2-i}$,
$I_{i}\left(\alpha_{1}, \ldots, \alpha_{i}\right)=-(-1)^{\frac{i(i+1)}{2}} \omega\left(X_{\alpha_{1}}, \ldots, X_{\alpha_{i}}, \cdot, \cdots, \cdot\right)$
This algebra has a very specific type :
- The complex L is degree-bounded in between 0 and $-k+1$.
- Except for I_{1}, only bracket starting in $\Lambda^{i} L_{0}$ are non-trivial.
- The equations boil down to $I_{1} \circ I_{i+1}=I_{i} \circ \partial_{I_{2}}$.

Operators for the Poisson homology of a symplectic manifold

 Let M, ω be symplectic of dimension $2 n$, then there are the following operators on the de Rham complex$$
L:=\omega \wedge, \quad \Lambda:=\iota_{\pi}, \quad H:=(n-\operatorname{deg}(\cdot)) .
$$

Then we have, for $\delta=[\Lambda, d]$

$$
\begin{array}{rrr}
{[\Lambda, L]=H} & {[H, \Lambda]=2 \Lambda} & {[H, L]=-2 L} \\
{[L, d]=0} & {[\Lambda, d]=\delta} & {[H, d]=-d} \\
{[\Lambda, \delta]=0} & {[L, \delta]=d} & {[H, \delta]=\delta}
\end{array}
$$

Universal central extension formulas :

$$
\begin{gathered}
p: \frac{\Omega^{1}(M)}{\delta \Omega^{2}(M)} \rightarrow \mathfrak{X}_{H a m}(M), p(\alpha)=X_{\delta \alpha} \\
{[\alpha, \beta]:=(\delta \alpha d \delta \beta)}
\end{gathered}
$$

First steps to the solution

- BFLS implies that it suffices to find maps $\tilde{I}_{k}: \Lambda^{k} C^{\infty}(M) \rightarrow \Omega^{k-1}(M)$ such that $\tilde{I}_{k} \circ \partial_{\{\cdot,\}}=\delta \tilde{I}_{k+1}$.
- Very naive approach : $m_{k}: \bigotimes^{k} C^{\infty}(M) \rightarrow \Omega^{k-1}(M)$, given by $m_{k}\left(f_{1}, \ldots, f_{k}\right)=f_{1} d f_{2} \wedge \ldots \wedge d f_{k}$
- Naive approach: Alt $\left(m_{k}\right)=\Lambda^{k} C^{\infty}(M) \rightarrow \Omega^{k-1}(M)$

$$
\operatorname{Alt}\left(m_{k}\right)\left(f_{1}, \ldots, f_{k}\right)=\frac{1}{k} \sum_{i=1}^{k}(-1)^{i+1} f_{i} d f_{1} \wedge \ldots . . \widehat{d f}_{i} \ldots \wedge d f_{k}
$$

Problem :

$$
A / t\left(m_{k}\right) \circ \partial_{\{\cdot,\}}=\left(-\delta+\frac{1}{k} d \Lambda\right) A / t\left(m_{k+1}\right)
$$

Repairing the lower degrees

$$
\begin{aligned}
m_{2} \circ \partial_{\{\cdot, \cdot\}} & =\left(-\delta+\frac{1}{2} d \Lambda\right) A l t\left(m_{3}\right) \\
& =\left(-\delta-\frac{1}{2} \delta L \Lambda\right) A / t\left(m_{3}\right)=\delta \circ\left(-i d-\frac{1}{2} L \Lambda\right) A / t\left(m_{3}\right)
\end{aligned}
$$

So we can set

$$
\tilde{I}_{3}=\left(-i d-\frac{1}{2} L \Lambda\right) A l t\left(m_{3}\right) .
$$

We go on calculating

$$
\begin{aligned}
\tilde{I}_{3} \circ \partial_{C E} & =\left(-i d-\frac{1}{2} L \Lambda\right) \circ A l t\left(m_{3}\right) \circ \partial_{C E} \\
& =\ldots=\left(\delta+\frac{1}{2} \delta L \Lambda-\frac{1}{6} \delta L \Lambda\right) A l t\left(m_{4}\right)=\delta\left(i d+\frac{1}{3} L \Lambda\right) A l t\left(m_{4}\right)
\end{aligned}
$$

Hence, we can set

$$
\tilde{I}_{4}=\left(i d+\frac{1}{3} L \Lambda\right) A l t\left(m_{4}\right)
$$

Repairing the lower degrees (2)

- Less naive approach: $\tilde{I}_{k}= \pm\left(i d+\frac{1}{k-1} L \Lambda\right) A l t\left(m_{k}\right)$

However,

$$
\begin{gathered}
\tilde{I}_{4} \circ \partial_{C E}=\delta\left(-i d-\frac{1}{4} L \Lambda-\frac{1}{24} L^{2} \Lambda^{2}\right) A I t\left(m_{5}\right) \\
\tilde{L}_{5} \circ \partial_{C E}=\delta\left(i d+\frac{1}{5} L \Lambda+\frac{1}{40} L^{2} \Lambda^{2}\right) A / t\left(m_{6}\right)
\end{gathered}
$$

But

$$
\tilde{I}_{7}=-\left(i d+\frac{1}{6} L \Lambda+\frac{1}{60} L^{2} \Lambda^{2}+\frac{1}{\text { something }} L^{3} \Lambda^{3}\right) A l t\left(m_{7}\right)
$$

The solution

We set

$$
\tilde{I}_{k}=(-1)^{k}\left(\sum_{l \geq 0} a_{k}^{\prime} L^{\prime} \Lambda^{\prime}\right) \operatorname{Alt}\left(m_{k}\right)
$$

with

$$
a_{k}^{\prime}=\frac{(k-I-1)!}{(k-1)!!!}
$$

Theorem (JRV)

The brackets $I_{k}=\tilde{I}_{k} \circ \delta_{*}: \Lambda^{k} \Omega^{1}(M) \rightarrow \Omega^{k-1}(M)$ together with δ define an L_{∞}-algebra, L_{0}, such that the natural map $L_{\bullet} \rightarrow \frac{\Omega^{1}(M)}{\delta \Omega^{2}(M)}$ is an L_{∞}-homomorphism.

Thank you a lot for your attention!

