NONCOMMUTATIVE GEOMETRY AND HIGHER STRUCTURES

Scalea (ITALY) — 6-10 June 2022

MULTIPARAMETER QUANTUM GROUPS: A UNIFORM APPROACH

- 6 June 2022 -

Fabio GAVARINI

Università degli Studi di Roma "Tor Vergata"

arXiv:2203.11023 [math.QA] (2022)

joint with Gastón Andrés GARCÍA (UN La Plata / CMaLP–CONICET)

1 – PRELIMINARIES (what's known)

— UNIPARAMETER QUANTUM GROUPS —

Our "quantum groups" are $\ensuremath{\textbf{QUEA}}\xspace's$

We look at semisimple Lie algebras, Kac-Moody algebras and their kin — therefore we FIX the following

Cartan data

- $A := (a_{i,j})_{i,j \in I} =$ a generalized symmetrizable Cartan matrix, n := |I|
- $D := diag(d_i)_{i \in I}$ diagonal matrix with "minimal" integral entries such that DA is symmetric
- $\mathfrak{h} :=$ "Cartan subalgebra" attached with A, $t := rk(\mathfrak{h})$
- simple roots $\alpha_i \in \mathfrak{h}^*$ $(i \in I)$ & simple coroots $H_i \in \mathfrak{h}$ $(i \in I)$
- $\mathfrak{g} :=$ the **Kac-Moody algebra** associated with A and \mathfrak{h}

Drinfeld's (formal) QUEA

Def.: $U_{\hbar}(\mathfrak{g}) := \hbar$ -complete Hopf algebra over $\Bbbk[[\hbar]]$ with GENERATORS: $H (\in \mathfrak{h}), E_i (i \in I), F_i (i \in I)$ RELATIONS: $\forall H, H', H'' \in \mathfrak{h}, i, j \in I, i \neq j$ H' H'' = H'' H', $E_i F_j - F_j E_i = \delta_{i,j} \frac{e^{+\hbar d_i H_i} - e^{-\hbar d_i H_i}}{e^{+\hbar d_i} - e^{-\hbar d_i}}$ $HE_i - E_iH = +\alpha_i(H)E_i$, $HF_i - F_iH = -\alpha_i(H)F_i$ $\sum_{\ell=0}^{n-2} (-1)^{\ell} \begin{bmatrix} 1-a_{ij} \\ \ell \end{bmatrix}_{e^{-hd_i}} E_i^{1-a_{ij}-\ell} E_j E_i^{\ell} = 0$ $\sum_{i=1}^{1-a_{ij}} (-1)^{\ell} \begin{bmatrix} 1-a_{ij} \\ \ell \end{bmatrix}_{e^{+\hbar d_i}} F_i^{1-a_{ij}-\ell} F_j F_i^{\ell} = 0$ HOPF STRUCTURE ($\forall H \in \mathfrak{h}, i \in I$): $\Delta(H) = H \otimes 1 + 1 \otimes H$ $\Delta(E_i) = E_i \otimes 1 + e^{+\hbar d_i H_i} \otimes E_i \quad \Delta(F_i) = F_i \otimes e^{-\hbar d_i H_i} + 1 \otimes F_i$

— FROM "UNI-" TO "MULTI-" —

Multiparameter QUEA — both "formal" and "polynomial" — were introduced by adding new "discrete" parameters to a 1-parameter QUEA.

Formal (Reshetikhin): For any $\Psi := (\psi_{gk})_{g,k=1,...,t} \in \mathfrak{so}_t(\mathbb{k}[[\hbar]])$, \mathfrak{g} of *finite type*, there is a **(formal) multiparameter QUEA**, say $U_{\hbar}^{\Psi}(\mathfrak{g})$, s.t.

(a) as an algebra, $U^{\Psi}_{\hbar}(\mathfrak{g})$ is the same as Drinfeld's $U_{\hbar}(\mathfrak{g})$

(b) $U^{\Psi}_{\hbar}(\mathfrak{g})$ has a "deformed" coproduct depending on the ψ_{gk} 's

Polynomial (Andruskiewitsch-Schneider & Al.): For every matrix $\mathbf{q} := (q_{ij})_{i,j \in I} \in M_n(\mathbb{K})$ such that $q_{ij}q_{ji} = q_{ii}^{a_{ij}}$, there exists a (polynomial) multiparameter QUEA, say $\mathbf{U}_{\mathbf{q}}(\mathfrak{g})$, s.t.:

(a) as a coalgebra, $U_q(\mathfrak{g})$ is the same as (the "quantum double version" of) Jimbo-Lusztig's (polynomial) QUEA, denoted $U_{\check{q}}(\mathfrak{g})$

(b) $\mathbf{U}_{\mathbf{q}}(\mathfrak{g})$ has a "deformed" product depending on the q_{ij} 's

– DEFORMATION TECHNIQUES –

Definition: for every Hopf algebra *H*, we call: (*T*) *twist* of *H* any $\mathcal{F} \in H \otimes H$ such that: (*T*.1) \mathcal{F} is invertible -(T.2) $(\epsilon \otimes id)(\mathcal{F}) = 1 = (id \otimes \epsilon)(\mathcal{F})$ (*T*.3) $(\mathcal{F} \otimes 1) \cdot (\Delta \otimes id)(\mathcal{F}) = (1 \otimes \mathcal{F}) \cdot (id \otimes \Delta)(\mathcal{F})$ (*C*) **2-cocycle** of *H* any $\sigma \in (H \otimes H)^*$ such that $(\forall a, b, c \in H)$: (*C*.1) σ is (convolution-)invertible -(C.2) $\sigma(a, 1) = \epsilon(a) = \sigma(1, a)$ (*C*.3) $\sigma(b_{(1)}, c_{(1)}) \cdot \sigma(a, b_{(2)} c_{(2)}) = \sigma(a_{(1)}, b_{(1)}) \cdot \sigma(a_{(2)} b_{(2)}, c)$

<u>Remarks</u>: these notions are dual to each other...

FACT: (deformations by twist / 2-cocycle) Let H, \mathcal{F} , σ be as above: (def.T- \mathcal{F}) the algebra H turns into a new Hopf algebra $H^{\mathcal{F}}$ with new coproduct $\Delta^{\mathcal{F}} := \mathcal{F} \cdot \Delta(-) \cdot \mathcal{F}^{-1}$

 $(\underline{def.C-\sigma})$ the coalgebra H turns into a new Hopf algebra H_{σ} with new product $m_{\sigma} := \sigma * m * \sigma^{-1}$

This gives a link between *multiparameter* QUEA's and *uniparameter* ones:

FACT: (<u>formal case</u>) for every $\Psi := (\psi_{ij})_{i,j=1,...,t} \in \mathfrak{so}_t(\mathbb{k}[[\hbar]])$, there exists a suitable twist \mathcal{F}_{Ψ} of $U_{\hbar}(\mathfrak{g})$ such that $U_{\hbar}^{\Psi}(\mathfrak{g}) = (U_{\hbar}(\mathfrak{g}))^{\mathcal{F}_{\Psi}}$

 $(\underline{polynomial\ case})$ for every $\mathbf{q} := (q_{ij})_{i,j\in I} \in M_n(\mathbb{K})$ such that $q_{ij}q_{ji} = q_{ii}^{a_{ij}}$, there exists a suitable 2-cocycle $\sigma_{\mathbf{q}}$ of $\mathbf{U}_{\check{\mathbf{q}}}(\mathfrak{g})$ — where $\check{\mathbf{q}}$ is the "standard" multiparameter — such that $\mathbf{U}_{\mathbf{q}}(\mathfrak{g}) = (\mathbf{U}_{\check{\mathbf{q}}}(\mathfrak{g}))_{\sigma_{\mathbf{q}}}$

In a nutshell: Any **multiparameter** QUEA (in the sense of Reshetikhin, resp. of Andruskiewitsch-Schneider) is a **deformation** of a **uniparameter** QUEA by twist, resp. by 2-cocycle,

in short

multiparameter QUEA = deformation of uniparameter QUEA

2 – A UNIFYING APPROACH (what's new!)

Main Goal: find a notion of MpQUEA encompassing $U_{\hbar}^{\Psi}(\mathfrak{g})$'s and $U_{\mathbf{q}}(\mathfrak{g})$'s **Results:** (1) we do find such a good notion of MpQUEA $U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g})$ (2) the family of all $U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g})$'s is stable under deformations (3) semiclassical limit yields lots of multiparameter Lie bialgebras

Definition: Fix $P = (p_{ij})_{i,j \in I} \in M_n(\Bbbk[[\hbar]])$ s.t. $P + P^t = 2DA$. We define *realization* of P any triple $\mathcal{R} := (\mathfrak{h}, \Pi, \Pi^{\vee})$ such that

$$- \mathfrak{h}$$
 is a free module of finite rank over $\Bbbk[[\hbar]]$

- $\Pi := \{ \alpha_i \}_{i \in I} \subseteq \mathfrak{h}^*$ (the set of simple "roots")
- $\Pi^{\vee} := \{ T_i^+, T_i^- \}_{i \in I} \subseteq \mathfrak{h} \qquad \text{(the set of simple "coroots")}$

$$- \alpha_j(T_i^+) = p_{ij} \quad \& \quad \alpha_j(T_i^-) = p_{ji} \quad \text{for all } i, j \in I$$

— (...some extra technicalities...)

N.B.: realizations of *P* naturally form a category.

DEFINITION 1 / THEOREM 1: (cf. [GaGa2], 2022) For $P = (p_{ij})_{i,i \in I}$ and a realization $\mathcal{R} := (\mathfrak{h}, \Pi, \Pi^{\vee})$ as above, we set $U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g}) := \hbar$ -adically complete unital associative $\Bbbk[[\hbar]]$ -algebra with <u>GENERATORS</u>: $T (\in \mathfrak{h}), E_i (i \in I), F_i (i \in I)$ <u>**RELATIONS</u>** (\forall T, T', T" \in \mathfrak{h} , $i, j \in I$, $i \neq j$):</u> T' T'' = T'' T', $E_i F_j - F_j E_i = \delta_{i,j} \frac{e^{+\hbar T_i^+} - e^{-\hbar T_i^-}}{e^{+\hbar d_i} - e^{-\hbar d_i}}$ $T E_i - E_i T = +\alpha_i(T) E_i$, $T F_i - F_i T = -\alpha_i(T) F_i$ $\sum_{\ell=0}^{1-a_{ij}} (-1)^{\ell} \begin{bmatrix} 1-a_{ij} \\ \ell \end{bmatrix}_{a^{+h\ell i}} e^{+\hbar\ell(p_{ij}-p_{ji})/2} X_i^{1-a_{ij}-\ell} X_j X_i^{\ell} = 0 \ , \quad X \in \{E,F\}$ HOPF STRUCTURE ($\forall T \in \mathfrak{h}, i \in I$): $\Delta(T) = T \otimes 1 + 1 \otimes T$ $\Delta(E_i) = E_i \otimes 1 + e^{+\hbar T_i^+} \otimes E_i$, $\Delta(F_i) = F_i \otimes e^{-\hbar T_i^-} + 1 \otimes F_i$

N.B.: I wrote "Theorem" because we must prove that the given coproduct (etc.) is well defined indeed (plus details)!

What about **PROOF(S)**???

We can provide **four** proofs, independent of each other.

1st proof: adapts the usual proofs for Drinfeld's $U_{\hbar}(\mathfrak{g})$

<u>2nd proof</u>: reduces to \mathcal{R} of special form and then relies on the existence on Hopf structure for A-S's (polynomial) MpQUEA $U_q(\mathfrak{g})$

3rd proof: provides an alternative construction of $U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g})$ as a *Drinfeld's double* of suitable (formal) multiparameter quantum Borel (sub)algebras, endowed with a suitable Hopf structure

4th proof: is deduced (by "reverse engineering") from the stability under deformations of our whole family of MpQUEA's

3 – STABILITY by DEFORMATIONS

Definition: (*T*) Fix a basis $\{H_g\}_{g,k=1,...,t}$ of \mathfrak{h} , $t := rk(\mathfrak{h})$; for every $\Phi = (\phi_{gk})_{g,k=1,...,t} \in \mathfrak{so}_t(\mathbb{k}[[\hbar]])$, we call "toral" twist of $U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g})$ the element $\mathcal{F}_{\Phi} := \exp\left(\hbar \sum_{g,k=1}^t \phi_{gk} H_g \otimes H_k\right)$ (*C*) Fix $\chi \in (\mathfrak{h} \wedge \mathfrak{h})^*$ s.t. $\chi(T_i^+ + T_i^-, -) = 0 = \chi(-, T_i^+ + T_i^-)$: it extends trivially to a 2-cocycle of $U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g})$. Then $\sigma_{\chi} := \exp_*(\hbar^{-1}\chi)$ is a $\mathbb{k}((\hbar))$ -valued 2-cocycle of $U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g})$, that we call "toral" 2-cocycle.

THEOREM 2: (stability for toral deformations — cf. [GaGa2])

There is a matrix $P_{(\chi)}$, resp. P_{Φ} , a realization $\mathcal{R}_{\Phi} = (\mathfrak{h}, \Pi_{\Phi} = \Pi, \Pi_{\Phi}^{\vee})$, resp. $\mathcal{R}_{(\chi)} = (\mathfrak{h}, \Pi_{(\chi)}, \Pi_{(\chi)}^{\vee} = \Pi^{\vee})$, of it and an explicit isomorphism $(U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g}))_{\sigma_{\chi}} \cong U_{P_{(\chi)},\hbar}^{\mathcal{R}_{(\chi)}}(\mathfrak{g})$, resp. $(U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g}))^{\mathcal{F}_{\Phi}} \cong U_{P_{\Phi},\hbar}^{\mathcal{R}_{\Phi}}(\mathfrak{g})$ In particular, every deformation by toral twist, resp. by toral 2-cocycle, of a FoMpQUEA is again another FoMpQUEA.

— PROOF —

- for (toral) 2-cocycles: not surprising, just needs careful computations...

- for (toral) twists: it exploits a key idea, which goes as follows:

(1) for the algebra structure alone we have $(U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g}))^{\mathcal{F}_{\Phi}} = U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g})$, hence in particular $(U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g}))^{\mathcal{F}_{\Phi}}$ has the same generators as $U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g})$

(2) the generators T, E_i and F_i of $(U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g}))^{\mathcal{F}_{\Phi}}$ are primitive (the T's) or (h, k)-skew-primitive (the E_i 's and F_i 's) for the new coproduct $\Delta^{\mathcal{F}_{\Phi}}$

(3) computations along with (2) show that $(U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g}))^{\mathcal{F}_{\Phi}}$ and $U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g})$ have similar coradical filtration and same associated graded Hopf algebra

(4) by (1-3) we can modify the (h, k)-skew-primitive generators E_i and F_i into new generators E_i^{Φ} and F_i^{Φ} that are (h', k')-skew-primitive with h' = 1 or k' = 1, as it is for the E_i 's and the F_i 's in any FoMpQUEA

(5) the new generators T, E_i^{Φ} and F_i^{Φ} obey the relations that rule $U_{P_{\Phi},\hbar}^{\mathcal{R}_{\Phi}}(\mathfrak{g})$, with a simultaneous choice of suitable new "(simple) coroots"

So an isomorphism $(U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g}))^{\mathcal{F}_{\Phi}} \stackrel{\cong}{\longleftrightarrow} U_{P_{\Phi},\hbar}^{\mathcal{R}_{\Phi}}(\mathfrak{g})$ is defined by mapping the generators of $U_{P_{\Phi},\hbar}^{\mathcal{R}_{\Phi}}(\mathfrak{g})$ onto the *new* generators of $(U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g}))^{\mathcal{F}_{\Phi}}$

In short, the isomorphism $(U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g}))^{\mathcal{F}_{\Phi}} \cong U_{P_{\Phi},\hbar}^{\mathcal{R}_{\Phi}}(\mathfrak{g})$ boils down to a change of presentation for $(U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g}))^{\mathcal{F}_{\Phi}}$

induced by a change of generators and a change of "(simple) coroots"

🔶 <u>REMARKS</u> 🍣

(1) Our FoMpQUEA $U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g})$ is defined by letting

- the algebra structure depend on the parameters p_{ij}
- the coalgebra structure be kept fixed

Applying a toral 2-cocycle deformation amounts to modifying the p_{ij} 's. Instead, applying a toral *twist* deformation by \mathcal{F}_{Φ} , we get

- the algebra structure (is the same, so) depends on the p_{ij} 's
- the *coalgebra* structure depends on the ϕ_{gk} 's

so the final object is described via a double multiparameter $(P | \Phi)$.

Nonetheless, Theorem 2 proves that, instead of $(P | \Phi)$, a "single" (deformed) multiparameter P_{Φ} is enough.

(2) The "standard" FoMpQUEA (with P := DA) is the double "lift" of Drinfeld's $U_{\hbar}(\mathfrak{g})$. Under mild assumptions on \mathcal{R} , Theorems 2 implies

— every $U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g})$ is a **2-cocycle deform.** of the "standard" FoMpQUEA

 $\implies U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g})$ admits a "fully polarized" presentation with "discrete" parameters that rule the algebra structure, whereas the coalgebra structure is constant ("à la <u>Andruskiewitsch-Schneider</u>"),

- every $U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g})$ is a **twist deformation** of the "standard" FoMpQUEA $\implies U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g})$ admits a "fully polarized" presentation with "discrete" parameters that rule the coalgebra structure, whereas the algebra structure is constant ("à la <u>Reshetikhin</u>").

N.B.: we *chose* to define our notion of FoMpQUEA with a presentation of the *first* type, but the other option is available as well

4 – MULTIPARAMETER LIE BIALGEBRAS

Plan: we introduce Lie bialgebras with common "socle" the Manin double "lift" of a Kac-Moody algebra, with Lie coalgebra structure by Sklyanin-Drinfeld and Lie algebra structure depending on some parameters.

DEFINITION 2 / THEOREM 3: (cf. [GaGa2], 2022) Fix $P = (p_{ij})_{i, j \in I}$ and a realization $\mathcal{R} := (\mathfrak{h}, \Pi, \Pi^{\vee})$ as before. We set $\mathfrak{g}_{P}^{\mathcal{R}}$:= Lie algebra over \Bbbk with generators $T (\in \mathfrak{h})$, $E_{i} (i \in I)$, F_i ($i \in I$) and relations ($\forall T, T', T'' \in \mathfrak{h}, i, j, t \in I, i \neq t$) [T', T''] = 0, $[T, E_i] = +\alpha_i(T)E_i$, $[T, F_i] = -\alpha_i(T)F_i$ $(ad(Z_i))^{1-a_{ij}}(Z_j) = 0 \quad (Z \in \{E, F\}), \qquad [E_i, F_j] = \delta_{ij} \frac{T_i^+ + T_i^-}{2d_i}$ Then there exists a unique Lie bialgebra structure on $\mathfrak{g}_{P}^{\mathcal{R}}$ with Lie cobracket $\delta(T) = 0$, $\delta(E_i) = 2T_i^+ \wedge E_i$, $\delta(F_i) = 2T_i^- \wedge F_i$ ($\forall T, i$)

PROOF(S)??? We have three proofs, independent of each other!

<u>1st proof</u>: we provide an alternative construction of $\mathfrak{g}_{P}^{\mathcal{R}}$ itself (after reducing to special \mathcal{R}) as a *Manin's double* of multiparameter Borel (sub)algebras $\mathfrak{b}_{+,P}^{\mathcal{R}}$ and $\mathfrak{b}_{-,P}^{\mathcal{R}}$, endowed with a Lie bialgebra structure

2nd proof: another proof is deduced *a posteriori* — by "reverse engineering" — from the *stability under deformations* (see later!)

3rd proof: again a posteriori, another proof comes for free once we realize that $U(\mathfrak{g}_{P}^{\mathcal{R}})$ is nothing but the semiclassical limit of $U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g})$

Long story short, the following holds (with **Proof** by direct inspection):

THEOREM 4: (MpLbA's as semiclassical limits — cf. [GaGa2])

The specialization of $U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g})$ at $\hbar = 0$ is nothing but $U(\mathfrak{g}_{P}^{\mathcal{R}})$. In other words, $U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g})$ is a quantization of $U(\mathfrak{g}_{P}^{\mathcal{R}})$.

N.B.: indeed, the story went the other way round: computing the semiclassical limit of $U_{P,\hbar}^{\mathcal{R}}(\mathfrak{g})$ lead us to the description of the Lie bialgebra $\mathfrak{g}_{P}^{\mathcal{R}}$

STABILITY by (toral) DEFORMATIONS

Definition: for every Lie bialgebra \mathfrak{g} , we call:

(7) twist of g any
$$c \in g \otimes g$$
 such that
 $\operatorname{ad}_{x}((id \otimes \delta)(c) + c.p. + \llbracket c, c \rrbracket) = 0$, $\operatorname{ad}_{x}(c + c_{2,1}) = 0$ $\forall x \in g$
(C) 2-cocycle of g any $\gamma \in (g \otimes g)^{*}$ such that
 $\operatorname{ad}_{\psi}(\partial_{*}(\gamma) + \llbracket \gamma, \gamma \rrbracket_{*}) = 0$, $\operatorname{ad}_{\psi}(\gamma + \gamma_{2,1}) = 0$ $\forall \psi \in g^{*}$
where $\llbracket r, s \rrbracket := [r_{1,2}, s_{1,3}] + [r_{1,2}, s_{2,3}] + [r_{1,3}, s_{2,3}]$ for any $r, s \in g \land g$

These gadgets are used to define *deformations*:

FACT: (deformations by twist / 2-cocycle) For every \mathfrak{g} , c and γ as above, (def.T-c) the Lie algebra \mathfrak{g} turns into a new Lie bialgebra \mathfrak{g}^c with $\delta^c := \delta - \partial(c)$, i.e. $\delta^c(x) := \delta(x) - \operatorname{ad}_x(c) \quad \forall x \in \mathfrak{g}$ (def.C- γ) the Lie coalgebra \mathfrak{g} turns into a new Lie bialgebra \mathfrak{g}_{γ} with $[x,y]_{\gamma} := [x,y] + \gamma(x_{[1]},y) x_{[2]} - \gamma(y_{[1]},x) y_{[2]} \quad \forall x,y \in \mathfrak{g}$ For MpLbA's, we consider a special type of "toral" twists & 2-cocycles:

Definition: ("toral" twists & 2-cocycles for MpLbA's)

(7) For each $\Phi = (\phi_{gk})_{g,k=1,...,t} \in \mathfrak{so}_t(\mathbb{k}[[\hbar]])$, the element $c_{\Phi} := \sum_{g,k=1}^t \phi_{gk} H_g \otimes H_k$ is a *twist* of $\mathfrak{g}_P^{\mathcal{R}}$, that we call "*toral*" *twist* (C) Any $\chi \in (\mathfrak{h} \wedge \mathfrak{h})^*$ s.t. $\chi(T_i^+ + T_i^-, -) = 0 = \chi(-, T_i^+ + T_i^-)$ does extend trivially to a 2-cocycle γ_{χ} of $\mathfrak{g}_P^{\mathcal{R}}$, that we call "*toral*" 2-cocycle

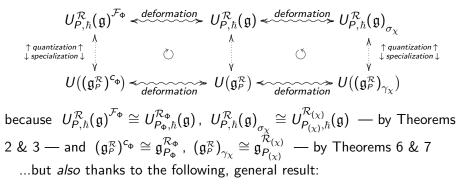
Here is our stability result:

THEOREM 5: (*stability for toral deform.'s* — *cf.* [*GaGa2*])

There exist explicit isomorphisms $(\mathfrak{g}_{P}^{\mathcal{R}})_{\gamma_{\chi}} \cong \mathfrak{g}_{P_{(\chi)}}^{\mathcal{R}_{(\chi)}}$ and $(\mathfrak{g}_{P}^{\mathcal{R}})^{c_{\Phi}} \cong \mathfrak{g}_{P_{\Phi}}^{\mathcal{R}_{\Phi}}$ In particular, every deformation of a MpLbA by a (toral) twist or a (toral) 2-cocycle is again another MpLbA.

5 – SPECIALIZATION vs. DEFORMATION

The following diagram captures the overall picture



THEOREM 6: (cf. [GaGa2], 2022)

For any QUEA $U_{\hbar}(\mathfrak{g})$, every twist / 2-cocycle of the Hopf algebra $U_{\hbar}(\mathfrak{g})$ induces by specialization a twist / 2-cocycle of the Lie bialgebra \mathfrak{g} . Then the process of specialization "commutes" with deformation (of either type)

— REFERENCES —

[AS1] N. Andruskiewitsch, H.-J. Schneider, A characterization of quantum groups, J. Reine Angew. Math. 577 (2004), 81-104 [AS2] N. Andruskiewitsch, H.-J. Schneider, On the classification of finite-dim. pointed Hopf algebras, Ann. Math. 171 (2010), 375-417 [CoVa] M. Costantini, M. Varagnolo, Quantum double and multiparameter quantum groups, Comm. Algebra 22 (1994), no. 15, 6305-6321 [Dri] V. G. Drinfeld, Quantum groups, ICM 1986 1 (1987), 798-820 [GaGa1] G. A. García, F. Gavarini, Twisted deform.'s vs. cocycle [...] groups, Commun. Contemp. Math. 23 (2021), Paper No. 2050084 [GaGa2] G. A. García, F. Gavarini, Formal multipar. quantum groups, deform.'s and specializations, arXiv:2203.11023 [math.QA] (2022) **[Jim]** M. Jimbo, A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), no. 1, 63-69 **[Res]** N. Reshetikhin, Multiparameter quantum groups and twisted quasitriangular Hopf algebras, Lett. Math. Phys. 20 (1990), no. 4, 331–335 [Ros] M. Rosso, Quantum [...] shuffles, Inv. Math. 133 (1998), 399–416