Things we saw yesterday

» A quantum field is (distributional) map from a spacetime
(a globally hyperbolic manifold) into a local field algebra

(M) > f - / o(2) f(z)da

» The (Heisenberg) algebraic structure is provided by the
commutator: a distribution that vanishes at spacelike
separated pairs (x,y)

C(x,y) = [¢(x),d(y)] = —ihE(x,y)



Things we saw yesterday

Let (M,g) a globally hyperbolic manifold In the space of

complex solution of the KG equation [1;¢ + V()¢ = O.
introduce the invariant Peierls aka KG inner product

(f,9) = —i/ZtT $M gdo”

Find a “complete” basis {u;} so that

(u;,uz) = 655, (us,uj) = —0;5, (uzuj) =0

The commutator admits the following expansion

Cla,y) =Y (us(@)wi(y) — us(y)ui(x))

7
It is basis independent (uniqueness)



Things we saw yesterday

» Quantizing is representing the commutation rules in a
Hilbert space

¢(z) — ¢(x) € Op(H)
[p(2), d(y)] = C(z,y) 1y

» Realized by finding any positive two-point functions that
solves the functional relation

W(z,y) —W(y,z) = C(x,y)

» W(x,y) Interpreted as the VEV of the quantum field

W(z,y) = (Wo, (z)d(y)Wo)



Things we saw yesterday

» Saw a family of inequivalent quantizations parametrized
by the temperature 1/p:

(271T)3 fe—z'po(t—s)-l-ip(X—}’) ll—el—ﬁpO] e(p?)6(p2 — m2)dp

» All these fields solve the same Klein-Gordon QFT

ds(x) + m?dg(z) =0

» All these fields have the same commutation rules




Bogoliubov Tranformations



KG fields: standard construction

Let (M,g) a globally hyperbolic manifold. Consider the KG equation

Oy + V(2)¢ = 0. (f.9) =i [ FVugdo”
t
Find a basis {u} so that (u;, u]) = 523, (1, ’17,]) = _5ij7 (u;, ’L_L]) =0

Write the unequal time commutator

Clz,y) =) [ui(z)ui(y) — wi(y)ui ()]
If there are no infrared divergences the two point functions
Wz, y) = ui(z)ui(y) W(y,z) =) ui(y)u(x)

trivially solve the split functional relation C’(aj, y) = W(x, y) — W(y, :E)
and defines a pure state on the field algebra (an irreducible representation).

2
> ()

[Faw i =Y \ [T



Bogoliubov transformation of the
fields

e Can write the field expansion

d(x) = (ui(x)a; + uj (x)a;))
i
The pure state Wi(x,y) = Z u; (x)ui(y)
Can be seen as the expectation value of the field

represented in the vacuum of the annihilation
operators a’s

o(x) = (ui(x)a; +uj(z)a;) @V, >=0

1




Example (again)

Wiz,y) = (Vo, ¢(x)p(0)¥q) = (271T)3 /e—z‘p(as)g(p0>5(p2 —m
1 —iw(z0—yO)4ip(x— d3p
W (z,y) = (271')3/6 (z0—y®)+ip( y)Z

_ p—iwzO4ipx L iwyO—ipy Bp = ZU’Z (CE)’U/Z (y)

J(2m32w \/(2m)32w




Bogoliubov transformations of the
modes

Consider two complete sets of modes
. / .
{’LLZ', ZEA} {ujv ]EB}
that diagonalize the commutator and suppose
that we can write

/ — o o . o o *
u; = Qujug + Biju;

/¥ k% * .
u; = ogu; + By



Bogoliubov transformation of the
fields

() = Z (ui(2)a; + uy (z)a;")
i
o(x) = > (wi(@)a) + v (2)a; ")
;
These expressions are perfectly equivalent at

the algebraic level because they yield the same
commutator.



Quantization: pure states

 Choose the corresponding Fock vacua (both are pure
states)

W(z,y) = (Vald(z)9(y)|¥a) = Zui(f)uz‘(y)
Wiz, y) = (Wp|p(2)(y)|s) = Y uj(x)

 Bogoliubov transformations are a tool to generate
infinitely many pure states from a given one
* Are they equivalent?



The Klein-Gordon normalization reads
(u;-, U;) = (airug + Biruy, ajiug + Buy)
= ;p ik — BipBik = 0ij

sk
(u; s uy) = (agpup + Bipuk, ajiug + Bju)
— ﬁz‘k@jk — Oéikﬁjk =0
In matrix notation
aat — BT =1 aft — pal =0
a*al — g*pt =1 BT — B*aT =0




aat — BT =1 aBl — Bat =0
Oé*ﬁ_l_—ﬁ*@—l_:() (X*OZT—B*BT:I[

The previous relations are condensed as follows

a at —pt T
5* o _6—'_ OéT —



Uniqueness of the inverse provides two more
relations (and their complex conjugates):

at =Bt a f T
_5—|- oL B* o _

ata—ptpr =1 a8 —pla* =0

alp* —BTa=0 a' ot — BB =



Summary

aat — BT =1 aBl — Bat =0
Oé*OéT—/B*ﬁT:H &*54‘_ *a‘l-:

ata* — T3 =1 al B* — BTa =0



at =Bt a T
e T B* —

In matrix form the Bogoliubov transformation
reads

(6 )=(5 o))

The inverse transform is therefore

() = (5 7))



Inverse transform
U B at =Bt w
w* )\ =BT al u'”
Ui = (OéJr)iju; — (5T)ZJUS*

u; = _(5+)iju;‘ + (@T)iju;*




Bogoliubov transformation of the
fields

() = Z (ui(2)a; + uy (z)a;")
i
o(x) = > (wi(@)a) + v (2)a; ")
;
These expressions are perfectly equivalent at

the algebraic level because they yield the same
commutator.






One important point

In matrix form

(o0 )=(% 7))

The question now is: is the above transformation
unitarily impementable?

f YES the corresponding Fock representations are
ohysically and mathematically equivalent.

f NOT they are inequivaent and have distinct
ohysical interpretations




The unitary implementer

H = Fock space of the operators a, |¥) € H
H' = Fock space of the operators o', |¥') € H'

We need a unitary operator U : H' — H such that
UtaU=d UtatU=2d"
aU=Ud =U(a*a— 8*a™)
ot U=Ud" =U(aat — Ba)



Fock states

Consider a pair of canonical operators and the
corresponding Fock vacuum and Fock basis

a,a] =1 al0) =0

n) = ﬁm*)"rm (n|m) = onm

Completeness of the basis Z n)(n| =1

n=0



Coherent states
2) = exp(za™)|0)
= @10 =30 =

Coherent states are eigenstates of the
destruction operator



1
BCH formula: eXe¥ = eXTY+3[XY]

+ +_1

eza eujcz _ 6ua+za+—§uz
1
euaeza _ 6ua—l_—l_za —|—2uz .
ua _z2a Uz 24 uaq
e € — € € e

Applying this formula to the vacuum
exp(ua)|z) = exp(uz)|z)
In general for an holomorphic function

fla)lz) = f(2)l2)  (zlf(a™) = f(z")(2
(z2]2') = (0]e* e *7|0) = = % (0]e*'* ¥ 2|0) =

= ¢e* 7 (0[0) = e* 7



As for creation operators to the right

at]2) = ate®® |0) = 9,62 |0) = 0,z

Similarly for destruction operators to the left

(zla = (0]e* %a = 0,-(0]e* @ = 9, (]



Resolution of the identity

* Bargmann measure

e 1P A ANdz e~ @Y ) da A dy
du(z) = - =

271 T
[ du)1zz1 -
‘n m‘ erT n—+m i(n—m)6
Z \/n'i - r e db
]n (n] oIn+1l —r? _
:Z o 27“ e ™" dr = Z!nﬂn

n




The unitary implementer (continued)
(tlaUlz) = (t|U(a*a — B%a™)|2)
(tla™ Ulz) = (t|U(aa™ — Ba)|2)

{at* (HU|2) = o 2(t|U|2) — B0, (t|U]2)

t*(t|U|z) = a0, (t|U|z) — Bz(t|U|z)

{at;w 2) = a2 (t|U|2) — B50., (t|U]2)
t:<t‘U‘ >—O‘w <t|U‘ > 5ijzj<t‘U‘Z>



Property 1

_|_

e The matrix «@ " is invertible.



Summary

aa* —BFF =1  op” ~pa’ =0

Oé*OéT—/B*ﬁT:H &*54‘_ *Oé—l_:

ata* — T3 =1 al B* — BTa =0



Property 1

 The matrix o is invertible. This follows from

aat — BT =1
which implies that
(Vo™ |W) = (U|W) + (P88 |V)

W[ = (W] + [|87 ||
_|_

and therefore the kernel of &' is trivial.



Summary

aat — BAT =1
Oé*OéT—/B*ﬁT:H

ata—plp* =1

a’a” =T =1

aBl — Bal =0

Oz*ﬁ_'_ . *a—l- _



ala* =(aTa) =1+ B8

implies that also & and therefore & has a
trivial kernel. The second equation

t*(tlaUl|z) = a0, (t|U|z) — Bz(t|U|z)
is rewritten as follows.

0,(t|U|z) = a 1" (t|U|2) + a1 Bz(t|U|z)

Of_l



Summary

aaT — BBT =1 af’ —Ba’ =0

Oé*OéT—/B*ﬁT:H &*54‘_ *Oé_l_:

ata* — T3 =1 al B* — BTa =0



Property 2

The matrix o~ !/ is symmetric

Since a1 — Ba! = 0 and « is invertible
6T _ CE_lﬁCET
(Oé_lﬁ)T _ BT(&—l)T: Oz_lﬁOzT(Oé_l)T

:a_lﬁ



Integration
Op- (U |2) = " 2(t|U]|z) — 570 (t|U|z)
0, (t|U|z) = a 1t (t|U|2) + a1 Bz(t|U|z)

The second equation can now be integrated easily

(t|U|z) = exp (Zozlt* + %z&lﬁz> f(t*)

Inserting in the first equation we get

(za™" + (0 )/ ))(tIU]2) =
= (a*z — B*a Mt* — B*a 1 B2) (t|U]z)



(za™" + (0 )/ F)(tIU|2) =
= (a*z — B*a 't* — B*a ' B2) (t|U|z)

We get one equation Oy~ f = —f*a 1t* f
promptly integrated

1
f = exp <—§t*ﬁ*a1t*>
and a compatibility condition

(Oé_l)T — o _5*&—16



Summary

— 88T =1 aft — pat =0
Oé*OéT—ﬁ*ﬁT:H Oéﬁ ﬁ* T

a'a* =T =1 a' = fTa=0




o' B —Bta=0 == BT =a'Ba!

S |
<

&T&* —OéTﬁ*Oé_l/BZH

and the compatibility condition follows

(Oé_l)T — o _5*04_16



All in all

1 1
(t|U|z) = Cexp (zoz_lt* + §z&_1ﬁz — §t*6*a_1t*>

The overall normalization has to be determined yet.
Now note that

(t]: Fla,a™) : |2) = F(z,t"){t|2)
Example
(t] :aa™ 1 |2) = (tlaTalz) = t"2(t|2)

U=C:exp (a(oz_l —Da™ + 5&04_16@ — —a+ﬁ*0f1a+> :



The normalization
1 1

U=0C:exp (a(oz_l —1Dat + zaa"'Ba — —a+ﬁ*0f1a+> :

2 2

1
= C2(0] exp <—a(a_1 )a) exp (%cﬁ(ofl )



Technical interlude Let M = M7

= (0] exp (%aMa) exp (%cﬁM*cﬁ) 0)
u(2)(0] exp (%aMa) 12) (2] exp (%aJFM*a“L) 0)

/d
/dZ /\dZ Zz*_|_%zMz—|—%z*M*Z*

dz* A\ dz —M 1 ~
[l b (F 4)(2)




Technical interlude Let M = M7

= [ ee o (0 e ) (5]




Technical interlude 2 Let M = M7

w2 DT 2 D] ()

A theorem of linear algebra says that when C and D commute

det( é lB; ) = det(AD — BC)
det M = det(1 — M M™)

0 Lo Lot areat ) (o) = 1
(0] exp yaMa | exp | Sa a™ | |0) Jdet(1 = M)




The normalization
1

Olexp (Gata~0)a ) exp (30 @~ 8a" ) o) = 1

—Vdet(1 — a13(a"15)")



Summary

— 88T =1 aft — pat =0

Oé*OéT—/B*ﬁT:H Oéﬁ ﬁ* —|‘_

b+&—5Tﬁ*:H ‘CM_FB—BT(X*:J

ata* — T3 =1 al B* — BTa =0



The normalization

1

1

Olexp (Gata~0)a ) exp (30 @~ 8a" ) o) = 1

2

0*B—BTa" =0

ofo— T8 =1

— Vdet(I — a~1B(a"18)%)
B =atpla®)!

ata—atB(a®) 1B =1

I-a'8(a") 76" = (a¥a) ™!

1

= /det(ata)

Vdet(1 — a=1B(a13)*)

C = (det(ata)) "1



The S Matrix

1

: exp (a(al —1Dat 4+ zaa"Ba — —a

2

+B* —1 —|—>:



Other states
W(z,y) = (W, d(x)d(y)Wo) = X u;(x)u;(v)

Many other quantization can be obtained starting from the family {u.}

Mixed states (here not the most general ones)

W’)/(xay) — <WO,’)/7 $(x)$(y)wo,7> —
=Y cosh?(v;) w;i(@)u;(y) + sinh?(v;) u;(x)u;(y)

Yi — 07 — W’Y(xay) — W(way)



Other states

Woy(z,y) = (Wo, 3(2)b(y)Wo) =
=Y " cosh?(7;) wi(x)u;i(w) + > sinh?(;) wi(z)u;(y)
again and again
C(z,y) = Wy(z,y) — Wy(y,z) =
=" cosh?(y) ui(z)u;(y) + 3 sinh?(%;) w;(@)ui(y)
— > cosh?(;) wi()u(@) — Y sinh?() w()u;(@)
= > (cosh?(y;) — sinh?(7)) [ui()ui(y) — us(@)us(y)]
=Y lug(@)ui(y) — wi(@)ui(y)]




