Teoria quântica de campos em espaco-tempo curvo

ugomoschella@gmail.com

Università dell'Insubria – Como – Italia IHES – Bures-sur-Yvette – France II) (More or less) Canonical quantization of free fields (in flat space!)

Things we saw yesterday

 A quantum field is (distributional) map from a spacetime (a globally hyperbolic manifold) into a local field algebra

$$\mathcal{M} \ni x \to \phi(x)$$

$$\mathcal{C}^{\infty}(\mathcal{M}) \ni f \to \int \phi(x) f(x) dx$$

▶ The (Heisenberg) algebraic structure is provided by the commutator: a distribution that vanishes at spacelike separated pairs (x,y)

$$C(x,y) = [\phi(x), \phi(y)] = -i\hbar E(x,y)$$

Things we saw yesterday

Let (M,g) a globally hyperbolic manifold In the space of complex solution of the KG equation $\Box_g \phi + V(x) \phi = 0$. introduce the invariant Peierls aka KG inner product

$$(f,g) = -i \int_{\Sigma_t} \overline{f} \stackrel{\leftrightarrow}{\nabla}_{\mu} g \, d\sigma^{\mu}$$

Find a "complete" basis $\{u_i\}$ so that

$$(u_i, u_j) = \delta_{ij}, \quad (\bar{u}_i, \bar{u}_j) = -\delta_{ij}, \quad (u_i, \bar{u}_j) = 0$$

The commutator admits the following expansion

$$C(x,y) = \sum_{i} (u_i(x)\overline{u}_i(y) - u_i(y)\overline{u}_i(x))$$

It is basis independent (uniqueness)

Things we saw yesterday

The second necessary step amounts to representing the quantum field and the commutation relations in a Hilbert space

$$\mathcal{M} \ni x \to \widehat{\phi}(x)$$

$$\mathcal{C}^{\infty}(\mathcal{M}) \ni f \to \int \widehat{\phi}(x) f(x) dx \in Op(\mathcal{H})$$

$$[\widehat{\phi}(x), \widehat{\phi}(y)] = C(x, y) \quad (= -i\hbar E(x, y))$$

This problem has uncountably many solutions (as opposed to the Stone - Von Neumann uniqueness). How to construct (some of) them?

Quantum field theory (1927)

Quantum Mechanics + Special Relativity =

Quantum Field Theory

- The most successful theory we have (together with GR)
- (Embarassing) Long standing question:
- Does any nontrivial relativistic QFT in spacetime dimension 4 exist (at the nonperturbative level)?
- i.e. are QM and SR compatible?

QM + SR requirements

Locality or Microcausality:

$$[\hat{\phi}(x), \hat{\phi}(y)] = 0 \text{ if } (x-y)^2 < 0$$

Relativistic invariance:

A strongly continuous unitary rep. $U(a, \Lambda)$ of the Poincaré group acts on $\mathcal H$

Poincaré invariance of the fields:

$$U(a, \Lambda)\widehat{\phi}(x)U(a, \Lambda)^{-1} = \widehat{\phi}(\Lambda x + a)$$

Spectral condition on energy and momentum:

$$U(a) = e^{ia^{\mu}P_{\mu}}$$
 spectrum $(P_{\mu}) \subset V^{+}$

Existence and uniqueness of the vacuum:

$$U(a, \Lambda)\Psi_0 = \Psi_0$$

Quantum field theory

Microcausality (i.e. Local commutativity) and/or Poincaré (actually translation) invariance forbid the existence of this map: ultraviolet singularities are unavoidable!

$$\mathbf{M}^4 \ni x \to \widehat{\phi}(x) \in Op(\mathcal{H}) \to \text{trivial theory}$$

Fields are singular objects: only spacetime averaged fields make sense

$$S(\mathbf{M}^4) \ni f \to \widehat{\phi}(f) = \int \widehat{\phi}(x) f(x) d^4x \in Op(\mathcal{H})$$

- Quantum fields are distributions.
- > Previous properties have to be understood in the sense of distributions.
- ➤ Good news: they can be differentiated freely.
- ➤ Bad news: <u>they cannot be multiplied</u>. Even writing nonlinear field equations is meaningless:

$$\Box \phi + \lambda \phi^3 = 0$$

Vacuum Expectation Values

The theory is completely characterized by the knowledge of a set of distributions satisfying a number of properties:

$$\langle \Psi_0, \widehat{\phi}(x_1) \dots \widehat{\phi}(x_n) \Psi_0 \rangle = W_n(x_1, \dots, x_n)$$

Relativistic invariance:

$$W_n(\Lambda x_1 + a, \dots, \Lambda x_n + a) = W_n(x_1, \dots, x_n)$$

Locality or microcausality:

if
$$(x_j - x_{j+1})^2 < 0$$

 $W_n(x_1, \dots, x_j, x_{j+1}, \dots) = W_n(x_1, \dots, x_{j+1}, x_j, \dots)$

- ➤ Nonlinear Conditions of Positive definiteness (Necessary for the Q.M. interpretation)
- > Spectral Condition

Positive definiteness

Consider a terminating sequence of test functions

$$\mathbf{f} = (f_0, f_1(x_1), f_2(x_1, x_2), \dots, 0, \dots) \quad x_j \in \mathbf{M}^4$$

Construct the vector:

$$\psi = f_0 \Psi_0 + \int dx_1 f_1(x_1) \phi(x_1) \Psi_0 +$$

+
$$\int dx_1 dx_2 f_2(x_1, x_2) \phi(x_1) \phi(x_2) \Psi_0 + \dots$$

> Compute the norm of this vector (it has to be positive):

$$\langle \psi, \psi \rangle = \sum_{jk} \int dx dy \overline{f}_j(x_1, \dots, x_j) f_k(y_1, \dots, y_k)$$

 $W_{j+k}(x_j, \dots, x_1; y_1, \dots, y_k) \ge 0$

Spectral Condition

The Fourier transform of the n-point function

$$\tilde{W}_n(p_1, p_2, \dots, p_n) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int e^{i(p_1 x_1 + \dots + p_n x_n)} W_n(x_1, \dots, x_n) dx_1 \dots dx_n$$

$$\tilde{W}(p_1, p_2, \dots, p_n) = 0$$

unless

$$p_1 \in \overline{V^+}, \quad p_1 + p_2 \in \overline{V^+}, \dots \quad p_1 + p_2 + \dots p_n \in \overline{V^+}$$

Spectral Condition

$$\tilde{W}(p_1, p_2, \dots, p_n) = 0$$

unless

$$p_1 \in \overline{V^+}, \quad p_1 + p_2 \in \overline{V^+}, \dots \quad p_1 + p_2 + \dots p_n \in \overline{V^+}$$

equivalent to

$$W(x_1, x_2, \dots, x_n) = b.v.W(z_1, z_2, \dots z_n)$$

holomorphic in the tube domain T_n^-

$$T_n^- = \{z_j \in \mathbf{M}^{4^{(c)}} : \operatorname{Im}(z_1 - z_2) \in V^-, \dots \operatorname{Im}(z_{n-1} - z_n) \in V^- \}$$

Reconstruction ©

- ➤ Examples have been constructed in spacetime dimension two and three (hard, hard work in constructive quantum field theory.
- Limits of the method seem to have been attained
- ➤ No example known in spacetime dimension 4, after 80 years of history of QFT!
- Are quantum mechanics and special relativity compatible?
- We don't know yet!

(Generalized) free theories

Completely characterized by the two-point functions:

$$\langle \Psi_0, \widehat{\phi}(x_1) \widehat{\phi}(x_2) \Psi_0 \rangle = W(x_1, x_2)$$

- Truncated n-point functions vanish;
- ➤ N-point functions are tensor products of two-point functions;
- ➤ Example: the 4-point function:

$$W_4(x_1, x_2, x_3, x_4) =$$

$$= W(x_1, x_2)W(x_3, x_4) + W(x_1, x_3)W(x_2, x_4) + W(x_1, x_4)W(x_2, x_3)$$

- ➤ GFF have trivial S-matrix
- ➤ GFF are the essential ingredient for perturbation theory

Generalized free theories ©

- Once you have a two-point function, what you do with it?
- ➤ First thing: check locality

$$\langle \Psi_0, [\phi(x)\phi(y) - \phi(x)\phi(y)] \Psi_0 \rangle = W(x,y) - W(y,x) = C(x,y)$$

> It must be C(x,y)=0 when $(x-y)^2<0$

Generalized free theories ©

Second check positive-definiteness: now it is simply

$$\int W(x,y)\overline{f}(x)f(y) \ge 0$$

➤ If you have translation invariance:

$$W(x,y) = W(x-y) = \frac{1}{(2\pi)^2} \int e^{ip \cdot (x-y)} \tilde{W}(p) d^4p$$

$$\int W(x-y)\overline{f}(x)g(y)dxdy = \frac{1}{(2\pi)^2} \int e^{ip\cdot(x-y)}\widetilde{W}(p)d^4p\overline{f}(x)g(y)dxdy =$$
$$= (2\pi)^2 \int \widetilde{W}(p)\overline{\widetilde{f}(-p)}\widetilde{f}(-p)d^4p \ge 0$$

➤ The Fourier transform of W is a positive measure of polynomial growth (Bochner-Schwarz theorem)

Generalized free theories

Introduce a pre-Hilbert scalar product in the test function space

$$\langle f, g \rangle = \int W(x, y) \overline{f}(x) g(y) d^4 x = (2\pi)^2 \int \widetilde{W}(p) \overline{\widetilde{f}(-p)} \widetilde{g}(-p) d^4 p$$

➤ Completing and quotienting the test function space w.r.t. this Hilbert topology gives the 1-particle space:

$$\mathcal{H}^{(1)} = \overline{\mathcal{S}(\mathbf{M}_x^4)/\mathcal{N}} = L^2(\mathbf{M}_p^4, d\mu(p))$$
$$d\mu(p) = \tilde{W}(p)d^4p$$

➤ The n-particle space is the symmetric tensor product

$$\mathcal{H}^{(n)} = Sym(\mathcal{H}^{(1)} \otimes \ldots \otimes \mathcal{H}^{(1)})$$

➤ The full Hilbert space is the symmetric Fock space

$$\mathcal{H} = \bigoplus_{n=0}^{\infty} \mathcal{H}^{(n)} \quad \mathcal{H}^{(0)} = \mathbf{C}$$

Generalized free theories ©

- \blacktriangleright The vacuum vector: $\Psi_0=(1,0,0,\ldots)$
- ullet A dense set of vectors: $\Psi_f = (f_0, f_1, \dots, f_k, 0 \dots)$
- The field may be decomposed into creation and annihilation operators on the dense set of vectors: $\hat{\phi}^-(h) = \hat{\phi}^-(h) + \hat{\phi}^+(h)$

$$\left(\hat{\phi}^{-}(h)\Psi_{f}\right)_{n}(x_{1},\ldots,x_{n}) = \sqrt{n+1} \int W(x,x')h(x)f_{n+1}(x',x_{1},\ldots,x_{n})dxdx',$$

$$\left(\hat{\phi}^{+}(h)\Psi_{f}\right)_{n}(x_{1},\ldots,x_{n}) = \frac{1}{\sqrt{n}} \sum_{k=1}^{n} h(x_{k})f_{n-1}(x_{1},\ldots,\hat{x}_{k},\ldots,x_{n}).$$

➤ The commutator is a c-number i.e. proportional to the identity operator:

$$[\widehat{\phi}(x_1), \widehat{\phi}(x_2)] = \langle \Psi_0, [\widehat{\phi}(x_1), \widehat{\phi}(x_2)] \Psi_0 \rangle =$$

= $W(x_1, x_2) - W(x_2, x_1) = C(x_1, x_2)$

The other way

$$S(\mathbf{M}^{4}) \ni f \to \phi(f) = \int \phi(x) f(x) d^{4}x \in \mathcal{F}$$
$$[\phi(x), \phi(y)] = C(x, y)\mathbf{1}$$

- Notice that the hat has again disappeared: now the field algebra is abstract
- Problem: find (all) positive definite two-point distribution such that W(x,y) W(y,x) = C(x,y)
- Fock-space representation is obtained by the previous construction: $\phi(f) \to \widehat{\phi}(f) : F_W \to F_W$
 - ➤ There are infinitely many inequivalent answers even in flat spacetime!

Curved spacetime

$$\mathbf{M}^{4} \longrightarrow \mathcal{M}$$

$$\mathcal{S}(\mathbf{M}^{4}) \ni f \to \widehat{\phi}(f) = \int \widehat{\phi}(x) f(x) d^{4}x \in Op(\mathcal{H})$$

replaced by

$$C_0^{\infty}(\mathcal{M}) \ni f \to \widehat{\phi}(f) = \int \widehat{\phi}(x) f(x) d^4x \in Op(\mathcal{H})$$

Curved spacetime

➤ The only property we can in general retain is local commutativity

$$[\phi(x),\phi(y)] = C(x,y)\mathbf{1}$$

C(x,y) = 0 for "spacelike separated" events x and y

The problem of constructing a linear quantum field theory amounts to find a positive definite two-point distribution such that the splitting holds

$$W(x,y) - W(y,x) = C(x,y)$$

Curved spacetime

The construction then goes as in flat spacetime (but no symmetry group implemented in general)

$$\langle f, g \rangle = \int_{\mathcal{M}} W(x, y) \overline{f}(x) g(y) d^{4}x$$

$$\mathcal{H}^{(1)} = \overline{\mathcal{C}_{0}^{\infty}(\mathcal{M})/\mathcal{N}}, \qquad \mathcal{H} = \bigoplus_{n=0}^{\infty} \mathcal{H}^{(n)}$$

$$\left(\widehat{\phi}^{-}(h)\Psi_{f}\right)_{n}(x_{1},\ldots,x_{n})=\sqrt{n+1}\int_{\mathcal{M}}W(x,x')h(x)f_{n+1}(x',x_{1},\ldots,x_{n})dxdx',$$

$$(\hat{\phi}^+(h)\Psi_f)_n(x_1,\ldots,x_n) = \frac{1}{\sqrt{n}} \sum_{k=1}^n h(x_k) f_{n-1}(x_1,\ldots,\hat{x}_k,\ldots,x_n).$$

$$\langle \Psi_0, \widehat{\phi}(x)\widehat{\phi}(y)\Psi_0 \rangle = W(x,y), \quad [\widehat{\phi}(x), \widehat{\phi}(y)] = C(x,y)\mathbf{1}$$

Summary

➤ How find a positive definite two-point distribution that solves the equation

$$W(x,y) - W(y,x) = C(x,y)$$
 ?

- How many solutions has this problem?
- Which solution is physically relevant?

KG fields: vacuum representation

$$\Box \phi(x) + m^{2}\phi(x) = 0$$

$$C(x,y) = \frac{1}{(2\pi)^{3}} \int e^{-ip(x-y)} [\theta(p^{0}) - \theta(-p^{0})] \delta(p^{2} - m^{2}) dp$$

$$\phi \to \widehat{\phi}, \quad W(x,y) = \langle \Psi_{0}, \widehat{\phi}(x) \widehat{\phi}(y) \Psi_{0} \rangle$$

$$(\Box_{x} + m^{2}) W(x,y) = (\Box_{y} + m^{2}) W(x,y) = 0$$

$$W(x,y) = W(x-y) = \int e^{-ip(x-y)} \widetilde{W}(p) \frac{dp}{(2\pi)^{3}}, \quad px = p^{0}t - px$$

$$(p^{2} - m^{2}) \widetilde{W}(p) = 0 \to \widetilde{W}(p) = \delta(p^{2} - m^{2})$$

$$\delta(p^{2} - m^{2}) = \frac{\delta(p^{0} - \sqrt{p^{2} - m^{2}})}{2\sqrt{p^{2} + m^{2}}} + \frac{\delta(p^{0} + \sqrt{p^{2} - m^{2}})}{2\sqrt{p^{2} + m^{2}}}$$

$$\widetilde{W}(p) \simeq \alpha\theta(p^{0}) \delta(p^{2} - m^{2}) + \beta\theta(\sqrt{p^{0}}) \delta(p^{2} - m^{2})$$

Positivity of the energy spectrum: $\beta = 0$

$$W(x,y) = \frac{\alpha}{(2\pi)^3} \int e^{-ip(x-y)} \theta(p^0) \delta(p^2 - m^2) dp$$

$$W'(x,y) = W(y,x) = \frac{\alpha}{(2\pi)^3} \int e^{+ip(x-y)} \theta(p^0) \delta(p^2 - m^2) dp$$
$$= \frac{\alpha}{(2\pi)^3} \int e^{-ip(x-y)} \theta(-p^0) \delta(p^2 - m^2) dp$$

$$C(x,y) = W(x,y) - W(y,x) = \frac{\alpha}{(2\pi)^3} \int e^{-ip(x-y)} \epsilon(p^0) \delta(p^2 - m^2) dp$$

$$\epsilon(p^0) = \theta(p^0) - \theta(-p^0)$$

Consequences of the spectral

condition

2) The spectral condition implies that the integral representation makes sense in a larger complex domain of the complex

Maximal analyticity

Spectral Property + Lorentz invariance = maximal analyticity

 $W(z,z')=W(z-z')=W(\zeta)$ is maximally analytic in the complex Lorentz invariant variable $\zeta=(z-z')^2$:

The cut reflects causality and QM

$$\Box \phi(x) + m^2 \phi(x) = 0$$

$$C(x,y) = \frac{1}{(2\pi)^3} \int e^{-ip(x-y)} [\theta(p^0) - \theta(-p^0)] \delta(p^2 - m^2) dp$$

The fundamental split equation

$$C(x,y) = W(x,y) - W(y,x)$$
$$\tilde{C}(p) = \tilde{W}(p) - \tilde{W}(-p)$$

Has been solved according with spectral condition

$$\tilde{W}(p) = \theta(p^0)\delta(p^2 - m^2)$$
 $\tilde{W}(-p) = \theta(-p^0)\delta(p^2 - m^2)$
 $\tilde{C}(p) = \tilde{W}(p) - \tilde{W}(-p) = \epsilon(p^0)\delta(p^2 - m^2)$

$$\Box \phi(x) + m^2 \phi(x) = 0$$

$$C(x,y) = \frac{1}{(2\pi)^3} \int e^{-ip(x-y)} [\theta(p^0) - \theta(-p^0)] \delta(p^2 - m^2) dp$$

$$C(x,y) = W(x,y) - W(y,x) \qquad \tilde{C}(p) = \tilde{W}(p) - \tilde{W}(-p)$$

$$\tilde{W}(p) = (\alpha(p)\theta(p^{0}) + \gamma(p)\theta(-p^{0}))\delta(p^{2} - m^{2})$$

$$\tilde{W}(-p) = (\alpha(-p)\theta(-p^{0}) + \gamma(-p)\theta(p^{0}))\delta(p^{2} - m^{2})$$

$$\alpha(p) - \gamma(-p) = 1, \quad \alpha(-p) - \gamma(p) = 1$$

► Immediate (trivial) solution: α and γ constant such that α - γ = 1

$$\tilde{W}_{\gamma}(p) = [(1+\gamma)\theta(p^{0}) + \gamma\theta(-p^{0})]\delta(p^{2} - m^{2})$$

➤ It defines an inequivalent local and covariant quantization of the KG field; negative energy states are present. The representation is not irreducible.

$$\widetilde{W}_{\gamma}(p) = [(1+\gamma)\theta(p^{0}) + \gamma\theta(-p^{0})]\delta(p^{2} - m^{2})
\gamma = \frac{1}{e^{\beta} - 1} \qquad \alpha = 1 + \gamma = \frac{e^{\beta}}{e^{\beta} - 1} = \frac{1}{1 - e^{-\beta}}
\gamma(p) = \frac{1}{e^{-\beta p^{0}} - 1} \qquad \alpha(p) = \frac{1}{1 - e^{-\beta p^{0}}}
\alpha(p) - \gamma(-p) = \frac{1}{1 - e^{-\beta p^{0}}} - \frac{1}{e^{\beta p^{0}} - 1} = 1
\alpha(-p) - \gamma(p) = \frac{1}{1 - e^{\beta p^{0}}} - \frac{1}{e^{-\beta p^{0}} - 1} = 1$$

Non trivial solution to the split equation:

$$\tilde{W}_{\beta}(p) = \left[\frac{\theta(p^{0})}{1 - e^{-\beta p^{0}}} + \frac{\theta(-p^{0})}{e^{-\beta p^{0}} - 1} \right] \delta(p^{2} - m^{2})$$

$$\Box \phi(x) + m^2 \phi(x) = 0$$

$$C(x,y) = \frac{1}{(2\pi)^3} \int e^{-ip(x-y)} [\theta(p^0) - \theta(-p^0)] \delta(p^2 - m^2) dp$$

$$\widetilde{W}_{\beta}(p) = \left[\frac{\theta(p^{0})}{1 - e^{-\beta p^{0}}} + \frac{\theta(-p^{0})}{e^{-\beta p^{0}} - 1} \right] \delta(p^{2} - m^{2}) = \frac{\epsilon(p^{0})\delta(p^{2} - m^{2})}{1 - e^{-\beta p^{0}}}
W_{\beta}(x, y) = \frac{1}{(2\pi)^{3}} \int e^{-ip(x-y)} \left[\frac{1}{1 - e^{-\beta p^{0}}} \right] \epsilon(p^{0}) \delta(p^{2} - m^{2}) dp$$

$$W_{\beta}(x,y) - W_{\beta}(y,x) = C(x,y)$$

- > Positive definiteness holds.
- \triangleright Stationary local quantization of the KG field depending on a positive parameter β .
- Lorentz invariance is broken. There exists a preferred class of referentials.

Two crucial properties: analyticity

$$W_{\beta}(x,y) = \frac{1}{(2\pi)^3} \int e^{-ip^0(t-s) + i\mathbf{p}(\mathbf{x} - \mathbf{y})} \left[\frac{1}{1 - e^{-\beta p^0}} \right] \epsilon(p^0) \delta(p^2 - m^2) dp$$

analytic in the strip $-\beta < \operatorname{Im}(t-s) < 0$

$$W_{\beta}(y,x) = \frac{1}{(2\pi)^3} \int e^{+ip^0(t-s)-i\mathbf{p}(\mathbf{x}-\mathbf{y})} \left[\frac{1}{1 - e^{-\beta p^0}} \right] \epsilon(p^0) \delta(p^2 - m^2) dp$$

analytic in the strip $0 < \operatorname{Im}(t-s) < \beta$

> Periodicity in imaginary time

$$W_{\beta}(s, \mathbf{y}, t + i\beta, \mathbf{x}) = \frac{1}{(2\pi)^{3}} \int e^{+ip^{0}(t+i\beta-s)-i\mathbf{p}(\mathbf{x}-\mathbf{y})} \left[\frac{1}{1-e^{-\beta p^{0}}} \right] \epsilon(p^{0}) \delta(p^{2} - m^{2}) dp$$

$$= \frac{1}{(2\pi)^{3}} \int e^{+ip^{0}(t-s)-i\mathbf{p}(\mathbf{x}-\mathbf{y})} \left[\frac{e^{-\beta p^{0}}}{1-e^{-\beta p^{0}}} \right] \epsilon(p^{0}) \delta(p^{2} - m^{2}) dp$$

$$= \frac{1}{(2\pi)^{3}} \int e^{+ip^{0}(t-s)-i\mathbf{p}(\mathbf{x}-\mathbf{y})} \left[\frac{1}{e^{\beta p^{0}}-1} \right] \epsilon(p^{0}) \delta(p^{2} - m^{2}) dp$$

$$(p^{0} \to -p^{0}) = \frac{1}{(2\pi)^{3}} \int e^{-ip^{0}(t-s)+i\mathbf{p}(\mathbf{x}-\mathbf{y})} \left[\frac{1}{1-e^{-\beta p^{0}}} \right] \epsilon(p^{0}) \delta(p^{2} - m^{2}) dp$$

$$= W_{\beta}(t, \mathbf{x}, s, \mathbf{y})$$

KMS condition

- ➤ Consider a quantum system confined to a compact subset of space. Its time-evolution is generated by a self-adjoint Hamiltonian H on a Hilbert space H. The energy spectrum of H is discrete.
- $ightharpoonup Q_1,...,Q_N$ self-adjoint operators on H representing conserved quantities and commuting with all ``observables''.
- \blacktriangleright $\mu_1,...,\mu_N$ denote the chemical potentials conjugate to the conserved quantities.
- The state describing thermal equilibrium at inverse temperature β and chemical potentials $\mu_1,...,\mu_N$ is given by the density matrix (Gibbs, Landau, von Neumann)

$$\rho_{\beta,\mu} := Z_{\beta,\mu}^{-1} \exp[-\beta H_{\mu}], \quad \langle A \rangle_{\beta,\underline{\mu}} := \operatorname{tr}_{\mathcal{H}}[\rho_{\beta,\mu} A]$$

$$H_{\mu} := H - \sum_{i=1}^{N} \mu_{i} Q_{i}, \qquad Z_{\beta,\mu} = \operatorname{tr}_{\mathcal{H}}[e^{-\beta H_{\mu}}]$$

KMS condition

$$\rho_{\beta,\mu} := Z_{\beta,\mu}^{-1} \exp[-\beta H_{\mu}], \quad \langle A \rangle_{\beta,\underline{\mu}} := \operatorname{tr}_{\mathcal{H}}[\rho_{\beta,\mu} A]$$

➤ Time evolution in the Heisenberg representation

$$\alpha_t(A) := e^{itH} A e^{-itH} = e^{itH_{\mu}} A e^{-itH_{\mu}}$$

- > $<\alpha_{\rm t}(A)$ $B>_{\beta,\mu}$ analytic in the strip $-\beta<{\rm Im}\ {\rm t}<0$
- \rightarrow $< B\alpha_t(A) >_{\beta,u}$ analytic in the strip $0 < \text{Im } t < \beta$
- > Cyclicity of the trace implies the famous KMS periodicity condition

$$\langle \alpha_t(A)B\rangle_{\beta,\mu} = \langle B\alpha_{t+i\beta}(A)\rangle_{\beta,\mu}$$

 \blacktriangleright KMS Thermal equilibrium quantization at inverse temperature β =1/T:

$$W_{\beta}(x,y) = \frac{1}{(2\pi)^3} \int e^{-ip^0(t-s)+i\mathbf{p}(\mathbf{x}-\mathbf{y})} \left[\frac{1}{1-e^{-\beta p^0}} \right] \epsilon(p^0) \delta(p^2-m^2) dp$$

$$W_{\beta}(x,y) \text{ analytic in the strip } -\beta < \mathrm{Im}(t-s) < 0$$

$$W_{\beta}(y,x) \text{ analytic in the strip } 0 < \mathrm{Im}(t-s) < \beta$$

$$W_{\beta}(s,\mathbf{y},t+i\beta,\mathbf{x}) = W_{\beta}(t,\mathbf{x},s,\mathbf{y})$$

 \triangleright For every β =1/T we have an inequivalent canonical quantization:

$$\Box \widehat{\phi}_{\beta}(x) + m^2 \widehat{\phi}_{\beta}(x) = 0$$
$$[\widehat{\phi}_{\beta}(x), \widehat{\phi}_{\beta}(y)] = \frac{1}{(2\pi)^3} \int (\theta(p^0) - \theta(-p^0)) \delta(p^2 - m^2) d^4 p$$

$$[\hat{\phi}_{\beta}(t_0, \mathbf{x}), \, \hat{\pi}_{\beta}(t_0, \mathbf{y})] = i\hbar\delta(\mathbf{x} - \mathbf{y})$$
$$[\hat{\phi}_{\beta}(t_0, \mathbf{x}), \, \hat{\phi}_{\beta}(t_0, \mathbf{y})] = [\hat{\pi}_{\beta}(t_0, \mathbf{x}), \, \hat{\pi}_{\beta}(t_0, \mathbf{y})] = 0.$$

$$\Box \phi(x) + m^2 \phi(x) = 0$$

$$[\phi(t_0, \mathbf{x}), \pi(t_0, \mathbf{y})] = i\hbar \delta(\mathbf{x} - \mathbf{y})$$

$$[\phi(t_0, \mathbf{x}), \phi(t_0, \mathbf{y})] = [\pi(t_0, \mathbf{x}), \pi(t_0, \mathbf{y})] = 0.$$

$$W(x, y) = \frac{1}{(2\pi)^3} \int e^{-i\omega(x^0 - y^0) + i\mathbf{p}(\mathbf{x} - \mathbf{y})} \frac{d^3\mathbf{p}}{2\omega}$$

$$= \int \frac{e^{-i\omega x^0 + i\mathbf{p}\mathbf{x}}}{\sqrt{(2\pi)^3 2\omega}} \frac{e^{i\omega y^0 - i\mathbf{p}\mathbf{y}}}{\sqrt{(2\pi)^3 2\omega}} d^3\mathbf{p} \qquad \omega = \sqrt{\mathbf{p}^2 + m^2}$$

The function $u_{\mathbf{p}}(t,\mathbf{x}) = \frac{e^{-i\omega x^0 + i\mathbf{p}\mathbf{x}}}{\sqrt{(2\pi)^3 2\omega}}$ is a <u>complex classical solution</u> of the KG equation:

$$\Box u_{\mathbf{p}}(t, \mathbf{x}) = (-\omega^2 + \mathbf{p}^2)u_{\mathbf{p}}(t, \mathbf{x}) = -m^2 u_{\mathbf{p}}(t, \mathbf{x})$$
$$W(x, y) = \int u_{\mathbf{p}}(t, x)u_{\mathbf{p}}^*(s, y)d^3\mathbf{p}$$

$$(\phi_{1}, \phi_{2}) = -i\Omega(\overline{\phi}_{1}, \phi_{2}) = i \int_{t=const} [\overline{\phi}_{1}(t, \mathbf{x})\pi_{2}(t, \mathbf{x}) - \overline{\pi}_{1}(t, \mathbf{x})\phi_{2}(t, \mathbf{x})] d^{3}\mathbf{x}$$

$$= i \int_{t=const} \overline{\phi}_{1}(t, \mathbf{x}) \stackrel{\leftrightarrow}{i\partial_{t}} \phi_{2}(t, \mathbf{x}) d^{3}\mathbf{x}$$

$$(u_{\mathbf{p}}, u_{\mathbf{p}'}) = i \int \left[\frac{e^{i\omega t - i\mathbf{p}\mathbf{x}}}{\sqrt{(2\pi)^3 2\omega}} (-i\omega') \frac{e^{-i\omega' t + i\mathbf{p}'\mathbf{x}}}{\sqrt{(2\pi)^3 2\omega'}} - i\omega \frac{e^{i\omega t - i\mathbf{p}\mathbf{x}}}{\sqrt{(2\pi)^3 2\omega}} \frac{e^{-i\omega' t + i\mathbf{p}'\mathbf{x}}}{\sqrt{(2\pi)^3 2\omega'}} \right] d^3\mathbf{x} = \delta(\mathbf{p} - \mathbf{p}')$$

$$(\overline{u}_{\mathbf{p}}, \overline{u}_{\mathbf{p}'}) = i \int \left[\frac{e^{-i\omega t + i\mathbf{p}\mathbf{x}}}{\sqrt{(2\pi)^3 2\omega}} (i\omega') \frac{e^{i\omega' t - i\mathbf{p}'\mathbf{x}}}{\sqrt{(2\pi)^3 2\omega'}} + i\omega \frac{e^{-i\omega t + i\mathbf{p}\mathbf{x}}}{\sqrt{(2\pi)^3 2\omega}} \frac{e^{i\omega' t - i\mathbf{p}'\mathbf{x}}}{\sqrt{(2\pi)^3 2\omega'}} \right] d^3\mathbf{x} = -\delta(\mathbf{p} - \mathbf{p}')$$

$$(u_{\mathbf{p}}, \overline{u}_{\mathbf{p}'}) = i \int \left[\frac{e^{i\omega t - i\mathbf{p}\mathbf{x}}}{\sqrt{(2\pi)^3 2\omega}} (i\omega') \frac{e^{i\omega' t - i\mathbf{p}'\mathbf{x}}}{\sqrt{(2\pi)^3 2\omega'}} - i\omega \frac{e^{i\omega t - i\mathbf{p}\mathbf{x}}}{\sqrt{(2\pi)^3 2\omega}} \frac{e^{i\omega' t - i\mathbf{p}'\mathbf{x}}}{\sqrt{(2\pi)^3 2\omega'}} \right] d^3\mathbf{x} = 0$$

Consider the space $S^{\mathbf{C}}$ of complex classical solution of the KG equation. Introduce a sesquilinear (symplectic) form

$$(f,g) = i \int_{t=const} \bar{f}(t,\mathbf{x}) \stackrel{\leftrightarrow}{\partial_t} g(t,\mathbf{x}) d^3\mathbf{x}$$

The complex solutions $u_{\mathbf{p}}(x) = \frac{e^{-i\omega t + i\mathbf{p}\mathbf{x}}}{\sqrt{(2\pi)^3 2\omega}}$ are a "basis" for $S^{\mathbf{C}}$ in the following sense:

$$(u_{\mathbf{p}}, u_{\mathbf{p}'}) = \delta(\mathbf{p} - \mathbf{p}'), \quad (\bar{u}_{\mathbf{p}}, \bar{u}_{\mathbf{p}'}) = -\delta(\mathbf{p} - \mathbf{p}'), \quad (u_{\mathbf{p}}, \bar{u}_{\mathbf{p}'}) = 0$$

The functions $u_{\mathbf{p}}(x)$ are "positive frequency" in the following sense: $i\partial_t u_{\mathbf{p}} = \omega u_{\mathbf{p}}$

The two-point function is a superposition of all the "positive frequency" solutions and their complex conjugates:

$$W(x,y) = \int u_{\mathbf{p}}(x) \overline{u_{\mathbf{p}}(y)} d^{3}\mathbf{p}$$

➤ The structure of the 2-point function guarantees canonicity:

$$W(x,y) = \int u_{\mathbf{p}}(x)\overline{u_{\mathbf{p}}(y)}d^{3}\mathbf{p} \qquad (u_{\mathbf{p}}, u_{\mathbf{p}'}) = \delta(\mathbf{p} - \mathbf{p}'),$$

$$(\overline{u}_{\mathbf{p}}, \overline{u}_{\mathbf{p}'}) = -\delta(\mathbf{p} - \mathbf{p}'),$$

$$(u_{\mathbf{p}}, \overline{u}_{\mathbf{p}'}) = 0$$

$$C(x,y) = W(x,y) - W(y,x) = \int [u_{\mathbf{p}}(x)\overline{u_{\mathbf{p}}(y)} - u_{\mathbf{p}}(y)\overline{u_{\mathbf{p}}(x)}]d^{3}\mathbf{p}$$

$$\frac{\partial C}{\partial y^{0}}(x,y)\Big|_{x^{0} = y^{0}} = \int \left[u_{\mathbf{p}}(x)\frac{\overline{\partial u_{\mathbf{p}}(y)}}{\partial y^{0}} - \frac{\partial u_{\mathbf{p}}(y)}{\partial y^{0}}\overline{u_{\mathbf{p}}(x)}\right]_{x^{0} = y^{0}}d^{3}\mathbf{p} = i\delta^{3}(\mathbf{x} - \mathbf{y})$$

➤ The 2-point function is a map into the positive frequency subspace of S^C

$$f \in \mathcal{C}_0^{\infty}(\mathbf{M}^4) \to W * f = \int W(x,y) f(y) d^4y = \int u_{\mathbf{p}}(x) \overline{u_{\mathbf{p}}(y)} f(y) d^4y d^3\mathbf{p}$$

The permuted 2-point function is a map into the negative frequency subspace of S^C

$$f \in \mathcal{C}_0^{\infty}(\mathbf{M}^4) \to W' * f = \int W(y, x) f(y) d^4 y = \int \overline{u_{\mathbf{p}}(x)} u_{\mathbf{p}}(y) f(y) d^4 y d^3 \mathbf{p}$$

Bogoliubov Transformations

➤ A basis in the space of complex solutions of the KG equation on a manifold M

$$(u_i, u_j) = \delta_{ij}, \quad (\bar{u}_i, \bar{u}_j) = -\delta_{ij}, \quad (u_i, \bar{u}_j) = 0$$

- \blacktriangleright Another basis $(v_i,v_j)=\delta_{ij}, \quad (\bar{v}_i,\bar{v}_j)=-\delta_{ij}, \quad (v_i,\bar{v}_j)=0$
- ➤ Completeness formally gives

$$v_{i}(x) = \sum [a_{ij}u_{j}(x) + b_{ij}\bar{u}_{j}(x)] \qquad u_{j}(x) = \sum [\bar{a}_{ij}v_{i}(x) - b_{ij}\bar{v}_{i}(x)]$$

$$(v_{i}, u_{k}) = a_{ik}, \quad (v_{i}, \bar{u}_{k}) = -b_{ik},$$

$$v_{i}(x) = \sum [(a_{ij}\bar{a}_{lj} - b_{ij}\bar{b}_{lj})v_{l}(x) - (a_{ij}b_{lj} - b_{ij}a_{lj})\bar{v}_{l}(x)]$$

$$(a_{ij}\bar{a}_{lj} - b_{ij}\bar{b}_{lj}) = \delta_{ij}, \quad (a_{ij}b_{lj} - b_{ij}a_{lj}) = 0$$

Bogoliubov Transformations

The abstract quantum field in terms of ladder operators (formally)

$$\phi(x) = \sum [u_i b_i + \bar{u}_i b_i^{\dagger}] = \sum [v_i a_i + \bar{v}_i a_i^{\dagger}]$$

$$b_i = \sum [a_{ji} a_j + \bar{b}_{ji} a_j^{\dagger}] \qquad a_i = \sum [\bar{a}_{ij} b_j - \bar{b}_{ji} b_j^{\dagger}]$$

➤ Choose the corresponding Fock vacua

$$W(x,y) = \langle \Psi_0, \hat{\phi}(x)\hat{\phi}(y)\Psi_0 \rangle_b = \sum_i u_i(x)\overline{u_i(y)}$$

$$W_{a,b}(x,y) = \langle \Psi_0, \hat{\phi}(x)\hat{\phi}(y)\Psi_0 \rangle_a = \sum_i v_i(x)\overline{v_j}(y) = \sum_i [a_{ij}u_j(x) + b_{ij}\overline{u_j}(x)][\overline{a_{il}}\overline{u_l}(y) + \overline{b_{il}}u_l(y)],$$

- ➤ If the quantizations are unitarily equivalent the Bogoliubov transformation is implementable. The matrices a and b must be Hilbert-Schmidt.
- Otherwise the quantizations are inequivalent.