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Il) (More or less) Canonical
quantization of free fields (in flat
space!)



Things we saw yesterday

» A quantum field is (distributional) map from a spacetime
(a globally hyperbolic manifold) into a local field algebra

(M) > f - / o(2) f(z)da

» The (Heisenberg) algebraic structure is provided by the
commutator: a distribution that vanishes at spacelike
separated pairs (x,y)

C(x,y) = [¢(x),d(y)] = —ihE(x,y)



Things we saw yesterday

Let (M,g) a globally hyperbolic manifold In the space of

complex solution of the KG equation [1;¢ + V()¢ = O.
introduce the invariant Peierls aka KG inner product

(f,9) = —i/ZtT $M gdo”

Find a “complete” basis {u;} so that

(u;,uz) = 655, (us,uj) = —0;5, (uzuj) =0

The commutator admits the following expansion

Cla,y) =Y (us(@)wi(y) — us(y)ui(x))

7
It is basis independent (uniqueness)



Things we saw yesterday

» The second necessary step amounts to representing the
guantum field and the commutation relations in a Hilbert
space

(), 0(y)] =C(z,y) (= —ihE(z,y))

» This problem has uncountably many solutions (as
opposed to the Stone - Von Neumann unigueness). How
to construct (some of) them?



Quantum field theory (1927)

Quantum Mechanics + Special Relativity =

Quantum Field Theory

» The most successful theory we have (together with GR)
» (Embarassing) Long standing question:

» Does any nontrivial relativistic QFT in
spacetime dimension 4 exist (at the
nonperturbative level)?

» i.e.are QM and SR compatible?



QM + SR requirements

Locality or Microcausality:

[¢(2), ¢(y)] =0 if (x—y)? <O
Relativistic invariance:

A strongly continuousunitary rep. U (a, \)of the Poincaré
group actson ‘H

Poincaré invariance of the fields:

U(a,N)¢(x)U(a, )~ = ¢(Az + a)
Spectral condition on energy and momentum:

U(a) = e'@"Pu spectrum(P,) C v+
Existence and uniqueness of the vacuum:

U(a,N)Wo = Vg




Quantum field theory

» Microcausality (i.e. Local commutativity) and/or Poincaré (actually translation)
invariance forbid the existence of this map: ultraviolet singularities are unavoidable!

M* 3z — ¢ (z) € Op(H) — trivial theory

» Fields are singular objects: only spacetime averaged fields make sense

SMM 3 f = d ()= [ §(@) f(@)d*s € Op(H)

» Quantum fields are distributions.

» Previous properties have to be understood in the sense of distributions.

» Good news: they can be differentiated freely.

» Bad news: they cannot be multiplied. Even writing nonlinear field equations is
meaningless:

¢+ A¢> =0



Vacuum Expectation Values

» The theory is completely characterized by the knowledge of a set of distributions
satisfying a number of properties:

(Wo, (1) ... ¢p(xn)Wo) = Win(z1,...,2n)
» Relativistic invariance:
Wn(Az1 +a,...,Nen +a) = Wnp(x1,...,2n)
» Locality or microcausality:
it (x; — xj_|_1)2 <0
Wn(z1,.. . x5,Ti41,...) = Wnlz1,. .., 241,75, ..)

» Nonlinear Conditions of Positive definiteness (Necessary for the
Q.M. interpretation)

» Spectral Condition



Positive definiteness

» Consider a terminating sequence of test functions
f = (fo, f1(z1), fo(z1,22),...,0,...) z; € M*

» Construct the vector:

Y = foWo+ [dx1fi1(z1)p(x1)Wo +
+ [dxidxo fo(x1,22) p(x1)P(22)Wo + ...

» Compute the norm of this vector (it has to be positive):
W, 9) = X [ dedyFi(or, . @) (v, up)
jk

Wivk(zj, ... 21,91, -y,) >0



Spectral Condition

The Fourier transform of the n-point function
1

(27)2

Win(p1,p2,...,pn) = /ei(p1331+"‘+p”x”)Wn(a:1, oo, Tp)dzy ... doy

W(plap27 R 7pn) =0

unless

p1€VT, pr+peVT ... pr+po+...pneVT



Spectral Condition

W(p17p27 <o 7pn) — O

unless
pte€VT, prd+peVT,... pr4+po+...pneVT

equivalent to

W(x1,20,...,2n) = bw.W(z1,22,...2n)

holomorphic in the tube domain 1

T,y ={zj € ML) . Im(zy —22) e V7,...Im(2,_1 —2n) € V7 }



Reconstruction ©

» Examples have been constructed in spacetime dimension two and
three (hard, hard work in constructive quantum field theory.
» Limits of the method seem to have been attained

» No example known in spacetime dimension 4, after 80 years of
history of QFT!

» Are quantum mechanics and special relativity compatible?
» We don’t know vyet!



(Generalized) free theories
©

» Completely characterized by the two-point functions:
(Wo, dp(x1)p(x2)Wo) = W (x1,x2)

» Truncated n-point functions vanish;
» N-point functions are tensor products of two-point functions;
» Example: the 4-point function:

Wa(z1, 22, 73,24) =
= W(z1,22)W(x3,24) + W(z1,23)W (22,24) + W(21,24)W (22, 23)

» GFF have trivial S-matrix
» GFF are the essential ingredient for perturbation theory



Generalized free theories ©

» Once you have a two-point function, what you do with it?

» First thing: check locality

(Wo, [¢(2)o(y) — ¢(x)o(y)]Wo) = W(z,y) - W(y,z) = C(z,y)

» It must be C’(az,y) = 0 when (33 — y)2 <0



Generalized free theories ©

» Second check positive-definiteness: now it is simply
[ W@ F@) ) > o

» If you have translation invariance:

1 : ~
W) =Wa-—y) = 35 [ P CPWR)
[ W T@awdedy = <5 [ 7 CIW @)D (o) dady =

= (2?2 [ W) F(-n)F(-p)d*p > 0

» The Fourier transform of W is a positive measure of polynomial growth (Bochner-
Schwarz theorem)



Generalized free theories

» Introduce a pre-Hilbert scalar product in the test function space
(f,9) = [ Wz, F@gw)d*s = 2m)? [ WE)F(—p)g(-p)d’p

» Completing and quotienting the test function space w.r.t. this Hilbert topology gives the
1-particle space:

HL) = S(M2)/N = L2(Mp*, du(p))
dp(p) = W (p)d*p
» The n-particle space is the symmetric tensor product

HM = Sym(HD @ ... HD)

» The full Hilbert space is the symmetric Fock space

H= & H™ HO=cC

n=0




Generalized free theories ©
» The vacuum vector: \IJO — (]_’O’O,,,,)

» A dense set of vectors: Wf — (fo,fl,...,fk,O...)

» The field may be decomposed into creation and annihilation operators on the dense set
of vectors: d~(h) =& (h) + dT(h)

($_(h)wf>n (z1,...,zn) = vn+1 / W (x, x’)h(:c)fn_|_1(:c/, T1,... ,:cn)da:dx/,

(BT (W) (21,0 a0) = f Z h(@p) fo1(@1, -y Ty - - o Tn).

» The commutator is a c-number i.e. proportional to the identity operator:

[6(x1), p(x2)] = (W0, [¢(21), d(x2)]Wo) =
= W(z1,22) — W(x2,21) = C(x1,22)




The other way
SMM 5 f—o(N= [ ¢@) f(@)d'seF
(¢ (z) , ¢(y)]= C(z,y)1

» Notice that the hat has again disappeared: now the field
algebra is abstract

» Problem: find (all) positive definite two-point distribution
uehthat Wz, y) — W(y,2) = C(z,y)

» Fock—space representation is obtained by the previous

construction: A(f) — o(f) Fyw — Fyy

» There are infinitely many inequivalent answers even in flat
spacetime!



Curved spacetime ©

M* — M
SM*) 5 f = §(N) = [ 3 () [(@)d"s € Op(H)

replaced by

CEM) 3 f = b ()= [ 3(2) f(2)d"s € Op(H)



Curved spacetime ©

» The only property we can in general retain is local commutativity

[¢ (z), ¢(y)]= C(=,y)1

C(xz,y) = O for "spacelike separated” events x and y

The problem of constructing a linear quantum field theory
amounts to find a positive definite two-point distribution such
that the splitting holds



Curved spacetime ©

» The construction then goes as in flat spacetime (but no symmetry group
implemented in general)

(£.9) = [ W(en)F@)9w)d*

HO —CFODIN,  H= § H

(CE_(h)\Uf)n (z1,...,zn) = Vn+1 / W (x, x’)h(x)fn+1(x/, x1,...,xn)drds,

(BT (Wy) (@1, 2n) —7 Z W) froo1(T1, ooy By oo, Tn).

(Wo, ¢(2)o(y)Wo) = W(z,y), [(x),d(y)] = C(z,y)1



Summary

» How find a positive definite two-point distribution that
solves the equation

W(z,y) — W(y,xz) =C(z,y) 7
» How many solutions has this problem?

» Which solution is physically relevant?



KG fields: vacuum representation

06 (a) +m2¢(x) = 0
Ca,y) = oryz S e P DO@°) — 0(=p]6(p* — m)dp

¢ — ¢, W(z,y) = (Vo,d(x)d(y)WVo)

(Dx + m2) W(x,y) = (Dy + m2) W(z,y) =0

W(a,y) =W —y) = [ PCDWE) Lo pr=p% - px

(27)3’
(p? —mA)W(p) =0 — W(p) = §(p* — m?) NS
0_ /5212 0 22
5(p2 — m?2) = 5(p2 I\)/21@1_7712 ) 4 5(p2+I\)/213|_m2 ) /\
W (p) ~ ad(®°)5(p? — m?) + B6( %)

Positivity of the energy spectrum: =0



Klein-Gordon fields ©

«

W(z,y) = (23

/fi_"p(‘“"'_y)9(190)5(1?2 — m?)dp

W'z, y) = W(y,2) =

[ eFrEDo0)s(p? — m?)dp

[ e PEmo(—p0)5(p? — m?)dp

(2 7T)3

~ (2r)3

«

C(z,y) = W(x,y) —W(y,z) = (27)3

/ e~ P e(p9) 6 (p? — m?)dp

e(p?) = 6(p°) — 0(—p°)



Consequences of the spectral
condition

2) The spectral condition implies that the integral representation
makes sense in a larger complex domain of the complex
Minkowski space-time

z&ET (ImzeV7)| ¢

zZEeT" (Imz’'eV™H)

4

7z -zeET™
(Im(z'-2) V™)

W(z—2) =




Maximal analyticity

Spectral Property + Lorentz invariance
= maximal analyticity

W(z,2") =W (z—2") = W({) is maximally analytic in the complex
Lorentz invariant variable ¢ = (z — 2/)2:

The cut reflects causality
and QM




Klein-Gordon fields |l

6(2) + m24(2) = 0
C(z,y) = ﬁ [ e PE=0[9(p0) — 9(—p°)]6(p? — m?)dp

The fundamental split equation

C(z,y) =W(z,y) — W(y,x)
C(p) = W(p) — W(-p)
Has been solved according with spectral condition

W(p) = 0(p°)s(p? —m?) W(—p) = 0(—p°)s(p? — m?)
C(p) = W(p) — W(-p) = e(p®)s(p? — m?)



Klein-Gordon fields |l ©

(6(x) + m?4(z) = 0 o
C(z,y) = ﬁ [ e~ PE=[9(p0) — (—p°)]6(p? — m?)dp

C(z,y) = W(z,y) — W(y,z) C(p) =W(p) — W(-p)

W(p) = (a(p)8(p®) + v(p)0(—p°))é(p? — m?)
W (—p) = (a(=p)8(=p°) +v(=p)8(»°))s(p? — m?)

a(p) —v(=p) =1, a(-p)—7(p) =1
» Immediate (trivial) solution: o and y constant such thata-y=1
Wy (p) = [(1 +1)0) + v0(—p)]6(p? — m?)

» It defines an inequivalent local and covariant quantization of the KG field; negative
energy states are present. The representation is not irreducible.



Klein-Gordon fields |l

Wy (p) = [(1 + 71)0(p®) +v0(—p®)]s(p? — m?)

1 - eP 1
= o = = =
7 eB —1 7 eB —1 1—e 0
1
—_ Qv e
’Y(p) - 6_6])0 _1 (p) 1 — e_ﬁpo
1 1
— P p— — pu— 1
a(p) —v(—p) PR i
1 1
P — p— — p— 1
» Non trivial solution to the split equation:
- 0(p°) 0(—p°)
Ws(p) = 5(p? — m?)

1 — e—Bp° e—PBP° _ 1



Klein-Gordon fields |l ©

(6(x) + m?4(z) = 0 B
C(z,y) = ﬁ [ e~ PE=[9(p0) — (—p°)]6(p? — m?)dp

% _ [ 6% 6(—p°) 2 oy _ €(@(p? — m?)
W,B(p) — [1 B e_ﬁpo e_ﬁpo B 1] 5(29 —m ) — 1 _ e_ﬁpo
Wg(z,y) = (27103 /e_ip("”_y) L - i—ﬁpol e(p?)3(p* — m?)dp

» Positive definiteness holds.

» Stationary local quantization of the KG field depending on a positive parameter f.

» Lorentz invariance is broken. There exists a preferred class of referentials.



Klein-Gordon fields I ©

» Two crucial properties: analyticity

1 . 0 : 1
11,7 — —ip° (t—s)+ip(x—y) 0 2 2

analytic in the strip =8 <Im(t—s) <0

1
Ws(y,z) = / Fip?(t=)=ip(x-y) L_e_ﬁpo] e(p®)s(p?—m?)dp

(27 )3
analytic in the strip 0O <Im(t —s) < 8

» Periodicity in imaginary time

Wa(s,y,t +i6,%) = (obsy [eT? (FIB-)ip0y) L_

o] €S2 — m)dp
= (2ﬂ)3 f 6+Zpo(t $)=ip(x-y) 1_?_];[, e(p9)s(p? — m?)dp

= o5 3fe+zp°<t s)—ip(x~y) eﬂpl_ll e(p)6(p? — m?)dp

o3 [ e =) FiGy) 1—1M e(p)5(p? — m?)dp

—E€
Wﬁ(t7 X, S, Y)

(»° — —p%)




KMS condition ©

» Consider a gquantum system confined to a compact subset of space.
Its time-evolution is generated by a self-adjoint Hamiltonian H on a Hilbert space H.

The energy spectrum of H is discrete.

»Q,,...,Qy self-adjoint operators on H representing conserved quantities and
commuting with all “observables'.

> Wu,..,Uy denote the chemical potentials conjugate to the conserved quantities.

» The state describing thermal equilibrium at inverse temperature § and chemical
potentials w,...,uy is given by the density matrix (Gibbs, Landau, von Neumann)

P = ﬁ_i exp[—BHu]l,  (A)p, = tryleg Al

N

Hy,:=H-> Qi Zg
i—1

= tryle PHu]

Y



KMS condition
pop = 25 exp[=BHL, (A)g, = trylps Al
» Time evolution in the Heisenberg representation
a(A) 1= it ge—itH — (itH} g —itH),

» <o,(A) B>, analyticin the strip - <Imt<0

» <Bo,(A)>g, analyticin the strip 0<Imt<f

» Cyclicity of the trace implies the famous KMS periodicity condition

(at(A)B)g,,, = (Baryig(A)) s,



Klein-Gordon fields |l

» KMS Thermal equilibrium quantization at inverse temperature =1/T:

1 . 0 : 1
_ —ip”(t—s)+ip(x—y) 0 2 2
Wa(z,y) = (27r)3/€ L —p e(p”)d(p*—m=)dp

Wg(z,y) analytic in the strip —8 <Im(t —s) <0
Wj3(y,x) analytic in the strip 0 <Im(t—s) <f3

Wﬁ<S7Yat + 7:/87X) — W/@(t,X, SaY)

» For every B=1/T we have an inequivalent canonical quantization:

Oég(z) + m?dg(z) =0
85(), ds(y)] = / (0°) — 6(—p"))6(? — m?)d'p

[&Eﬁ(t(b X)v %B (t07 Y)] — ZTL5(X - Y)
[$ﬁ(t07x)7 &Eﬁ (tO7Y)] — [%ﬁ(t(%X)a %ﬁ (tO,Y)] = 0.



Klein-Gordon fields Il ©

O¢(x) + m°¢(z) =0
[#(t0,x), 7 (to,y)] = ihdé(x —y)
[gb(thX)a ¢(t07Y)] — [ﬂ-(t07x>7 s (t07Y)] = 0.

__ 1 (20— y0)+ip(x—y) &P
Wi v) = 553 /e 20
—iwxO+ipx _iwyP—ipy
_ e & d3p W = \/p2 + m2

J(2m)32w /(2r)32w

The function up(t,x) i +ipx is a complex classical solution
up(t,X) = \/—
(27)32w

of the KG equation:
Dup(t,x) = (—w? + p?up(t,x) = —m2up(t,x)

W(x,y) = /up(t,m)ui")(s,y)d3p



Klein-Gordon fields Il ©

(¢1,d2) = —iQ(P1,¢2) = 73/tzconst[al(t,X)Wz(t,x)—fl(t,X)¢2(t,X)]d3X

=1 é1(t,x) i0; da(t,x)d>x
t=const
elwl—ipX —zw’t—i—sz elwl—ipX e—z’w’t—l—ip’x 3 )
(up,up) =i [ |- 3x = §5(p—p')
\/(2%)32w \/(27r)32w \/(27r)32w VJ(2m)324/

—iwt+1px zw’t ip'x e—iwt-{—ipx eiw’t—ip’x
(Up, Uyy) =4 / )

\/(27r)32w \/(27r)32w \/ (2m)32w 1/ (27)32u/

B . plwt—ipx ' / plw't—ip'x . elwt—ipx plw't—ip'x 3
(up,up/)zz/ (iw — w d°x =0

] d>x = —5(p—p’)

J(21)32w \/ (2m)320  /(2m)32w /(27)320



Klein-Gordon fields Il ©

Consider the space SC of complex classical solution of the KG
equation. Introduce a sesquilinear (symplectic) form

() =i F(t,%) 0 g(t;x)d
t=const
e~ twl+ipx

V (271)32w
the following sense:

(upaup’> — 5([) — p/)a (ﬂpaap’) — —5(}3 — p/>7 (upaﬂ'p’> =0

are a "basis’ for SC in

The complex solutions up(z) =

The functions up(x) are "positive frequency” in the following
sense: i0iup = wup

The two-point function is a superposition of all the " positive
frequency” solutions and their complex conjugates:

W(z,9) = [up(@)up(y)dp



Klein-Gordon fields Il ©

» The structure of the 2-point function guarantees canonicity:

W(r,y) = [up(@)up(m)d®p (up, ) = 5(p — 1),
(iip. ) = —3(p — D).
(uP7 ’)_O

Clz,y) =W(z,y) - W(y,z) = /[Up(w)up(y) — up(y)up(x)]d>p

= [ [ 2| = is-y)
20=4/0

» The 2-point functlon is a map into the positive frequency subspace of S€

fecEM®) — wf = [ W,y fd'y = [up@)up()f (y)d*yd®p

oC
8—y0(x’y)

» The permuted 2-point function is a map into the negative frequency subspace of S€

fecgEm®) » Wsf = [W(y,a)f(d*y = [up(@)up()f(@)d*yd®p



Bogoliubov Transformations ©

» A basis in the space of complex solutions of the KG equation on a manifold M
(u;,uj) = 0;5, (ug,u5) = —d;5, (u;,u;) =0
» Another basis (vi,’vj) = 045, (1_)7;,’1_Jj) = —9ij, (’Ui,’l_Jj) =0
» Completeness formally gives
vi(x) = [azu;(x) + by ij(x)] uj(z) =3 [a;jvi(x) — b v;(z)]
(v ug) = ag, (v, ug) = —by,

vi(x) = Y [(agjar; — bby)vi(x) — (aiby; — bijag;) vy(x))

(azjag; — bijby;) = 655, (aiby; — bijag;) =0



Bogoliubov Transformations
» The abstract quantum field in terms of ladder operators (formally)
p(x) = 3 lu; by + ;b1 = Y [v;a; + T al]
b; =) laj;ia; + bj; CL}L-] a; =) [a;;bj — bj; b;-]
» Choose the corresponding Fock vacua

W(z,y) = (W0, d(z)d(y) Vo), = Zu7;(a?)u7;(y)

Wap(x,y) = (W0, $(2)d (1) Vo)a = Lvi(x)v;(y) =
> [azu;(x) + b5 uz(x)][a;u;(y) + by w(y)],
» If the quantizations are unitarily equivalent the Bogoliubov transformation is

implementable. The matrices a and b must be Hilbert-Schmidt.
» Otherwise the quantizations are inequivalent.



