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LONG STANDING JOINT PROJECT with MICHAEL O’CARROLL.

Also: R.S. Schor (UFMG, in the very beginning)

Students: J.C. Valencia (PhD at ICMC-USP), P.H.R. dos Anjos (UFG),
A.F. Neto (UFOP).

CONTEXT: Lattice QCD in d+1 EUCLIDEAN Spacetime Dimensions
d = 1,2 (with Pauli 2× 2 Spin Matrices)
d = 3 (with Dirac 4× 4 Spin Matrices)

Framework: UNIT Hypercubic Lattice, 3 Colors , Two/Three Quark
Flavors and STRONG COUPLING.

OBS.: Lattice Spacing is Kept FIXED! NO UV Problem!

GOAL: Apply analytical methods from Constructive Euclidean Quantum
Field Theory (QFT) to obtain the Low-Lying Particle Spectrum of Lat-
tice QCD. Rigorous Determination of ONE- and TWO- and, eventually,
THREE or +-PARTICLE ENERGY-MOMENTUM STATES.
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MATH Viewpoint: Determination of the SPECTRUM of the DYNA-

MICS GENERATOR of an UNDERLYING SEMI-GROUP describing Time-

Evolution of a Quantum Physical System.

QFT/Physics Viewpoint: Particle Content. Also, more ambitious: NU-

CLEAR PHYSICS from QCD. From First Principles: Quarks, Gluons and

their QCD Dynamics. Multibody Interactions, Binding Balance & MAT-

TER STABILITY, Binding Dependence on Spin, Isospin, ...

TODAY: Concentrate in d = 3, i.e. 3 + 1 Spacetime Dimensions,

4×4 Dirac Spin Matrices, 3 Flavors, SU(3) Local Gauge Model with

STRONG COUPLING.

For COMPLETENESS: Slides Contain MORE DETAILS THAN WE

WILL COVER HERE! (Interested People May Use Them)
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THE MODEL and SOME BASICS ( PLEASE, BE PATIENT!!! )

Statistical Mechanical Partition Function

Z =
∫
e−S(ψ,ψ̄,g) dψ dψ̄ dµ(g) ,

and for a function F (ψ̄, ψ, g), the Normalized Correlations are denoted
by

⟨F ⟩ =
1

Z

∫
F (ψ̄, ψ, g) e−S(ψ,ψ̄,g) dψ dψ̄ dµ(g) .

The Model ACTION S ≡ S(ψ, ψ̄, g) is the Improved Wilson action (no
fermion doubling!)

S =
κ

2

∑
ψ̄a,α,f(u)Γ

σeµ
αβ (gu,u+σeµ)abψb,β,f(u+ σeµ)

+
∑
u∈Z4

o

ψ̄a,α,f(u)Mαβψa,β,f(u)−
1

g20

∑
p
χ(gp) ,

where, besides the sum over repeated indices α, β = 1,2,3,4 (spin),
a = 1,2,3 (color) and f = 1,2,3 ≡ u, d, s (isospin), the first sum runs over
u = (u0, u⃗) = (u0, u1, u2, u3) ∈ Z4

o ≡ {±1/2,±3/2,±5/2...} × Z3, σ = ±1
and µ = 0,1,2,3.
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Here:

Label 0 for the time direction. Direction 3: also called the z-direction.
eµ, µ = 0,1,2,3, unit lattice vector for the µ-direction.

PARAMETERS: Quark-Gauge Coupling or Hopping Parameter κ > 0,
the Pure Gauge Strength β ≡ (2g20)

−1 > 0, Fermion Masses Mαβ ≡
Mαβ(m,κ) > 0, m > 0 is the Bare Fermion Mass.

Technical Point:

Shifted lattice for the time direction: avoids the Zero-Time coordinate.
In the (formal) continuum limit, two-sided equal time limits of quark,
Fermi-field correlations are accommodated.

QUARKS & ANTIQUARKS:

At each site u ∈ Z4
o , there are fermionic Grassmann Quark fields ψaαf(u)

and Antiquark fields ψ̄aαf(u) , carrying a Dirac Spin index α = 1,2,3,4,
an SU(3)c Color index a = 1,2,3 and Flavor f = 1,2,3.

We refer to α = 1,2 as Upper Spin indices and α = 3,4 or + or −
respectively, as Lower ones.
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SPIN in the Continuum: In a Poincaré invariant theory, recall the Fields

and Physical States verify definite transformation laws under the Poincaré

Group.

Lorentz Boost: Pass to Improper States in the rest frame. Fields trans-

form according to a (Irreducible) Representation of SU(2) - the Conti-

nuum Spatial Rotation Subgroup.

The Infinitesimal Generators are the Spin Operators and Satisfy the

Usual Angular Momentum Algebra.

Here: Only Discrete π/2 Rotations about the Spatial Axes are SYMME-

TRIES, which we use to define the Components of our Lattice Total

Angular Momentum.
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Other Rotational Symmetries for a tridimensional cube (e.g. rotations

about an axis passing by the cube diagonal) are also Rotation Symmetries

Here!

For Improper Zero-Momentum Particle States: Obtained with LO-

CAL COMPOSITE Fields, which are expected to have zero spatial angular

momentum, Define Rectangular Components of Total Spin: which

Agree with the Infinitesimal Generators of Rotations of the Continuum.

REMARK: for κ = 0, there is an SU(4) symmetry which includes the

SU(2) ⊕ SU(2) Symmetry in the Spin Space of the model; for κ > 0 of

course only the discrete rotation subgroup survive.
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GAUGE FIELDS: For each nearest neighbor oriented lattice bond <

u, u ± eµ > there is an SU(3)c matrix U(gu,u±eµ) parametrized by the

gauge group element gu,u±eµ and satisfying U(gu,u+eµ)
−1 = U(gu+eµ,u).

PLAQUETTES: At each lattice oriented plaquette p (Single Square

Circuit) there is a Plaquette Variable χ(U(gp) where U(gp) is the ori-

entation ordered product of matrices of SU(3)c of the plaquette oriented

bonds, and χ is the Real Part of the Trace (Character).

For simplicity, we sometimes drop U from U(g).

STRONG COUPLING REGIME: The Hopping Parameter κ > 0 and

the Plaquette Coupling β ≡ (2g20)
−1 > 0 satisfy

0 < β ≪ κ≪ 1 .
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FERMION MASSES: M ≡ M(m,κ) = (m+ 2κ)I4. Given κ, for simpli-

city and without loss of generality, m > 0 is chosen such that Mαβ = δαβ,

meaning that m+2κ = 1.

Strong Coupling: m = 1− 2κ . 1 so that Quarks are Heavy here, i.e.

STATIC! Also: COVARIANT Dirac term in the Action DOMINA-

TES the PLAQUETTE (Pure Gauge) Term.

DIRAC-GAUGE MATRICES: Γ±eµ = −I4±γµ, where the γµ are the 4×
4 Hermitian traceless anti-commuting Dirac matrices satisfying {γµ, γν} =

2δµνI4, and

γ0 =

(
I2 0
0 −I2

)
; γj =

(
0 iσj

−iσj 0

)
,

σj, j = 1,2,3 are the Hermitian traceless anti-commuting 2 × 2 Pauli

matrices.
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GAUGE FIELD MEASURE: The measure dµ(g) is the product mea-

sure over non-oriented bonds of normalized SU(3)c Haar measures. There

is only one integration variable per bond, so that guv and g−1
vu are not tre-

ated as distinct integration variables.

GRASSMANN INTEGRALS: Grassmann Integrals are Berezin!

For a polynomial in the Grassmann variables with coefficients depending

on the gauge variables, it is the coefficient of the monomial of maximum

degree, i.e. of
∏
u,ℓ ψ̄ℓ(u)ψℓ(u), ℓ ≡ (α, a, f).

FERMION INTEGRATION ELEMENTS: dψ dψ̄ is a product mea-

sure ∏
u,ℓ

dψℓ(u) dψ̄ℓ(u) .
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GAUSSIAN FERMION INTEGRATION: With a normalization N1 =

⟨1⟩, we have

⟨ψℓ1(x) ψ̄ℓ2(y)⟩ = 1
N1

∫
ψℓ1(x) ψ̄ℓ2(y) e

−
∑
u,ℓ3,ℓ4

ψ̄ℓ3(u)Oℓ3ℓ4ψℓ4(u) dψ dψ̄

= O−1
α1,α2

δa1a2δf1f2δ(x− y)
,

with a Kronecker delta for space-time coordinates, and where O -the

bilinear form operator- is diagonal in the color and isospin indices.

Setting κ = 0, we have UNIT COVARIANCE: the two-fermion correla-

tion yields

⟨ψℓ1(x) ψ̄ℓ2(y)⟩ = δα1,α2δa1a2δf1f2δ(x− y) .

The integral over a string with a different number of ψ and ψ̄ vanishes,

and the integral of monomials is given by Wick’s theorem.
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GAUGE INVARIANCE:

The Wilson action is invariant by the LOCAL GAUGE transformati-

ons (for x ∈ Z4
o and h(x) ∈ SU(3)c)

ψ(x) 7→ h(x)ψ(x) ,
ψ̄(x) 7→ ψ̄(x) [h(x)]−1 ,

U(gx+eµ,x) 7→ h(x+ eµ)U(gx+eµ,x) [h(x)]
−1 .

FLAVOR SYMMETRY: There is also a SU(3)f Global FLAVOR sym-

metry of the action.

[SU(2)×U(1)] ⊂ SU(3)f is the ISOSPIN & HYPERCHARGE Subgroup

LATTICE: Today Main Tool to Deal With Non-PERTURBATIVE Re-

gime. Many Calculations Rely on NUMERICAL SIMULATIONS!????!
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STRONG COUPLING Regime 0 < β ≪ κ ≪ 1 is GOOD for Doing

Analysis.

Plaquette Term in the action can be ’NEGLECTED’! Many Old Results

Available!

CLAIM: NOT ruled out as a Good Regime to treat the Physics we are

interested in here!

BESIDES: Strong Coupling Regime has been shown to PRESERVE

IMPORTANT QUALITATIVE FEATURES of the Model!

PHYSICALLY DESIRABLE:To Have a Picture of LQCD for ALL

POINTS in the (κ, β) plane!

HERE: NOT Claiming to be Uncovering the Whole Story!
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INFINITE-VOLUME RESULTS:

EXISTENCE: Start with the Strongly Coupled LQCD Model in a FI-

NITE BOX. By Polymer Expansion, the THERMODYNAMIC Limit of

Correlations Exists. (Check Books by E. Seiler & B. Simon)

IMPORTANT PROPERTIES:

Limiting Correlations: Correlations are Lattice Translational Invariant.

Truncated Correlations: have Exponential TREE-DECAY.

Analyticities:

1) Correlations Extend to COMPLEX ANALYTIC FUNCTIONS func-

tions in the Global Couplings κ and β.

2) Also, taking the various κ, β to be DISTINCT: Analyticity in any Finite

Number of Local Couplings
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HILBERT SPACE & ENERGY-MOMENTUM OPERATORS:

The Underlying Quantum Mechanical Physical HILBERT SPACE

H as well as the ENERGY H and MOMENTA P j, j = 1,2,3 (E-M)

Operators are defined using the Osterwalder-Schrader construction.

Start from Gauge-Invariant correlations supported on u0 = 1/2.

Let Tx
0

0 , Tx
i

i , i = 1,2,3, denote Translation of the Functions of Gras-

smann and gauge variables by x0 ≥ 0, x⃗ = (x1, x2, x3) ∈ Z3.

For F and G only depending on coordinates with u0 = 1/2, with an abuse

of notation, we have the FEYNMAN-KAC (F-K) formula

(G, Ťx
0

0 Ťx
1

1 Ťx
2

2 Ťx
3

3 F )H = ⟨[Tx
0

0 T⃗ x⃗F ]ΘG⟩ ,

where T x⃗ = Tx
1

1 Tx
2

2 Tx
3

3 .

We do not distinguish between Grassmann, gauge variables and their

associated Hilbert space vectors in our notation.
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1) LHS involves ’INNER PRODUCTS’ in H.

2) RHS only Functional Integrals, i.e. Statistical Mechanical Correlations.

3) The Equality comes by employing a Lie-Trotter Product Formula,

Random Processes, Wiener Paths, ... (See books by Glimm-Jaffe and

Simon.)

Θ is an anti-linear operator and involves Reflection in Time. Actions:

Θψ̄aα(u) = (γ0)αβψaβ(tu) ,

Θψaα(u) = ψ̄aβ(tu)(γ0)βα ;

where t(u0, u⃗) = (−u0, u⃗), for A and B monomials, Θ(AB) = Θ(B)Θ(A);

and for a function of the gauge fields Θf({guv}) = f∗({g(tu)(tv)}), u, v ∈
Zd+1
o , where ∗ means complex conjugate.

Θ extends anti-linearly to the algebra of fields.
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As Linear Operators in H, Ťµ, µ = 0,1,2,3, are Mutually Commuting.

Ť0 is Self-Adjoint, with −1 ≤ Ť0 ≤ 1.

Ťj=1,2,3 are Unitary.

We write Ťj = eiP
j
and P⃗ = (P1, P2, P3) is the Self-Adjoint Momentum

Operator with Spectral Points p⃗ ∈ T3 ≡ (−π, π]3.

Since Ť2
0 ≥ 0, the Energy Operator H ≥ 0 is defined by Ť2

0 = e−2H.

H, P j Commute! Joint spectrum: E-M Spectrum

A Point in the E-M spectrum with spatial momentum p⃗ = 0⃗ is a MASS.
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Consider the Spectral Families of Ť0, P
1, P2 and P3. For Real κ, by

the Spectral Theorem, have the Spectral Representations

Ť0 =
∫ 1

−1
λ0dE0(λ

0) , Ťj=1,2,3 =
∫ π
−π

eiλ
j
dFj(λ

j) ,

For future use: Let E(λ0, λ⃗) = E0(λ
0)
∏3
1 Fj(λ

j).

For Real κ > 0, the O-S POSITIVITY Condition ⟨FΘF ⟩ ≥ 0 can be

Established.

But there may be vectors F ̸= 0 such that ⟨FΘF ⟩ = 0.

If the set of such vectors F ’s is denoted by N , a pre-Hilbert space H′ can
be constructed from the inner product ⟨GΘF ⟩ and the physical Hilbert

space H is the completion of the quotient space H′/N , including also the

cartesian product of the inner space sectors, the color space C3, the spin

space C4 and the isospin space C3.
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MORE SYMMETRIES: Besides Spatial π/2 & Diagonal Rotations

The Usual Spacetime Symmetries of Parity P, Charge Conjugation C,
Time-Reversal T and Reflection in z-coordinate Hold and are Imple-
mented by Operators in H.

A new Time-Reflection T is found! Used to define a Local Spin Flip
Symmetry.

• Time Reversal T : ψα(x) → ψ̄β(x
t)Aβα, xt ≡ (−x0, x⃗), ψ̄α(x) →

Bαβψβ(x
t), A = B = B−1 = γ0, f(gxy) → [f(gxtyt)]

∗;

• Charge Conjugation C: ψα(x) → ψ̄β(x)Aβα, ψ̄α(x) → Bαβψβ(x), with

A = −B = B−1 =

(
0 iσ2

iσ2 0

)
, f(gxy) → f(g∗xy);

• Parity P: ψα(x) → Aαβψβ(x
0,−x⃗), ψ̄α(x) → ψ̄β(x

0,−x⃗)Bβα where
A = B = A−1 = γ0, f(gxy) → f(gx̄ȳ), with z̄ = (z0,−z⃗).

18



Time Reflection T: NOT to be Confused with Time Reversal symmetry

• Time Reflection T: ψα(x) → Aαβψβ(−x0, x⃗), ψ̄α(x) → ψ̄β(−x0, x⃗)Bβα

where A = B = A−1 =

(
0 −iI2
iI2 0

)
, f(gxy) → f(gx̄ȳ), with z̄ =

(−z0, z⃗).

These Operations extend to monomials and are taken to be order preser-

ving, except for C and T which are order reversing. They extend linearly

to polynomials and their limits, except for time reversal which is anti-

linear. For all of them, except time reversal, the field average equals the

transformed field average; for time reversal the transformed field average

is the complex conjugate of the field average.
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Remark 1 An important (NEW!) result is that the composed operation

Fs ≡ −iT CT

gives the Spin Flip Transformation.

ψα(x) → Aαρψρ(x)

ψ̄β(x) → ψ̄γ(x)Bγβ ,

where A =

(
iσ2 0
0 iσ2

)
is real anti-symmetric and B = A−1 = −A.

It is local and is also a symmetry of the system.

In contrast to the above transformations, it surprisingly leaves invariant

each individual term in the Wilson action.
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SCENARIO FIGURE
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CONCENTRATE ON STATES INVOLVING

ONLY BARYON PARTICLES.

SIMILAR for MESONS.

In Strong Coupling: Glueballs Masses are MUCH HIGHER in Spectrum

and Do Not Intervene in Our PRESENT ANALYSIS.

ONE-PARTICLE SPECTRUM:

HERE: One-Baryon Sector Hb ⊂ Ho ⊂ H.

Ho is the Subspace with an ODD NUMBER of Fermions (quarks).

Points in the E-M spectrum are Detected as Singularities in Momen-

tum Space Spectral Representations of Suitable Two-Baryon Corre-

lations.

PHYSICAL PARTICLES: Associated with ISOLATED (DISPER-

SION) CURVES in the E-M SPECTRUM. NEED TO SHOW LOWER

and UPPER SPECTRAL GAP PROPERTIES!
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CONTINUOUS SPECTRUM (BANDS) Are Related to the Spectrum

Corresponding to certain Group of Particles.

SINGULAR SPECTRUM usually has no physical interpretation (except

for quasi-crystals).

RECURRENT in LATTICE COMMUNITY: NOT BASED ON

SPECTRAL REPRESENTATIONS.

SIMULATIONS: DEAL ONLY WITH OBTAINING EXPONENTIAL DE-

CAY RATES OF CORRELATIONS!!!
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WARNING: WILL NEGLECT PLAQUETTE Term in the Wilson Ac-

tion as β ≪ κ.

Using β ANALYTICITY: RESULTS for SMALL |β| Are Stated Afterwards!

DYNAMICAL BARYON FIELDS:

Baryon Fields of the form (Hat Means All Barred or All Unbarred!)

b̂
α⃗f⃗

= ϵabc ψ̂aα1f1ψ̂bα2f2ψ̂cα3f3 ,

with only upper u (αi = 1,2) or lower ℓ (αi = 3,4) Spin Components

EMERGE NATURALLY From The LQCD DYNAMICS.

RECALL: Each κ derivative acting on exp[HOPPING Term] Gives a Mul-

tiplicative Factor

−
1

2

∑
ψ̄a,α,f(u)Γ

σeµ
αβ (gu,u+σeµ)abψb,β,f(u+ σeµ)
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Using the COFACTOR METHOD (M. Creutz) only the gauge field inte-

grals with a String with a MULTIPLE of 3 Matrix Elements of U DO

NOT VANISH!

The Elements of U† = U−1 count as PRODUCTS of 2 Matrix Elements

of U as, for U ∈ SU(3), detU = 1 and

U−1 = [cof U ]t (cof = COFACTOR) .
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Using a Generating Functional for the String of U ’s, we Compute Some

Useful Nonvanishing Gauge Integrals (recall U(g) ≡ g):

I2 ≡
∫
ga1b1g

−1
a2b2

dµ(g) =
1

3
δa1b2 δa2b1 , (1)

I3 ≡
∫
ga1b1ga2b2ga3b3dµ(g) =

1

6
ϵa1a2a3ϵb1b2b3, (2)

I4 ≡
∫
ga1b1g

−1
a2b2

ga3b3g
−1
a4b4

dµ(g)

=
1

8
[δa1b2δa3b4δb1a2 δb3a4 + (a2 � a4, b2 � b4)]

−
1

24
[δa1b2δa3b4δb1a4 δb3a2 + (a2 � a4, b2 � b4)] (3)

I6 ≡
∫
ga1b1ga2b2ga3b3ga4b4ga5b5ga6b6 dµ(g)

=
2

3!4!

[
ϵa1a2a3ϵb1b2b3ϵa4a5a6ϵb4b5b6 + ϵa1a2a4ϵb1b2b4ϵa3a5a6ϵb3b5b6+

ϵa1a2a5ϵb1b2b5ϵa3a4a6ϵb3b4b6 + ϵa1a2a6ϵb1b2b6ϵa3a4a5ϵb3b3b5+

ϵa1a3a4ϵb1b3b3ϵa2a5a6ϵb2b5b6 + ϵa1a3a5ϵb1b3b5ϵa2a4a6ϵb2b4b6+

ϵa1a3a6ϵb1b3b6ϵa2a4a5ϵb2b4b5 + ϵa1a4a5ϵb1b4b5ϵa2a3a6ϵb2b3b6+

ϵa1a4a6ϵb1b4b6ϵa2a3a5ϵb2b3b5 + ϵa1a5a6ϵb1b5b6ϵa2a3a4ϵb2b3b4

]
. (4)
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Using all this and considering a general correlation ⟨F (x)G(y)⟩, with F

and G with an ODD NUMBER of Barred ψ̄ PLUS Unbarred ψ the lowest

κ order F and G admissible are the BARYON and ANTIBARYON Fields.

EXPLANATION:

ZERO DERIVATIVES: ⟨F ⟩ = 0 = ⟨G⟩ by Fermion Integration.

ONE DERIVATIVE: One U(g) = g is produced and has ZERO Integral.

TWO DERIVATIVES: EITHER Two U Are PRODUCED and have ZERO

Integral, OR ONE U and ONE U−1 Are produced, Which Gives a Non-

vanishing Gauge Integral, BUT Has ZERO FERMION Integral.

THREE DERIVATIVES: Three U Are Produced and Gauge Integral Gives

Levi-Civita ϵa1a2a3. Together With the Three Accompanying Fermion

Fields, gives the Baryon!
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To Classify and Label the Baryon States, USE:

1) Flavor Symmetry SU(3)f (which holds for any κ!): Total Isospin I,

Third Component of Total Isospin I3 and Total Hypercharge Y Opera-

tors (related to the SU(2) and U(1) Subgroups).

2) Value of the Quadratic Casimir C2.

3) Total Spin and its z-component, J and Jz.

Enough: No need for the cubic Casimir C3!
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The Baryon Fields

b̂
α⃗f⃗

= ϵabc ψ̂aα1f1ψ̂bα2f2ψ̂cα3f3 ,

comprise a set of 216 = 63 = (2 spins for a Particle State × 3 flavors)3

fields.

NOT ALL ARE Linearly Independent: Totally Symmetric Property

(tsp), i.e. these are symmetric under the Interchange of Any Two Pairs

αifi ↔ αjfj, there are equalities among them.

ONLY 56 distinct, linearly independent, states.

Normalized Baryon fields

B̂
α⃗f⃗

=
1

n
α⃗f⃗

b̂
α⃗f⃗

with n
α⃗f⃗

may assume the values 6, 2
√
3 and

√
6 (depending on the number

of repeated pairs αi , fi).
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TWO-BARYON CORRELATIONS

Gℓℓ′(u, v) = ⟨Bℓ(u)B̄ℓ′(v)⟩χu0≤v0 − ⟨B̄ℓ(u)Bℓ′(v)⟩
∗ χu0>v0 ,

Here, ℓ and ℓ′ are Collective Indices and χ denotes the INDICATOR.

By Time Reversal Symmetry: ⟨Bℓ(u)B̄ℓ′(v)⟩ = −⟨B̄ℓ(−u0, u⃗)Bℓ′(−v0, v⃗)⟩∗,

Gℓℓ′(u, v) = Gℓℓ′((−u
0, u⃗), (−v0, v⃗)) .

Using the Previous Spectral Reps for the E-M Operators in the F-K

Formula, we have (NOTICE: NO Zero-Time Fields!):

Theorem 1 For x ≡ u− v, and recalling -by translation invariance- that

G(u, v) = G(u− v) with B̄ℓ ≡ B̄ℓ(1/2, 0⃗) we have

Gℓ1ℓ2(x) = −
∫ 1

−1

∫
T3

(λ0)|x
0|−1e−iλ⃗.x⃗ dλ(B̄ℓ1, E(λ

0, λ⃗)B̄ℓ2)H ;

for x ∈ Z4, x0 ̸= 0, and is an even function of x⃗ by parity symmetry.
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For p ≡ (p0, p⃗), the lattice Fourier Transform of Gℓ1ℓ2(x) is

G̃ℓ1ℓ2(p) =
∑
x∈Z4

Gℓ1ℓ2(x)e
−ip.x .

Combining with the last result, after separating the Zero-Time Contri-

bution, G̃ℓ1ℓ2(p) admits the Spectral Representation:

Theorem 2

G̃ℓ1ℓ2(p) = G̃ℓ1ℓ2(p⃗)−(2π)3
∫ 1

−1
f(p0, λ0)dλ0αp⃗,ℓ1ℓ2(λ

0) ,

where

dλ0αp⃗,ℓ1ℓ2(λ
0)=

∫
T3

δ(p⃗− λ⃗)dλ0dλ⃗(B̄ℓ1, E(λ
0, λ⃗)B̄ℓ2)H ,

with

f(p0, λ0) ≡ (eip
0
− λ0)−1 + (e−ip

0
− λ0)−1 ,

and we set G̃(p⃗) =
∑
x⃗ e

−ip⃗.x⃗G(x0 = 0, x⃗).

USE G̃(p) to DETECT Baryon Particles in the E-M Spectrum.
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Complex p0 Singularities of G̃(p) Are Points in the E-M spectrum!
Particles correspond to Singularities which form Isolated Dispersion
Curves w(p⃗) associated with p0 = iw(p⃗).

ISOLATED: Need to show UPPER and LOWER Spectral Gaps

LOWER Spectral Gap: OK since G has exponential decay, as follows
from the Polymer Expansion Method.

MORE PRECISE BOUND: Lattice Adaptation of Spencer’s Hyperplane
Decoupling Method. The Above κ expansion is a Good Guide to Un-
derstand this!

Theorem 3 The two-point function kernel Gℓ1ℓ2(u, v, κ) ≡ Gℓ1ℓ2(u, v) ≡
Gℓ1ℓ2(u−v) verifies the following global bound, with |x| = |x0|+

∑3
j=1 |xj|,

|Gℓ1ℓ2(u, v)| ≤ O(1) |κ|3|u−v| = O(1) e−(−3 ln |κ|)|u−v| ,

for some positive constant O(1) uniform in κ and in the multindices ℓ1
and ℓ2.
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By the Payley-Wiener theorem:

Corollary 1 G̃(p) is analytic in the polystrip |Im pµ| ≤ −(3 − ϵ) lnκ, µ =
0,1,2,3, 0 < ϵ ≪ 1, and we have a spectral mass gap of at least −(3 −
ϵ) lnκ, 0 < ϵ≪ 1.

TO GO HIGHER in SPECTRUM and Obtain an UPPER GAP: USE a
Meromorphic Extension of G̃(p) in p0. For fixed p⃗ and κ ̸= 0, it is
provided by

Γ̃−1(p) =
{cof[Γ̃(p)]}t

detΓ̃(p)
,

where Γ̃(p)G̃(p) = 1, such as Γ is the convolution inverse of G.

Γ is Defined by a Neumann series in κ. Series Converges by the global
bound on G, for small |κ| > 0.

That Γ̃−1(p) provides a Suitable Extension of G̃(p) since Γ has a Faster
Falloff Than G: From COMPENSATIONS in Neumann Series.

Faster Falloff Also Ensures: Singularities of G̃(p) are contained in the
zeroes of detΓ̃(p). CAN CHECK: NO 0

0 Cancellation in Quotient!
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In the above discussion, we used the result from the Spencer’s Hyperplane
Decoupling Expansion:

Theorem 4 The convolution inverse kernel Γℓ1ℓ2(u, v, κ) ≡ Γℓ1ℓ2(u, v) ≡
Γℓ1ℓ2(u− v) is bounded and satisfies

|Γℓ1ℓ2(u, v)| ≤ O(1) |κ|3|u⃗−v⃗| |κ|3+5(|u0−v0|−1), |u0 − v0| ̸= 0 ,

for some constant O(1) > 0, uniform in κ, ℓ1 and ℓ2. The rhs is replaced
by const κ3|u⃗−v⃗|, if u0 = v0.

Again, by Payley-Wiener theorem, we obtain:

Corollary 2 Γ̃(p) is analytic in the polystrip |Imp0| ≤ −(5−ϵ) lnκ, |Impi| ≤
−(3− ϵ) lnκ, i = 1,2,3, 0 < ϵ≪ 1.

RESTRICTION to Baryons (lower indices in B fields!). Charge Conjuga-
tion Ensures Similar Results for Antibaryons (upper indices).

The Baryon DISPERSION CURVES w(κ, p⃗) are defined by

det Γ̃
(
p0 = iw(κ, p⃗), p⃗

)
= 0 .

It follows that, with fixed p⃗, the Curves w(κ, p⃗) are ISOLATED.
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We still do not know the number and form of the w(κ, p⃗).

INTUITIVE ARGUMENT: Retaining only terms to order κ3, i.e. using

only the values for distance zero and one (see below):

G̃ℓ1ℓ2(p) = [−1− 2κ3 cos p0 − κ3

4
∑
j=1,2,3 cos pj] δℓ1ℓ2 +O(κ4) ,

Γ̃ℓ1ℓ2(p) = [−1+ 2κ3 cos p0 + κ3

4
∑
j=1,2,3 cos pj] δℓ1ℓ2 +O(κ4) .

Dropping the O(κ4) terms in Γ̃(p), detΓ̃(p) factorizes into 56 identical

factors. Under the above approximation, with p2ℓ ≡ 2
∑3
i=1(1− cos pi), for

each factor, we get identical dispersion curves

w(p⃗) ≡ w(p⃗, κ) =

[
−3 lnκ−

3κ3

4
+
κ3

8
p2ℓ

]
+O(κ4) .

Particle Mass: M ≡ w(0⃗, κ) =
[
−3 lnκ− 3κ3

4

]
+O(κ4) ,
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SOLVING THE IMPLICIT EQUATION for w(p⃗, κ)

NEW BASIS: The Two-Baryon Matrix is ’more diagonal’.

SEEN using the SU(3) flavor and other symmetries like time reversal,

charge conjugation, parity and time reflection, and the analysis becomes

much simpler.

PARTICLE BASIS: Related to the (original) Individual Basis by a Real

Orthogonal Transformation.
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LABELS: Eightfold Way quantum numbers of I3, Y , C2, coming from

SU(3)f . Also, J and Jz.

The 56-Dimensional One-Baryon vector subspace B of the Hilbert space

H≀ admits an orthogonal direct sum decomposition:

B =
(
⊕i=1,...,10Di

)
⊕
(
⊕i=1,...,8Oi

)
. (5)

Here, each D is 4-Dimensional and each O is 2-Dimensional.

G(κ, x) presents a compatible block decomposition, with eight identical

2 × 2 blocks associated with Total Spin 1/2 OCTET BARYONS and

ten identical 4 × 4 blocks, associated with Total Spin 3/2 DECUPLET

BARYONS.

G is diagonal in all of the above quantum numbers, except for the

SPIN, for all κ > 0.
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Γ(κ, x) inherits the same block decomposition as G(κ, x).

Also their Fourier transforms G̃(κ, p) and Γ̃(κ, p).

The decays of G and Γ are preserved as well as Analyticity Properties of

G̃(κ, p) and Γ̃(κ, p).

OCTET FIELDS: (± denote the Jz = ±1/2.)

p± = ϵabc
3
√
2
(ψ̄a+uψ̄b−d − ψ̄a+dψ̄b−u)ψ̄c±u,

n± = ϵabc
3
√
2
(ψ̄a+uψ̄b−d − ψ̄a+dψ̄b−u)ψ̄c±d,

Ξ0
± = ϵabc

3
√
2
(ψ̄a+uψ̄b−s − ψ̄a+sψ̄b−u)ψ̄c±s,

Ξ−
± = ϵabc

3
√
2
(ψ̄a+dψ̄b−s − ψ̄a+sψ̄b−d)ψ̄c±s,

Σ+
± = ϵabc

3
√
2
(ψ̄a+uψ̄b−s − ψ̄a+sψ̄b−u)ψ̄c±u,

Σ0
± = ϵabc

6 (2ψ̄a±uψ̄b±dψ̄c∓s − ψ̄a−uψ̄b+dψ̄c±s − ψ̄a+uψ̄b−dψ̄c±s),

Σ−
± = ϵabc

3
√
2
(ψ̄a+dψ̄b−s − ψ̄a+sψ̄b−d)ψ̄c±d,

Λ± = ϵabc
2
√
3
(ψ̄a+uψ̄b−d − ψ̄a+dψ̄b−u)ψ̄c±s ,

n, p, Ξ− and Ξ0 have I = 1/2; Σ+, Σ0 and Σ− have I = 1 and Λ has

I = 0.
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DECUPLET FIELDS:

∆+
±1
2

= ϵabc
6 (ψ̄a±uψ̄b±uψ̄c∓d+2ψ̄a±uψ̄b∓uψ̄c±d),

∆+
±3
2

= ϵabc
2
√
3
ψ̄a±uψ̄b±uψ̄c±d,

∆0
±1
2

= ϵabc
6 (2ψ̄a±uψ̄b±dψ̄c∓d+ψ̄a∓uψ̄b±dψ̄c±d),

∆0
±3
2

= ϵabc
2
√
3
ψ̄a±uψ̄b±dψ̄c±d,

∆−
±1
2

= ϵabc
2
√
3
ψ̄a±dψ̄b±dψ̄c∓d ,

∆−
±3
2

= ϵabc
6 ψ̄a±dψ̄b±dψ̄c±d ,

∆++
±1
2

= ϵabc
2
√
3
ψ̄a±uψ̄b±uψ̄c∓u ,

∆++
±3
2

= ϵabc
6 ψ̄a±uψ̄b±uψ̄c±u ,

Σ∗+
±3
2

= ϵabc
2
√
3
ψ̄a±uψ̄b±uψ̄c±s,

Σ∗+
±1
2

= ϵabc
6 (ψ̄a±uψ̄b±uψ̄c∓s+2ψ̄a±uψ̄b∓uψ̄c±s) ,

Σ∗0
±3
2

= ϵabc
6 ψ̄a±uψ̄b±dψ̄c±s ,
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Continuing...



Σ∗0
±1
2

= ϵabc
3
√
2
(ψ̄a±uψ̄b±dψ̄c∓s+ ψ̄a±uψ̄b∓dψ̄c±s+ ψ̄a∓uψ̄b±dψ̄c±s),

Σ∗−
±3
2

= ϵabc
2
√
3
ψ̄a±dψ̄b±dψ̄c±s,

Σ∗−
±1
2

= ϵabc
6 (ψ̄a±dψ̄b±dψ̄c∓s+2ψ̄a±dψ̄b∓dψ̄c±s),

Ξ∗0
±3
2

= ϵabc
2
√
3
ψ̄a±uψ̄b±sψ̄c±s,

Ξ∗0
±1
2

= ϵabc
6 (ψ̄a∓uψ̄b±s+2ψ̄a±uψ̄b∓s)ψ̄c±s,

Ξ∗−
±3
2

= ϵabc
2
√
3
ψ̄a±dψ̄b±sψ̄c±s,

Ξ∗−
±1
2

= ϵabc
6 (ψ̄a∓dψ̄b±s+2ψ̄a±dψ̄b∓s)ψ̄c±s,

Ω−
±3
2

= ϵabc
6 ψ̄a±sψ̄b±sψ̄c±s,

Ω−
±1
2

= ϵabc
2
√
3
ψ̄a±sψ̄b±sψ̄c∓s ,
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Using the SPIN FLIP Symmetry Fs = −iT CT, together with parity P,

and time reversal T , conclude that:

1) Each spin 1/2, OCTET 2 × 2 block of Γ̃(p) is diagonal, real and

multiple of the identity

2) For each spin 3/2, DECUPLET 4×4 block of Γ̃(p), we obtain some ze-

roes and relations between the elements. Labelling Jz = 3/2,1/2,−1/2,−3/2

by the matrix indices 1,2,3,4 , respectively, this yields to a Hermitian

matrix (the bar here denotes complex conjugation)

M =


a 0 c d
0 a d̄ −c̄
c̄ d b 0
d̄ −c 0 b

 , a, b ∈ R ,

i.e. with 2× 2 block diagonal elements which are multiple of the identity

I2, and a normal 2× 2 block matrix in the off-diagonal entries.
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Hence,

detM = (µ+µ−)
2 ,

where µ± are the MULTIPLICITY TWO Eigenvalues

µ± =
1

2

{
(b+ a)±

√
(b− a)2 +4(|c|2 + |d|2)

}
.

The mutually orthogonal M eigenvectors for µ+ are (a − µ−,0, c̄, d̄) and

(0, a− µ−, d,−c); for µ− we have (c, d̄, b− µ+,0) and (d,−c̄,0, b− µ+).

The preceding normality property holds because:

N =

(
c d
d̄ −c̄

)
= (Re c)σ3 + (Re d)σ1 + i(Im c) I2 − (Im d)σ2 ,

where the σ’s are Pauli matrices, and verifies N† = N−2(Imc) I2. Further-

more, N†N = (|c|2 + |d|2) I2.
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To proceed, we need to control Γ̃(p). For this, we need a refined control
of the short-distance behaviors of G(x) and Γ(x). NEGATIVE POWERS
OF κ INTERVENE in FOURIER Transform!

Theorem 5 The short-distance behaviors appearing below hold for G
and Γ. We start with the DECUPLET two-point functions. In this case,
we have

Gr1r2(x)=



[−1+ c8κ8 +O(κ9)]δr1r2 , x = 0 ;

(−κ3 + c9κ9)δr1r2 +O(κ11) , x = ϵe0;

−1
8
κ3δr1r2 +O(κ9) , x = ϵej;[

(−κ6 + c12κ12)δr1r2+O(κ13)
]
δµ0+

[
−1

8
κ6δr1r2 +O(κ10)

]
δµ j , x = 2ϵeµ ;

( 1
16
δr1 3

2
− 1

16
δr1 1

2
)κ6δr1r2 +O(κ10) , x = ϵe1 + ϵ′e2;

(− 1
32
δr1 3

2
+ 1

32
δr1 1

2
)κ6δr1r2 +O(κ10) , x = ϵe1 +ϵ′e3, ϵe2 +ϵ′e3;

−1
4
κ6δr1r2 +O(κ10) , x = ϵe0 + ϵ′ej;

17
64
κ9δr1r2 +O(κ10) , x = ϵe0 +2ϵ ′ej;

−3
8
κ9δr1r2 +O(κ13) , x = 2ϵe0 + ϵ ′ej;

( 3
32
δs3

2
− 5

32
δs1

2
)κ9δr1r2 +O(κ10) , x = ϵe0 + ϵ ′e1 + ϵ ′′e2;

(− 3
32
δs3

2
+ 1

32
δs1

2
)κ9δr1r2 +O(κ10) , x=ϵe0+ϵ′ei+ϵ ′′e3,i=1,2;

(−κ9 + c15κ15)δr1r2 +O(κ16) , x = 3ϵe0;

d12κ12δr1r2 +O(κ13) , x = 3ϵe0 + ϵ ′ej;

(−κ12 + c18κ18)δr1r2 +O(κ19) , x = 4ϵe0;

d15κ15δr1r2 +O(κ16) , x = 4ϵe0 + ϵ ′ej;
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Γr1r2(x) =



[−1− 67
32
κ6 +O(κ8)]δr1r2 , x = 0;

(κ3 + c ′9κ
9)δr1r2 +O(κ10) , x = ϵe0;

1
8
κ3δr1r2 +O(κ9) , x = ϵej;[
c ′12κ

12δr1r2 +O(κ13)
]
δµ0 +

[
7
64
κ6δr1r2 +O(κ10)

]
δµ j , x = 2ϵeµ;

(− 3
32
δr1 3

2
+ 1

32
δr1 1

2
)κ6δr1r2 +O(κ10) , x = ϵe1 + ϵ′e2;

(0 δr1 3

2
− 1

16
δr1 1

2
)κ6δr1r2 +O(κ10) , x = ϵe1 + ϵ′e3, ϵe2 + ϵ′e3;

O(κ10) , x = ϵe0 + ϵ′ej;

O(κ10) , x = ϵe0 +2ϵ ′ej;

O(κ13) , x = 2ϵe0 + ϵ ′ej;

O(κ10) , x = ϵe0 + ϵ ′ei + ϵ ′′ej>i;

c ′15κ
15δr1r2 +O(κ16) , x = 3ϵe0;

c ′18κ
18δr1r2 +O(κ19) , x = 4ϵe0;

NOTE THE COMPUTATIONS UP TO κ18 !!!
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For the OCTET two-point function, the short distance behaviors for

x = rϵeµ, r = 1,2,3,4, ϵe0 + ϵ ′ej, ϵe0 + 2ϵ ′ej, 2ϵe0 + ϵ ′ej, 3ϵe0 + ϵ ′ej,
4ϵe0 + ϵ ′ej are the same as for the decuplet, up to the considered order

in each case. However, for x = ϵei + ϵ ′ej, x = ϵe0 + ϵ ′ei + ϵ′′ej, for

ij = 12,13,23, the results are different and given respectively by

Gr1r2 = −
1

16
κ6δr1r2 +O(κ7) , Γr1r2 =

1

32
κ6δr1r2 +O(κ7) ,

and

Gr1r2 = −
5

32
κ9δr1r2 +O(κ10) , Γr1r2 = O(κ10) .

In the above, the c’s, c ′’s, d’s and d ′’s are computable κ and spin inde-

pendent constants.
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For p0 = iχ = iw(κ, p⃗) and p⃗ = 0, it turns out that G̃ss′(p
0 = iχ, p⃗ = 0) and

Γ̃ss′(p
0 = iχ, p⃗ = 0) are diagonal. The whole baryon mass spectrum is

easily determined exactly using the Analytic Implicit Function Theorem.

Theorem 6 Concerning the One-Baryon Mass Spectrum, we have that

all the 56 Baryons (Antibaryons) have the mass satisfying

M ≡M(κ) = −3 lnκ− 3κ3/4+ κ6r(κ) ,

where r(κ) is analytic and r(0) ̸= 0. r(κ) is the same for all mem-

bers of the octets, and we let ro(0) denote r(0) for this case. For

the decuplets, r(κ) only depends on |Jz|. For all members of the de-

cuplets, r(0) = rd(0). There is a Mass Splitting between the Octets and

the Decuplets given by [rd(0) − ro(0)]κ6 = 3κ6/4. If there is eventually

mass splitting within the decuplets, it is of order κ7 or higher.
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For p⃗ ̸= 0⃗, to solve detΓ̃(p0 = iw(κ, p⃗), p⃗) = 0 we pass to the variable

w(κ, p⃗) = −3 lnκ+ r(κ, p⃗) .

With the new variable r, we avoid the (−3 lnκ) singularity. Besides, using

this new variable, we get solutions close to zero as κ↘ 0, and can exhibit

jointly analyticity in κ, p⃗, depending on the considered case.

For p⃗ ̸= 0⃗ and considering the OCTET, because of the DIAGONAL

STRUCTURE of Γ̃(p), we can again apply the Analytic Implicit Func-

tion Theorem to obtain:

Theorem 7 The sixteen OCTET BARYONS (Antibaryons) dispersion

curves are all equal and have the form

w(p⃗) ≡ w(κ, p⃗) =
[
−3 lnκ− 3κ3/4+ p2ℓ κ

3/8
]
+ r(κ, p⃗) ,

where p2ℓ ≡ 2
∑3
i=1(1 − cos pi), and pi=1,2,3 ∈ [−π, π) are the spatial mo-

mentum components. Furthermore, r(κ, p⃗) = κ6r0(κ, p⃗), where r0(κ, p⃗) is

jointly analytic in κ and in each pi, i = 1,2,3, for |Im pj| small. Also, the

OCTET dispersion curves w(p⃗) are convex for small |p⃗ |.
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REMARK: As seen above, by direct calculation, the OCTET dispersion

curves are real. That this is true, in ANY CASE, is guaranteed by the

Spectral Thm! (Recall: requires κ real.)

For p⃗ ̸= 0⃗, and considering the DECUPLETS the situation is more com-

plex. The fact we are dealing with a DEGENERATE CASE (multiplicity

TWO) and the PRESENCE of the SQUARE ROOTS Does Not Allow

us to apply the Analytic Implicit Function Thm.

For a DECUPLET block, using the normality condition given above we

have that the meromorphic extension G̃(κ, p) ≡ [Γ̃(κ, p)]−1 is given by

(as if we had a matrix of numbers!)

G̃(κ, p) =
1

Φ


Γ̃33(κ, p) I2

 −Γ̃13(κ, p) −Γ̃14(κ, p)

−Γ̃14(κ, p) Γ̃13(κ, p)


 −Γ̃13(κ, p) −Γ̃14(κ, p)

−Γ̃14(κ, p) Γ̃13(κ, p)

 Γ̃11(κ, p) I2

 ,
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Here,

Φ2 ≡ det Γ̃(κ, p) ,

and the Two Multiplicity-Two Solutions r± ≡ r±(κ, p⃗) satisfy the im-

plicit equation

Φ(κ, r, p⃗) ≡ Γ̃11(κ, r, p⃗) Γ̃33(κ, r, p⃗)−
∣∣∣Γ̃31(κ, r, p⃗)

∣∣∣2−
∣∣∣Γ̃41(κ, r, p⃗)

∣∣∣2 = 0 , (6)

Writing,

Φ2 =
[
λ+λ−

]2
, (7)

the solutions are determined by the zeroes of λ+ and λ−, where

λ± ≡
1

2

[
Γ̃11 + Γ̃33

]
±
√
1

4

[
Γ̃11 − Γ̃33

]2
+
∣∣∣Γ̃13

∣∣∣2 +
∣∣∣Γ̃14

∣∣∣2 . (8)

All the matrix elements above are analytic functions and originally depend

on κ, p0 and p⃗.

ABOVE: we introduced p0 = i(−3 lnκ+r). We also consider an extension

of all the functions, depending originally on the real variables κ, r, p⃗, to

the complex plane.
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PRESCRIPTION: As proved before, the Γ̃ss′ are complex joint analytic

functions in the real variables κ, p0 and the components of p⃗. Hence, they

admit a power series expansion in a real domain in real κ, p0 and p⃗. The

coefficients may be complex, because of Fourier Transform. These power

series are used to write a power series for the above quantities with real

κ, p0 and p⃗. These power series expansions provide an analytic extension

for κ, r and p⃗ complex. Whenever a Square Root shows up, we assume

we take the positive one!
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With this, we have the Lemma:

Lemma 2 Let Σ(p⃗) =
∑
i=1,2,3 cos p

i. We have the following behaviors

for the matrix elements Γ̃ij(κ, r, p⃗)

Γ̃jj(κ, r, p⃗) = (er − 1) + 1
4Σ(p⃗)κ3 + κ6

[
ℓ(r) +Hjj(p⃗)

]
+Ajj(κ, r, p⃗) , j = 1,3

Γ̃31,41(κ, r, p⃗) = κ7A31,41(κ, r, p⃗) ,

giving

Φ(κ, r, p⃗) = (er − 1)2 + 1
2Σ(p⃗)(er − 1)κ3 + (er − 1) [2ℓ(r) +H11(p⃗)

+H33(p⃗)]κ
6 + 1

16Σ(p⃗)2κ6 + κ7A(κ, r, p⃗) ,

where the Aij(κ, r, p⃗) are jointly analytic in (κ, r), uniformly in p⃗, and the

diagonal elements Ajj(κ, r, p⃗) are of order κ7rk≥0, A(κ, r, p⃗) is analytic in

(κ, r, p⃗), with p⃗ ∈ T3. Furthermore,

H11(p⃗) = 1
32 [7(cos p1 + cos p2 + cos p3)− 12cos p1 cos p2] ,

H33(p⃗) = 1
32[7(cos p1 + cos p2 + cos p3) + 4cos p1 cos p2
−8(cos p1 cos p3 + cos p2 cos p3)] ,

ℓ(r) = −67
32 + c′9e

r + c′12e
2r + c′15e

3r + c′18e
4r ,
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where the c′ coefficients are computable (the same in the short-distance
behavior thm). Last, for any fixed p⃗, we obtain

Φ(0,0, p⃗) = 0 ,
∂Φ

∂r
(0,0, p⃗) = 0 ,

∂2Φ

∂r2
(0,0, p⃗) = 2 .

For real κ, r, p⃗ and κ > 0, Γ̃11(κ, p⃗), Γ̃33(κ, p⃗) and Φ(κ, p⃗) are real.

REMARK: ϕ is Analytic But Has ZERO First-Derivative! We can-
not apply the Analytic Implicit Function Thm to solve the implicit eqn
ϕ(κ, r, p⃗) = 0. (A DEGENERACY is PRESENT, Multiplicity Two Eigen-
values!)

An intuitive picture for the solutions is obtained by using the leading
behavior of Φ(κ, r, p⃗)

Φ(κ, r, p⃗) ≈ (r+
1

4
Σ(p⃗)κ3)2 = 0 ,

with the two degenerate explicit solutions r(κ, p⃗) = −1
4Σ(p⃗)κ3.

The existence of the exact solutions for the DECUPLET DISPERSION
CURVES emerge from the application of the Weierstrass Preparation
Thm.



The WPT reduces the implicit equation to the zeroes of a quadratic
polynomial in r, namely

r2 + b(κ, p⃗)r+ c(κ, p⃗) = 0 ,

where b(κ, p⃗) and c(κ, p⃗) are jointly analytic in κ, p⃗ and are given recursively
in terms of κ, r partial derivatives of Γ̃ij. Thus, we obtain the explicit
solutions

r±(κ, p⃗) =
1

2

[
−b(κ, p⃗)±

√
∆(κ, p⃗)

]
, (9)

where ∆(κ, p⃗) = b(κ, p⃗)2 − 4c(κ, p⃗) is the discriminant.

The WPT Only Ensures CONTINUITY of the solutions r± (Square Root!).
They can then be analyzed for Additional Smoothness Properties.

Theorem 8 Consider the analytic function Φ(κ, r, p⃗). There exist a func-
tion Q(κ, r, p⃗) and a Weierstrass polynomialW (κ, r, p⃗), both jointly analytic
in κ, r in a neighborhood N of (κ, r) = (0,0) ∈ C2, independent of p⃗ (and
in each component of p⃗), such that we have Q(κ, r, p⃗) ̸= 0 in N and also

Q(κ, r, p⃗)Φ(κ, r, p⃗) =W (κ, r, p⃗) ,
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in N . Furthermore the polynomial is quadratic in r and is given by

W (κ, r, p⃗) = r2 + b(κ, p⃗)r+ c(κ, p⃗) ,

where the coefficients are given by

b(κ, p⃗) = 1
2Σ(p⃗)κ3 + [2c′9 +2c′12 +2c′15 +2c′18 − 67

16 +H11(p⃗) +H33(p⃗)

+ 1
16 (Σ(p⃗))2]κ6 +O(κ7) ,

c(κ, p⃗) = 1
16

(∑3
j=1 cos pj

)2
κ6 +O(κ7) ,

Q(κ, r, p⃗)= 1− r+ 5
12r

2 − 1
12r

3 + 1
4Σ(κ, p⃗)κ3 +O(κα rj) ,

with α+ j ≥ 4; α ≥ 6, for j = 0. Moreover, b(κ, p⃗), c(κ, p⃗) and Q(κ, r, p⃗)

are bounded functions for (κ, r) ∈ N , p⃗ ∈ T3.

OBSERVATION: We have a bunch of results on Smoothness Properties

for the DECUPLET Dispersion Curves.

ALSO: Need a SLIGHTLY SOPHISTICATED SUBTRACTION PROCE-

DURE To EXTEND RESULTS From The BARYONIC SUBSPACE Hb

To The ODD SUBSPACE Ho.



The Gell’Mann-Ne’eman Baryonic Eightfold Way is then VALIDA-

TED RIGOROUSLY!

The 36 Eightfoldway MESON States at p⃗ = 0 MASSES are Determined

(Splittings, ...). MASSES are ≃ −2 lnκ!

The COMPLETE ANALYSIS: For the NONET of PSEUDO-SCALAR

Mesons is OK, for all p⃗.

Weierstrass Preparation Theorem: Should Do the Job for the 3 NONETS

of VECTOR Mesons, with p⃗ ̸= 0.

With this: the Whole EIGHTFOLD WAY PICTURE is VALIDATED.

CONFINEMENT of STATES (Without Gluons!) is CHECKED up to

near the MESON-BARYON Energy Threshold.
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TWO-BARYON SPECTRUM: BARYON-BARYON BOUND

STATES

Like the TWO-POINT CORRELATION G Above: HERE We Use a PAR-

TIALLY TRUNCATED FOUR-POINT Correlation D.

LATTICE RELATIVE COORDINATES

(FOURIER Transform ONLY in τ !)

η⃗ = x4 − x3

τ = x3 − x2

ξ⃗ = x2 − x1

ux1 >
x2

@
@

@
@

@
@

@
@

@
@

@
@

@

u

x3u ux4

ξ⃗

τ
PPAA

η⃗
>
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In Fourier Transform: Establish SPECTRAL REPRESENTATION for D̃

SINGULARITIES of D̃ Determine the Two-Particle Spectrum.

SINGULARITY DETECTION: Bethe-Salpeter (B-S) Equation

D = D0 +D0KD ,

where D0 is Known and Corresponds to the GAUSSIAN RESTRICTION

of D (Wick Thm, Product of TWO G’s).

B-S EQN Defines the Bethe-Salpeter Operator K.

55



K: Formally Satisfies

K = D−1
0 −D−1 ,

and PLAYS a ROLE Analogous to the Above Γ.

By Hyperplane Method: Distance Decay for D. The Decay for D0 follows

from the decay of G.

K Decays FASTER Than D: Analyticity in a WIDER STRIP in Fourier

Space.

The ANALYSIS Goes On in TWO-STEPS:

1. LADDER APPROXIMATION: OBTAIN K in the Lower, Leading κ

Order, denoted by L

USING L instead of K in the B-S Eqn, obtain

D = (1− LD0)
−1D0 ,
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Using Regularity of D0 ABOVE the ONE-PARTICLE DISPERSION CURVE

(meromorphic extension for G), FIND SINGULARITIES of D̃.

2. Complete Model: Deep KNOWLEDGE of ONE-PARTICLE SPEC-

TRUM (Spectral Measure!) and K FAST Decay CONTROLS Perturba-

tion and ALLOW TO GO BEYOND the LADDER APPROXIMATION.

USEFUL: B-S Eqn is SIMILAR to a RESOLVENT SCHRÖDINGER

EQN

(H − z)−1 = (H0 − z)−1 − λ(H0 − z)−1V (H − z)−1 ,

where H = H0 + λV and H0 = −a∆/2, a > 0 (∆ is the Laplacian).
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SUMMARY OF MAIN RESULTS:

VARIOUS BARYON-BARYON BOUND STATES (INCLUDING A SPIN
1, DEUTERON-LIKE BS. NO SPIN 0 ’Deuteron’ as Expected)

DIPROTON and DINEUTRON SHOW UP!

EXPONENTIALLY DECAYING YUKAWA INTERACTION: Easily Obtai-
ned! (Polynomial Correction is HARD!)

NO MESON-BARYON PENTAQUARKS (Only 3 Flavors. No Contra-
diction up to now!)

MESON-MESON BS: Various in 2 + 1 Dimensions

BINDING STRUCTURES: STILL TOO COMPLICATED To Be DE-
CIPHERED!

REFERENCES: MANY Publications GIVEN in My SITE

www.icmc.sc.usp.br/∼veiga/pdvpubl.html
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Criticism to Usual THEORETICAL PHYSICS & SIMULATION LATTICE

WORKS: Absence of Spectral Representations DOES NOT ENSURE

That People Determine Spectrum. May Determine SOMETHING ELSE.

May Fall in BETWEEN TWO STATES WITH TINY SPLITTING. MAY

BE IN THE MIDDLE OF A BAND.

TO MY KNOWLEDGE: NO DISPERSION CURVES! ONLY MASSES.

LACK of ISOLATED STATES DOES NOT GUARANTEE PARTI-

CLES!

TO MY KNOWLEDGE: BS ONLY WITH EFFECTIVE FIELDS Like in

Yukawa Theory, instead of FUNDAMENTAL COMPOSED FIELDS.
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WE WORK IN STRONG COUPLING: WE SEE NO REASON FOR IT

TO BE RULED OUT FOR THE ENERGY SCALE WE ARE INTERES-

TED IN.

STRONG COUPLING IS ENOUGH TO PROVE QUARK CONFINE-

MENT UP TO AN ENERGY THRESHOLD.

OUR ANALYSIS IS MEANINGFUL.

WE HOPE SOMEONE CAN DO IT BETTER!
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