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These slides correspond to a mini course on the subject of Critical

Phenomena given in Ubu, Esperito Santo, Brazil, in February 2016.

It corresponds to three courses at an introductory level.

This course is based on the book (and try to keep the same

conventions) :

Scaling and Renormalization in Statistical Physics, John Cardy,

Cambridge University Press (1996)
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• We consider some macroscopic object (a chalk). If we cut it in

two pieces, each piece will continue behaving like the original

piece. Same density, compressibility, magnetization, etc.

• We continue dividing it by two. After many iterations, we will

reach the microscopic scale and the properties will change. We

will have reach a length which is defined as the correlation

length of the considered material.

• The correlation length is the distance over which the fluctuations

of the microscopic degrees of freedom are correlated. For a

distance much larger than this correlation length, macroscopic

laws.

• In most systems, the correlation length is very small and

corresponds to few microscopic spacings.
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• By changing external parameters like temperature, pressure,

etc, the behavior of a macroscopic material can change brutally.

(Melting of a ferromagnet or ice are simple examples.) The

changing points (in the parameters space) are defined as critical

points.

• These critical points usually mark a separation between two

phases : magnetized and paramagnet or ice and liquid, etc.

• Two types of transitions.

i) Transition with coexistence of the phases (melting ice) and

discontinuity in some thermodynamics quantities (latent heat) :

First order phase transitions.

ii) No coexistence of the two phases. At the transition point, a

unique critical phase, with fluctuation acting on the whole

system, with an infinite correlation length : continuous or second

order phase transition.
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• Critical phenomena is associated with the study of physics at

the critical point of second order phase transitions.

• Infinite correlation length implies no scale in the system : scale

invariance.

• The fact that there is a large correlation length can make the

study very complex. In fact, it will lead to many simplifications.

• One of the most important is universality : a system close to the

continuous phase transition is largely independent of the

microscopic underlying model. It will be in one of a small

number of universality class depending on global properties

such as the symmetries, the spatial dimension, etc.

• The universality will be manifest when computing the critical

exponents associated to the critical transition : these exponents

will depend only on the universality class, even for models which

correspond to a different microscopic model.
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• Critical phenomenas are present in many places in real life. To

give some definitions, we will first present some simple

examples. We will present two well known examples of systems

which exhibit a second order phase transition : i) Ferromagnets

ii) simple fluids.

• Other examples : Binary fluids, antiferromagnets, Helium I/

Helium II transition, Conductor /superconductor transition,

Baryogenesis and Electroweak Phase Transition, cosmic

inflation, etc.

• Ferromagnets : a system with two external parameters,

temperature T and external magnetic field H.

Local magnetization can be in 3 dimensions (Heisenberg

model), 2 dimensions (XY model) or just one dimensional (Ising

model).
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• We will consider the simple case restricted along one

dimension.

• Very simple phase diagram : one line of singularities for

H = 0, T < Tc.

• In the rest of the phase diagram, all the thermodynamical

quantities are regular (i.e. analytical functions of H and T ).

• We will consider the magnetization M : order parameter.

• T < Tc, M(H) has a discontinuity for H = 0 → First order phase

transition.

• limH→0+M = M0 = −limH→0−M : spontaneous symmetry

breaking : Hamiltonian is invariant under local magnetic degree

of freedom but the symmetry is not respected in an equilibrium

thermodynamical state.
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Figure 1: Top : Phase diagram of a ferromagnet. Bottom : Magneti-

sation as a function of the applied magnetic field
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• The discontinuity is a power of the deviation to the critical point.

We defined t = (T−Tc)
Tc

the reduced temperature. This reduced

temperature will be frequently used in the following as a

parameter to describe the transition.

• At T = Tc → Second order phase transition. No discontinuity in

the order parameter but on his first derivative. Tc is the critical

temperature or Curie temperature.

• We will now define the quantities of interest, the critical

exponents, at the critical point.
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• α : Specific heat in zero field : C ≃ A|t|−α. A is the critical

amplitude.

• β : Spontaneous magnetization : limH→0+M ≃ (−t)β.

• γ : Zero field susceptibility : χ =
(

∂M
∂H

)

H=0
≃ |t|−γ .

• δ : At T = Tc,M ≃ |H|1/δ

• ν : Correlation length exponent : ξ ≃ |t|−ν . ξ can be defined, for

T 6= Tc by

G(r) ≃ e−
r
ξ

r(d−1)/2
(1)

• η : anomalous magnetic dimension : G(r) ≃ rd−2+η.
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• The second example is the one of the perfect fluid with a

transition between vapor and liquid. At the end of 19 century,

Van der Waals showed that, by using an appropriate scaling of

temperature and pressures, all fluids behave in a similar way.

• Scaling is done compared to some critical value of the

temperature, pressure and density, which is the border between

the two phases, gas or liquid.

• Along this border, very similar to the ferromagnetic transition

with a critical point at the end. The order parameter in that case

is the density of the fluid.
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Figure 2: Phase diagram of a simple fluid
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T < Tc
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T > Tc

Figure 3: Liquid gas transition
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Universality and comparison with experimental systems :

Transition type Material α β γ ν
Ferro. (n=3) Fe, Ni -0.1 0.34 1.4 0.7

Superfluid (n=2) He4 0 0.3 1.2 0.7

Liquid-gas (n=1) CO2, Xe 0.11 0.32 1.24 0.63

Superconductors 0 1/2 1 1/2

Mean Field 0 1/2 1 1/2
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• We introduce one of the simplest model that we use as a basic

example in the following : the Ising model. It consist of a system

with a variable, the spin S, which takes two values, +1 or −1 on

each point of a regular lattice with nearest neighbor interactions.

The associated energy is

E(J, h) = −
∑

<ij>

JijSiSj −
∑

i

hiSi . (2)

The first sum is over the nearest neighbor interactions, indicated

by < ij >. The second sum corresponds to a local magnetic

field which couples to the spins Si.

• Jij → J and hi → H. Otherwise, model with disorder (spin

glasses) or Random Fields Ising model, which are more difficult

to treat.
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•

E(J,H) = −J
∑

<ij>

SiSj −H
∑

i

Si . (3)

The theory is then defined by the partition function

Z(J,H) =
∑

Si

e−βE(J,H) , (4)

with β = 1/T the inverse temperature. We can compute the

ordinary quantities from the expression of Z.

< E >=
1

Z(J,H)

∂Z(J,H)

∂β
; < M >=

1

βZ(J,H)

∂Z(J,H)

∂H
(5)
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• The Ising model can be considered as a simple theory of the

magnetism.

• at low temperature i.e. at large value of β, the interaction term

will be important and the spins will tend to be aligned =

magnetic phase

• at high temperature i.e. at small value of β, the interaction term

is less important. The system will be in a disordered phase =

paramagnetic phase.

•

Z(J,H) =
∫

dEN (E)e−βE , (6)

with N (E) the number of configurations with energy E.
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• If we consider a system with N spins in dimension d, then the

lowest energy is E = −d×N : all the spins are up or all the

spins down

• A simple check shows that (having fixed J = 1 for simplicity)

Z(β,H = 0) = 2eβdN (1 +Ne−4dβ (7)

+O(N)e−(8d−2)β +O(N2)e−8dβ · · ·)

• For d ≥ 2, there exists a value of β = βc at which the

magnetization cancels.

• For β > βc, m =< M > /N → 1 : Energy dominates.

• For β < βc, m → 0 : Entropy (the number of configurations)

dominates.
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m

T = 1/βTc

1

-1
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• In one dimension, the Ising model is rather trivial. For T > 0 it is

always in the paramagnetic phase : see later.

• In two dimensions can be solved exactly (Onsager): equivalent

to a problem of free fermions (QFT) or one of the simple

Conformal Field Theories (with central charge c = 1/2).

• In d > 2 no solution. Only approximate methods.

• Main problem is that it is too difficult to compute the partition

function Z.
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• Mean Field theory is a rather general way of describing phases

transition which uses general arguments to obtain a qualitative

description of the phase diagram of simple models.

• In large dimensions it can give exact results for the critical

exponents

• Mean Field theory dates back to Van der Waals who derived the

first mean field theory for transition between liquid and vapor in

1873. Next, in 1895, Pierre Curie noticed the analogy with

ferromagnets. This was developed further by Pierre Weiss in

1907. General theory is associated to Lev Landau (1937).

• We will first consider the simple case of the Ising model

Z(J,H) =
∑

Si

eβ
J
2

∑

<ij>
SiSj+βH

∑

i
Si . (8)
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• The first step of the Mean Field approach is to replace the spin

variable Si by an average magnetization plus some fluctuation

Si = M + (Si −M) = M + dSi (9)

SiSj = (M + (Si −M))(M + (Si −M))

= M 2 +M(Si −M) +M(Sj −M) +O(dS2)

= M(Si + Sj)−M 2 +O(dS2) (10)

• We end with the simplified model

Z(J,H) =
∑

Si

e−Nβ J
2
M2+β(JM+H)

∑

i
Si . (11)

• What we have done is to neglect the correlation between the

spins. Later on, we will give a criterium for the validity of this

approach.
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• The summation on the spin is now trivial since there is no more

interaction :

Z(J,H) = e−Nβ J
2
M2 ∏

i

∑

S=±1

eβ(JM+H)S

= e−Nβ J
2
M2

[2coshβ(JM +H)]N

= e−N(β J
2
M2−log (coshβ(JM+H)))

= e−NβfMF (M) , (12)

with fMF (M) the free energy per site. From the previous

expression, we can easily obtain the magnetisation :

M =
1

NβZ
∂Z
∂H

= tanhβ(JM +H) (13)

• A simple assumption is that the partition function is dominated

by the minimum of the free energy (which is multiplied by N )
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• We then expend to the first orders in M the free energy (for

H = 0)

fMF (M) =
J

2
M 2 − 1

β
ln (coshβ(JM)) (14)

=
J

2
M 2 − 1

β
ln

(

1 +
1

2
(βJM)2 +

1

4!
(βJM)4 + · · ·

)

=
J

2
M 2 − 1

β
(
1

2
(βJM)2 +

1

4!
(βJM)4

−1

2
(
1

2
(βJM)2)2) + · · ·

We end with the expression

fMF (M) =
J

2
(1− βJ)M 2 +

1

12
β3J4M 4 +O(M 6) (15)
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• Using β = 1/T we can rewrite

fMF (M) = a(T − Tc)M
2 + bM 4 +O(M 6) , (16)

with a and b > 0 and Tc = J .

• If T > Tc, there is a unique minimum of the free energy for

M = 0 and the free energy is symmetric under M → −M .

• If T < Tc, there is two minimums at M ≃ ±√
Tc − T ≃ ±√−t

and the symmetry is broken.

• The critical exponent associated to the magnetisation

M ≃ (−t)β is thus β = 1/2 for the mean field theory.

(β in that case is the critical exponent associated to the

magnetisation, NOT the inverse temperature !!!)
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• Other critical exponents can be computed in a similar way. For

instance, starting from M = tanhβ(JM +H) and using

tanhx = x(1− x2/3) +O(x4), we get, at Tc = J

M ≃ M +H/J −M 3/3 , (17)

which gives the behaviour of the magnetisation in function of the

external magnetic field at the critical point as

M ≃ B
1
3 = B

1
δ (18)

with δ = 3 the corresponding critical exponent.
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General approach of the Mean Field (Landau Theory)

• Determine the order parameter (M )

• Consider the symmetry of the problem

• Construct the more general free energy in powers of the order

parameter compatible with the symmetry

For the ferromagnetism, with invariance under M → −M

F (M) = a2M
2 + a4M

4 + a6M
6 + · · · (19)

• We minimize (saddle point) the corresponding partition function

Z =
∫

dMe−βF (M) (20)
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• For the ferromagnetic system (or the simple Ising model), we

had a2 ≃ T − Tc and a4 > 0.

• If we consider a4 < 0 then we get a first order phase transition.

• If we consider a4 = 0 then we get a tricritical point

corresponding to the separation between a line of second order

phase transition and a line of first order phase transition.

Example : Magnetic system with vacancies.
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• One way of obtaining or derive the mean field Hamiltonian is by

starting from a continuous spin variable S(~r).
(in the following, we will drop the vector for ~r and replace it by a

single parameter r. The generalisation to a vector is rather

trivial).

• We will impose that this spin variable is peaked around the

values ±1

H = −1

2

∑

r,r′
J(r−r′)S(r)S(r′)−H

∑

r

S(r)+λ
∑

(S(r)2−1)2(21)

with the last term to impose the condition S(r) ≃ ±1.

• J(r − r′) is a coupling between the spin S(r) at some distance

r − r′. More details on this later.
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• The partition function is simply

Z =
∫

∏

r

dS(r)e−H (22)

• Now we use
∑

r,r′

J(r − r′)S(r)S(r′) =
∑

r,r′

J(r − r′)S(r)× (23)

×(S(r) + (r − r′)∇S(r) +
1

2
(r − r′)2∇2S(r) + · · ·)

= J
∑

r

(S(r)2 −R2a2(∇S(r))2 + · · ·)

with

J =
∑

r

J(r) ;R2J =
∑

r

r2J(r) , (24)

and a a unit of length.
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• Putting all the terms together, one obtain

H =
∫

ddr

ad
[
1

2
Ja2R2(∇S(r))2 − (2λ+ J)S2(r)

+λS4(r)−H(r)S(r)] (25)

• Next we will rescale the field S(r) such that

S2(r) → (ad−2/JR2)S2(r) . (26)

• We end up with

H =
∫

ddr[
1

2
(∇S(r))2+ ta−2S2(r)+uad−4S4+ha−d/2−1S](27)

• The new parameters t, u and h are dimensionless.
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• If we want to impose invariance under rescaling (why ? see

later....) of this Hamiltonian under a rescaling a → ba, then we

need also to rescale the parameters such that

t′ = b2t

h′ = bd/2+1h (28)

u′ = b4−du

• If d > 4, it means that the S4 term becomes less and less

important.

• A term S6 would have got a contribution u′
6 = b6−2du6. Even less

relevant.

• S2n parameter u2n is rescaled as u′
2n = a(n−1)d−2n. This justifies

to ignore largest powers in the field. The same is true for

additional derivatives, etc.
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We will return to the Landau-Ginzburg-Wilson model later after

having understood the importance of rescaling. Before, some

comments :

• If we ignore the kinetic term (with derivatives), we ignore the

local fluctuation of the spin variable S(r). We recover the mean

field Hamiltonian from the Landau theory.

• The result does not depend much on the type of interaction

J(r − r′) as far as J and R2J are finite numbers. The simplest

choice is with nearest neighbour interactions (like for the Ising

model on the lattice) :

|r| = 1 → J(r) = 1

|r| > 1 → J(r) = 0

• a more general choice is J(r) ≃ 1
rd+σ .
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• We then have the condition

J =
∑

r

J(r) ≃
∫ Λ

a
rd−1dr

1

rd+σ
= r−σ|Λa , (29)

which will be finite for any σ > 0.

• A second condition is

JR2 =
∑

r

r2J(r) ≃
∫ Λ

a
rd+1dr

1

rd+σ
= r2−σ|Λa , (30)

which will give a finite result for any σ > 2 which is the condition

for having short range interactions, equivalent to the nearest

neighbour interactions.

We then expect that any interaction with this condition will lead

to the same result : Universality of interactions.
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• We will present now some very basic version of the

renormalisation group.

• One of the main characteristics of a critical phenomena is the

property of scale invariance.

• We can rescale a system and observe again the same thing (in

average !!!) : coarse graining.

• This can be visualized on simple systems simulated numerically.

• We will first show some examples for the 2d Ising model, at Tc

and close to Tc.

• Next we try to see the consequences of the scale invariance for

a simple model in one dimension.
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• (i) We will start from a configuration of an equilibrated 2d Ising

model on a large square lattice. We will show only 81× 81 spins

Six,iy.

• (ii) The next step is to transform this configuration in 27× 27 new

spins NSix,iy, such that each of the NSix,iy is obtained by

summing over 3× 3 spins : block spin transformation

NSix,iy = S3ix−2,3iy−2 + S3ix−1,3iy−2 + S3ix,3iy−2 + S3ix−2,3iy−1

+S3ix−1,3iy−1 + S3ix,3iy−1 + S3ix−2,3iy + S3ix−1,3iy + S3ix,3iy

If NSix,iy > 0, the new spin is +1, otherwise it is −1.

• (iii) Next we rescale by a factor 3 to consider again a system of

81× 81 spins

• We go again to step (ii)
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We observed that under rescaling there is three different behaviors

under successive rescaling :

• For T < Tc the system becomes more and more magnetized. It

flows towards the zero temperature attractive fixed point.

• For T = Tc the system does not change. It is scale invariant.

Corresponds to a unstable fixed point.

• For T > Tc the system becomes more and more disorganized, it

flows towards the infinite temperature attractive fixed point

(paramagnetic).
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• We will show how this works for the one dimensional Ising

model using decimation (simple version than block spins).

s1 s2 s3 s4 s5 s6

s′1 = s2 s′2 = s5

• We search a fixed point of the decimation transformation such

that

Z =
∑

s

eKsisi+1 =
∑

s′
eKs′

i
s′
i+1 (31)
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• We use the relation eKsisj = coshK(1 + tanhKsisj) to obtain

eKs2s3eKs3s4eKs4s5 = (coshK)3(1 + tanhKs2s3)× (32)

×(1 + tanhKs3s4)(1 + tanhKs4s5)

• For the summation over s3 and s4, only terms with even powers

have a non zero contribution, so

∑

s3,s4

eKs2s3eKs3s4eKs4s5 = 22(coshK)3(1 + (tanhK)3s2s5) (33)

• Up to some multiplicative factor, which depends only on K, we

got

∑

s3,s4

eKs2s3eKs3s4eKs4s5 ≃ eK
′s2s5 (34)
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• We obtain the condition

tanhK ′ = (tanhK)3 , (35)

which is a renormalisation group equation.

• There is two fixed points for this equation :

i) tanhK = 1 which corresponds to K = ∞. Since

K = βJ ≃ 1/T , this is the zero temperature fixed point.

Unstable fixed point.

ii) tanhK = 0 which corresponds to K = 0 or T = ∞. Stable

fixed point.

T = 0 1/T = 0
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• We consider again the Landau-Ginzburg-Wilson Hamiltonian.

We had obtained the following result :

H =
∫

ddr[
1

2
(∇S(r))2+ ta−2S2(r)+uad−4S4+ha−d/2−1S](36)

with a a dimension parameter (the lattice spacing).

• We want to rescale this parameter and impose invariance of the

Hamiltonian : a → ba. This will then impose the following

redefinitions of the parameters t, u and h.

t′ = b2t

h′ = bd/2+1h (37)

u′ = b4−du

• In any dimension, the t parameter will increase. So the criticality

has to be associated to the condition t = 0.
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• The condition t = 0 is the same condition we already obtained

from the mean field approach (the quadratic term in M was

(1− βJ) → Tc = J).

• The same is also true for the linear term. The system will be

critical only at zero magnetic field.

• The relevance of the quartic term will depend on the dimension :

For d > 4, u → 0 under rescaling. The term is irrelevant and we

can forget it.

For d < 4, u → ∞ under rescaling. The term is relevant :

ǫ = 4− d expansion, Wilson-Fisher fixed point.
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• We will consider the case with no external field, i.e. h = 0 and

with u = 0 but allowing a thermal deviation.

• This corresponds to the Gaussian theory with a mass term :

H =
∫

ddr[(∇S(r))2 +m2S2(r) + a1S(r) + a2S
2(r)

+a3S
3(r) + a4S

4(r) + · · ·] . (38)

The last terms with a1, a2, a3, a4, · · · are perturbations of the

Gaussian theory.

• Propagator of this theory is simply 1
k2+m2 .
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• We can compute the correlation function of the field S(r) as

< S(0)S(r) >≃
∫

ddk
ei
~k.~r

k2 +m2
≃ e−rm

r(d−1)/2
(39)

(for r >> 1/m...).

• The mass term is the inverse of a length. We replace this term

by m ≃ 1/ξ(T ) which defines the correlation length ξ(T ). The

critical point corresponds to the cancelation of the mass m and

is the point at which ξ(T ) diverges. In that case, we can check

that the correlation function is given by :

< S(0)S(r) >≃ 1

rd−2
(40)
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• This correlation length gives a scale to the problem. For

r >> ξ(T ), the correlation decreases very quickly.

• For a given temperature, if we rescale the system by r → br,
then the correlation is changed by

< S(0)S(r) >→ e−(b−1) r
ξ(T )

b(d−1)/2
< S(0)S(r) > (41)

• Then the correlation function is modified and in the limit of large

b (or of many small step) goes to zero.

• This correspond to the situation for T > Tc or T < Tc as we have

seen before for the 2d Ising model.

• The case T = Tc corresponds to ξ(Tc) = ∞ for which the

correlation function is a pure power law
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• Scale invariance is one of the particular symmetry that we can

impose.

• We can consider more general operators, like S(r) or S2(r),
S3(r) etc. Each operator A will have some scaling dimension

∆A.

• Invariance under scale invariance (+ translation + rotation +

normalisation + inversion ) will impose the following general

result

< A(~r1)B(~r2) >= f(~r1 − ~r2) = f(|~r1 − ~r2|)

=
CA,BδA,B

r∆A+∆B
=

δA,B

r2∆A
(42)

• We can even do better by imposing conformal invariance or

local scale invariance → Conformal Field Theories
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• In the two previous sections, we show that at the critical point

there is scale invariance. Away from this point, under a

rescaling, the parameters controlling the deviation to the critical

point are rescaled.

• In general, one can have more than one parameter (i.e.

temperature and magnetic field, density of vacancies, etc.)

• The transformation under a rescaling is written as

{K ′} = Rb{K} , (43)

with {K} the set of parameters, b the scaling parameter and R
the transformation under a rescaling. For the 1d Ising model, we

had the transformation tanhK ′ = (tanhK)3
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• We suppose that there exists a fixed point of the RG

transformation {K∗}. We will assume that R is differentiable at

the fixed point. Then we can linearize the RG equations close to

the fixed point.

K ′
a −K∗

a ≃
∑

b

Tab(Kb −K∗
b ) , (44)

with Tab =
∂K′

a

∂Kb |K=K∗

• λi, {ϕi} are the eigenvalues and eigenvectors of Tab.

• ui =
∑

a ϕ
i
a(Ka −K∗

a) are defined as the scaling variables.

• Under a RG transformation, their transform as

u′
i = λiui . (45)

The relation λi = byi defines the RG eigenvalues yi.



Renormalisation and scaling theory

Critical Phenomena Ubu, 22-26 February 2016

K1
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• yi > 0 → ui is relevant

• yi < 0 → ui is irrelevant

• yi = 0 → ui is marginal

• We consider again the Ising model : it has two scaling

variables : the thermal ut, yt and the magnetic uh, yh.

• For the Ising model, no mixing of these parameters : Symmetry

plays a role !!!

• Under a RG transformation we have

Z =
∑

S

e−H(S) =
∑

S′

e−H′(S′)

= e−Nf({K}) (46)
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• This then implies the relation

f({K}) = g({K}) + b−df({K ′}) (47)

• To explain this relation, remember for the 1d Ising model :

∑

s3,s4

eKs2s3eKs3s4eKs4s5 = 22(coshK)3(1 + (tanhK)3s2s5) .(48)

This (coshK)3 term will give something proportional to N so the

g part, while the (tanhK)3 will give something proportional to

b−1N so the f part.

• Only the homogeneous f part will be important, the other one

will give an analytical function of the parameters and thus does

not contribute to the computation of the critical exponents. This

will be denoted by fs in the following.
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• We can then iterate n times the RG transformations

fs(ut, uh) = b−dfs(b
ytut, b

yhuh) = b−ndfs(b
nytut, b

nyhuh) (49)

• We choose n such that bnytut = ut0 with ut0 a fixed value.

fs(ut, uh) = |ut/ut0|d/ytfs(ut0 , uh(ut/ut0)
−yh/yt) . (50)

Or

fs(t, h) = |t/t0|d/ytϕ(
h/h0

|t/t0|yh/yt
) , (51)

with ϕ some scaling function.

• Form there, it is very easy to deduce a relation of all the critical

exponents with yt and yh.
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• Specific heat :

∂2f

∂t2 |h=0
= |t|d/yt−2 → α = 2− d

yt
(52)

• Spontaneous magnetization :

∂f

∂h |h=0
= |t|(d−yh)/yt → β =

d− yh
yt

(53)

• Susceptibility :

∂2f

∂h2 |h=0
= |t|(d−2yh)/yt → γ =

2yh − d

yt
(54)

• All these exponents depend only of yt and yh : Scaling relations

α + 2β + γ = 2 ; α+ β(1 + δ) = 2 (55)
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• We have seen that a rather general theory can be described as

a Gaussian fixed point + perturbations

H =
∫

ddr[
1

2
(∇S(r))2+ ta−2S2(r)+uad−4S4+ha−d/2−1S](56)

The Gaussian fixed point is the point in parameters space with

t = u = h = 0. At this point the theory is very simple and we can

compute any correlation function (free field theory !!!).

• We have also seen that the perturbation associated to t is

always going to be relevant close to the fixed point. If we start

from t 6= 0, under rescaling, we will end up in a massive field

theory. So we need to fine tune this quantity to zero. The same

is also true for the magnetic perturbation.
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• As for the quartic perturbation, it is irrelevant for d > 4 and

relevant for d < 4. We will now consider the case when d is

slightly lower than 4 and define a parameter ǫ = 4− d.

• We will then compute close to the fixed point corresponding to

t = u = h = 0.

• More generally, we can consider a theory for which we have an

”exact” solution with an Hamiltonian H0 and a set of operators

φi :

Z =
∫

dφe
−H0−

∑

i
gi
∫

φi(r)
ddr

ad−xi . (57)

with a scaling dimensions xi (i.e. the scaling dimension defined

earlier from the two point correlation functions).

φ1 = S → x1 = (d− 2)/2 ; φ2 = S2 → x2 = (d− 2) ; φ3 = S4 →
x3 = 2(d− 2)
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• We then start the perturbative development :

Z = Z0 × [1−
∑

i

gi

∫

< φi(r) >
ddr

ad−xi
(58)

+
1

2

∑

ij

gigj

∫

< φi(r1)φj(r2) >
ddr1d

dr2
a2d−xi−xj

− 1

6

∑

ijk

gigjgk

∫

< φi(r1)φj(r2)φj(r2) >
ddr1d

dr2d
dr3

a3d−xi−xj−xk

+ · · ·]
Here, the correlation functions are computed with the original

fixed point corresponding to H0.

• The next step is to evaluate the correlation functions. We will

evaluate them by using Operator Product Expansion (OPE).
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< φi(r1)φj(r2)Φ >=
∑

k

Cijk(r1 − r2) < φk((r1 + r2)/2)Φ > (59)

• Here Φ is any combination of operators located far from r1 and

r2.

• OPE can be proved in some simple examples (2d Ising model).

For the case we consider here, it is rather easy to derive the

values of Cijk.

• Cijk(r1 − r2) does not depend on the choice of Φ. We can then

write

φi(r1)φj(r2) =
∑

k

Cijk(r1 − r2)φk((r1 + r2)/2) (60)

but we must remember that this is only true when inserted in a

correlation function.
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• We need also to specify how we perform the integrations with

multiple variables.

• We start with

∑

i

φ(xi) →
∫

a<r<L

ddr

ad−x
φ(r) , (61)

so we explicitly add a small distance cut-off a and a large

distance cut-off L.

• This can be interpreted as the lattice spacing and the size of the

system.

• If we have multiple integrations, we need to choose a way with

dealing when two operators become close one to the other one.

• Hard-core : operators have to remain at a distance larger than a.
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Renormalisation Group : We change the microscopic cut-off

a → a(1 + δl) with δl << 1 (62)

• The first term will change as

gi → (1 + δl)d−xigi ≃ gi + (d− xi)giδl (63)

• The second term in the expansion will contain
∫

|r1−r2|>a(1+δl)
=

∫

|r1−r2|>a
−

∫

a(1+δl)>|r1−r2|>a
(64)

• The last integral has to be taken in account :

1

2

∑

ij

∑

k

Cijka
xk−xi−xj

∫

a(1+δl)>|r1−r2|>a

ddr1d
dr2

a2d−xi−xj
(65)

< φk((r1 + r2)/2) >
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• The integral can be evaluated and gives Sda
dδl with

Sd = (2π)
d
2Γ(d/2) the volume of the sphere of radius one in d

dimensions. Thus the second term can be absorbed in the

redefinition

gk → gk −
1

2
Sd

∑

ij

Cijkgigjδl , (66)

and we obtain

βk(gi) =
dgk
dl

= (d− xk)gk −
∑

ij

Cijkgigj + · · · (67)

after a rescaling to absorb Sd/2.

• From there, the general strategy is to check the zero’s of the

β-functions.
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• We start from the solution corresponding to gi = 0 (Free

Gaussian theory in our case).

• For each operator, we can check the relevance. We illustrate

this for the case with one operator and with one coupling g.

• We first check the lowest order β(g) = dg
dl

= (d− xg)g + · · ·

g

β(g)

d− xg < 0

g

β(g)

d− xg > 0

• Note that d− xg = yg, the RG eigenvalue defined earlier.
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• Next we move, again for a single operator, to the next term :

β(g) = dg
dl

= (d− xg)g − cg2 + · · ·

g

β(g)

d− xg < 0

g

β(g)

d− xg > 0

c > 0

• If d− xg > 0 (relevant perturbation) and c > 0, we have, at this

order in perturbation a fixed point at the value g∗ = (d− xg)/c
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• In general, there is more than one perturbation and then a

corresponding number of coupling constants and beta functions

(and we need to diagonalize as seen above).

• The complicated part is to evaluate the Cijk.

• We go back to our original problem in which we had three

perturbations, corresponding either to S, S2 or S4. In that case,

the starting problem is the Gaussian model for which we can

compute the Cijk rather easily, by contraction of operators (Wick

contraction).

S × S ≃ 1 + S2 ; S × S2 = 2S + S3 ; S × S4 ≃ 4S3 + · · ·
S2 × S2 = 2 + 4S2 + S4 ; S2 × S4 ≃ 12S2 + 8S4 + · · ·

S4 × S4 = 24 + 96S2 + 72S4 + · · ·
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• We ignore term of order S5 or larger order or with more

derivatives since these would be irrelevant terms (see later).

• Note that a term S3 appears in the OPE. This can be removed

by noticing that, under a redefinition S → S + α, then

tS + uS2 + hS4 → cst+ t′S + u′S2 + r′S3 + u′S4 (68)

We can absorb one of the powers by a choice of α. So we can

get rid of the cubic term.

• The OPE coefficients can be read from the previous

expressions. For example, Cuuu = 72.

• Collecting all the OPE coefficients, we get :
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dh

dl
= (d− (d− 2)/2)h− 4ht+ · · ·
= (d/2 + 1)h− 4ht+ · · ·

dt

dl
= (d− (d− 2))t− h2 − 4t2 − 24tu− 96u2 + · · ·
= 2t− h2 − 4t2 − 24tu− 96u2 + · · · (69)

du

dl
= (d− (2d− 4))u− t2 − 16tu− 72u2 + · · ·
= ǫu− t2 − 16tu− 72u2 + · · ·

• We will assume now that ǫ = 4− d is small. We will expend h, t
and u in powers of ǫ
h = h1ǫ+ h2ǫ

2 + · · · ; t = t1ǫ+ t2ǫ
2 + · · · ; u = u1ǫ+ u2ǫ

2 + · · ·
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• We impose the condition that all the β’s functions are zero. A

simple inspection shows that we need to have

h = 0(ǫ2) ; t = 0(ǫ2) ; u = 0(ǫ)

• Then at this order in the ǫ expansion, we get :

dh

dl
= (d/2 + 1)h2ǫ

2 +O(ǫ3)

dt

dl
= 2t2ǫ

2 − 96u2
1ǫ

2 + 0(ǫ3)

du

dl
= ǫu1ǫ− 72u2

1ǫ
2 + 0(ǫ3)

with the simple solution

u =
ǫ

72
+O(ǫ2) ; t = O(ǫ2) ; h = O(ǫ2) (70)

Wilson-Fisher fixed point
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• At the fixed point, we can reexpress

βt =
dt

dl
= 2t− h2 − 4t2 − 24tu− 96u2 + · · ·

= 2t− 24ut+ · · · = (2− 24

72
ǫ)t+ · · ·

= (d− xt)t+ · · · (71)

with the new dimension associate to the thermal perturbation

xt = d− 2 + 24
72
ǫ compared to the original dimension xt = d− 2.

• This dimension is associated to the exponent corresponding to

the correlation length by the relation

ν = 1/yt = 1/(d− xt) = 1/(2− 24

72
ǫ) = 1/2 +

1

12
ǫ+O(ǫ2)(72)
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• Let’s consider the term S6 with a scaling dimension x6 = 3d− 6.

It’s RG eigenvalue y6 = d− x6 = 6− 2d is negative for any

dimension larger than 3. But in fact, even at d = 3 it will be

irrelevant. Indeed, it is easy to see that

dg6
dl

= (6− 2d)g6 − 360ug6 + · · · (73)

But we have to consider this term at the Wilson-Fisher fixed

point, at which value u = ǫ/72. Then

dg6
dl

= (6− 2d)g6 − (360/72)ǫg6 +O(ǫ2)

= (−2 + 2ǫ)g6 − 5ǫg6 +O(ǫ2)

= (−3ǫ− 2)g6 +O(ǫ2) . (74)

So we see that this term is always irrelevant for any dimension

!!!
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Universality and comparison with experimental systems :

Transition type Material α β γ ν
Ferro. (n=3) Fe, Ni -0.1 0.34 1.4 0.7

Superfluid (n=2) He4 0 0.3 1.2 0.7

Liquid-gas (n=1) CO2, Xe 0.11 0.32 1.24 0.63

Superconductors 0 1/2 1 1/2

Mean Field 0 1/2 1 1/2

ǫ (3d) O(ǫ5) 0.3268 (3) 0.631 (3)

IM Monte Carlo 0.32644 (2) 0.6300 (1)

ǫ (2d) O(ǫ5) 0.130 (25) 0.99 (4)

IM Exact (2d) 0.125 1.0
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