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K=RorC, Z,=1{0,1},

V = V5@ Vj is a finite dimensional Z,-graded vector space over K
with a non-degenerate skew-symmetric even bilinear form ().

(;)lvyx v is non-degenerate skew-symmetric;
(,)lvsxv; is non-degenerate symmetric;

(7) = (7)‘V5><V5 +(’)|Vi><vi

X 1= i is the parity of a homogeneous element x € %
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e An n-ary superalgebra structure ;o on V' is an n-linear map
p:Vx..xV-oV.
~—_———
n times

Sometimes we will use " bracket notation”
w(al,...,an) ={a1,...,an}

e An n-ary superalgebra (V, u) is called symmetric if

{a1,...,a8i,3i+1,---,an} = (— )"'a'“{al,...,a,-ﬂ,a;,...,a,,}
(1)

for any homogeneous a; € V.

e A symmetric n-ary superalgebra (V, u) is called quadratic if the
following holds:

(b,{a1,...,an}) = (=1)"% (a1, {b, 2, ...,an}). (2)



Derived bracket

The "derived bracket” approach was used by B. Kostant and
S. Sternberg, Y. Kosmann-Schwarzbach, Th. Voronov and others.

Denote by S*V = @ S"V the symmetric power of V. On $*V

there is a natural Poisson superalgebra structure [, ], defined by:

[Xay] = (X’y)a x,y €V,
[v, w1 - wo] i=[v, m1] - wo 4 (—=1)"™wy - [v, wo],
[v, w] = —(=1)""[w, v],

where v, w, wi, wo € $*V are homogeneous elements.
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Derived bracket

Let us take any p € S"T1V. We can define an n-ary superalgebra
structure on V by

{31,...,3,,} = [ala["'a[anaﬂ]"']]a
where a; € V.

The n-ary superalgebra structure has two properties:

@ This multiplication is symmetric and quadratic.

To prove the second statement we use the Jacobi identity:

(b {ar.. .- an}) = [b.[av a2, .. [an. ] ] =
[[bv 81], R [am :u] .- ']]1_+ (_1)bal [317 [bv [327 SRR [am :U’] .- ]]] =
(—1)%21(ay, {b, a0, ..., an}).
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Derived bracket

Proposition. Assume that (,) is non-degenerate. Any symmetric
quadratic n-ary superalgebra can be obtained by this construction:

{a1,...,an} :=[a1,[-- -, [an, 1] - - ]],
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o (Kostant and Sternberg, Roytenberg) Let V = V4 and
pueS3v.

[, 1] = 0 <= Jacobi identity + (, )-invariance ;

o Let V= Vgand pc S3V.
[tex, fty] = 0 <= associativity + (, )-invariance,
where piy == [x, p].
o Let V= Vgand pc S3V.
[4x> B, x)] = O <= Jordan identity + (, )-invariance,

where iy =[x, .
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Classification of (m — 3)-ary quadratic algebras

Let V = V4 and (e;) be a normalized orthogonal basis of V' and
T:=e€1...€m,
where m = dim V.
For x; € V, we define a "Hodge operator” * : SP — S™7P by:
#(x1 ... Xp) i= [x1,[. .. [xp, T]]]-
We can also use this idea to define "Hodge operator” on

Riemannian oriented manifold. We see that this definition depends
only on the orientation and the Riemannian metric ().
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Classification of (m — 3)-ary quadratic algebras

o S?V ~s0(V), x+—[x,]:V = V. Therefore, S?V is an
adjoint (or coadjoint) module of so(V).

o x: 5%V — S™2V is s0(V)-invariant.

@ We can integrate everything and replace so(V) by SO(V).
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Classification of (m — 3)-ary quadratic algebras

o S?V ~s0(V), x+—[x,]:V = V. Therefore, S?V is an
adjoint (or coadjoint) module of so(V).

o x: 5%V — S™2V is s0(V)-invariant.
@ We can integrate everything and replace so(V) by SO(V).

Theorem. (V.) Classes of isomorphic real or complex quadratic
(m — 3)-ary algebra structures on V', where m = dim V, are in

one-to-one correspondence with coadjoint orbits corresponding to
the Lie group SO(V).
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Classification of (m — 3)-ary quadratic algebras, real case

It is well-known that any real skew-symmetric matrix A can be
written in the following form:

A — QA/Q_I,

where
A" = diag(Jays .-y Ja,, 0,...,0),

_( 0 3 .
Ja.—<_aj 0), a; € R,
QReO(V)and0< ap <---<a;.

The corresponding to A element in S2V is

Ar— va = are1e + ...+ agerk_16k, ,
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Classification of (m — 3)-ary quadratic algebras, real case

Theorem. (V.) Real metric (m — 3)-ary algebra structures on V
are parametrized by vectors

VA = 31616 + ... + akerk_1€k,

where a; € R, 0 < ay < --- < a1 and 0 < k < [F]. Explicitly the
metric (m — 3)-ary algebra structures are given by

py = #(va).

The algebra (V, p1y,) is simple if and only if k > 1.
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Classification of n-ary algebras, other results

e W. X. Ling, On the structure of n-Lie algebras. PhD thesis,
Siegen, 1993.
Classification of simple n-ary algebras of Filippov type.

@ Cantarini, Nicoletta, and Victor G. Kac. Classification of
Simple Linearly Compact n-Lie Superalgebras.
Communications in Mathematical Physics 298.3 (2010):
833-853.

Classification of n-ary superalgebras of Filippov type, infinite
dimensional case.
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Other results

@ Quasi-Frobenius structures on n-ary algebras;
@ Hodge Theory for homogeneous i € S*(V), where V = V5;

@ Double extension for quadratic superalgebras.
(For Lie algebras A. Medina, Ph. Revoy)
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