A quantum 4-sphere with non central radius and its instanton sheaf

Chiara Pagani

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

NONCOMMUTATIVE GEOMETRY AND MATHEMATICAL PHYSICS SCALEA, 16-20 JUNE 2014

Based on a joint work with Lucio Cirio [arXiv:1402.6609]

The Hopf fibration and SU(2)-instantons

$$\pi:S^7 \stackrel{SU(2)}{\longrightarrow} S^4 \ \left(\simeq St_{\mathbb{H}}(1,2) \stackrel{Sp(1)}{\longrightarrow} Gr_{\mathbb{H}}(1,2)
ight)$$

- 2nd-Hopf map [Hopf '31] higher homotopy groups of spheres
- Instanton bundle SU(2)-Yang-Mills eqs.(1954): Euler-Lagrange eqs. for

$$\mathcal{A}_{YM} = \int_{S^4} |F_A|^2 d\mu$$

Instantons: solutions A of minima of Yang-Mills eqs.: Topological invariant $k = c_2 \in \mathbb{Z}$ as a lower bound: $8\pi^2 |k| \leq A_{YM}$

Minima reached $\iff *F_A = \pm F_A$ (and then A automatically solution of YM eqs.) Basic case k = 1:

SU(2)-instanton: connection A with ASD F_A on the Hopf bundle $S^7 \xrightarrow{SU(2)} S^4$

2002- ... quantum Hopf fibrations on quantum spheres

Various constructions of Hopf-bundles $S^7 \xrightarrow{SU(2)} S^4$ and instantons on quantum spheres:

Principal fibrations in NCG: **Hopf-Galois extensions** [Kreimer, Takeuchi 1981]

- a *-algebra A 'total space' ;
- a Hopf algebra (H, Δ, ε) as 'structure quantum group' ;
- coaction $\delta : A \to A \otimes H$:

$$(\Delta \otimes id)\delta = (id \otimes \delta)\delta$$
 , $(\varepsilon \otimes id)\delta = id$

- a *-algebra B 'base space' of coinvariants $B \simeq A^{co(H)} := \{a \in A | \delta(a) = a \otimes 1\}$
- + 'condition of principality': $B \subset A$ is a Hopf-Galois extension:

$$\chi = (m_A \otimes id)(id \otimes_B \delta) : A \otimes_B A \to A \otimes H \qquad (\text{canonical map})$$

is bijective

$$S^7 \stackrel{SU(2)}{\longrightarrow} S^4 \quad \rightsquigarrow \quad \mathcal{A}(S^4) \simeq \mathcal{A}(S^7)^{co\mathcal{A}(SU(2))} \hookrightarrow \mathcal{A}(S^7)$$
 Hopf-Galois

• Quantum spheres: deformations of the algebra of

$$S^n = \{(x_1, \ldots x_{n+1}) \in \mathbb{R}^{n+1} | \sum x_i^2 = 1\}$$

The 4-sphere $\mathcal{A}(S_q^4)$ with non central radius [Cirio-Landi-Szabo, 2011]

The algebra $\mathcal{A}(S_q^4)$ is a one real parameter deformation of the algebra of coordinate functions on the classical four-sphere, where this latter is seen as a real slice of the Klein quadric in \mathbb{CP}^5 .

Introduced in the context of deformations of toric varieties $(\mathbb{C}^{\times})^n$ via Drinfeld 2-cocycle

• The algebra $\mathcal{A}(\mathbb{CP}_q^5)$, $q \in \mathbb{R}$, is generated by 'Plücker coordinates' Λ_{ij} , i < j (i, j = 1, ..., 4), satisfying

$$\begin{split} &\Lambda_{12}\Lambda_{13} = q^{-2}\Lambda_{13}\Lambda_{12} \quad , \qquad &\Lambda_{12}\Lambda_{14} = q^{-2}\Lambda_{14}\Lambda_{12} \quad , \qquad &\Lambda_{12}\Lambda_{23} = q^{2}\Lambda_{23}\Lambda_{12} \quad , \\ &\Lambda_{12}\Lambda_{24} = q^{2}\Lambda_{24}\Lambda_{12} \quad , \qquad &\Lambda_{12}\Lambda_{34} = \Lambda_{34}\Lambda_{12} \quad , \qquad &\Lambda_{13}\Lambda_{14} = \Lambda_{14}\Lambda_{13} \quad , \\ &\Lambda_{13}\Lambda_{23} = q^{2}\Lambda_{23}\Lambda_{13} \quad , \qquad &\Lambda_{13}\Lambda_{24} = q^{2}\Lambda_{24}\Lambda_{13} \quad , \qquad \dots \end{split}$$

• The algebra $\mathcal{A}(\mathbb{G}r_q(2,4))$ is the quotient of $\mathcal{A}(\mathbb{CP}_q^5)$ by the ideal generated by

$$q\Lambda_{12}\Lambda_{34}-\Lambda_{13}\Lambda_{24}+\Lambda_{14}\Lambda_{23}$$
.

• The algebra $\mathcal{A}(S_q^4)$ is the real part of $\mathcal{A}(\mathbb{G}r_q(2,4))$ obtained by introducing the *-structure

$$\Lambda_{12}^* = \Lambda_{12} , \quad \Lambda_{13}^* = q \Lambda_{24} , \quad \Lambda_{14}^* = -q \Lambda_{23} , \quad \Lambda_{34}^* = \Lambda_{34}$$

By considering the change of generators $X := \frac{1}{2}q(\Lambda_{12} - \Lambda_{34})$ and $R := \frac{1}{2}q(\Lambda_{12} + \Lambda_{34})$, the Klein identity has real form

$$X^2 + \Lambda_{13}\Lambda_{13}^* + \Lambda_{14}\Lambda_{14}^* = R^2$$
.

 \rightarrow for q = 1, localize by R and retrieve the sphere described in affine coordinates \rightarrow for $q \neq 1$, R is not central in $\mathcal{A}(S_q^4)$ and it does not generate a Ore denominator set \rightarrow not possible to localize by R

 $\longrightarrow \mathcal{A}(S_q^4)$ is better described locally

The 'local patches' ${}_{N}\mathbb{R}^{4}_{q}$, ${}_{S}\mathbb{R}^{4}_{q}$ of the sphere $\mathcal{A}(S^{4}_{q})$

• ${}_{s}\mathbb{R}^{4}_{q}$: via left Ore localization of $\mathcal{A}(\mathbb{G}r_{\theta}(d, n))$ with respect to Λ_{12} Generated by elements α_{13} , α_{14} , α_{23} and α_{24} with

$$\begin{array}{ll} \alpha_{13}\alpha_{14} = \alpha_{14}\alpha_{13} \,, & \alpha_{13}\alpha_{23} = {\pmb q}^{-2}\alpha_{23}\alpha_{13} \,, & \alpha_{13}\alpha_{24} = {\pmb q}^{-2}\alpha_{24}\alpha_{13} \,, \\ \alpha_{14}\alpha_{23} = {\pmb q}^{-2}\alpha_{23}\alpha_{14} \,, & \alpha_{14}\alpha_{24} = {\pmb q}^{-2}\alpha_{24}\alpha_{14} \,, & \alpha_{23}\alpha_{24} = \alpha_{24}\alpha_{23} \,. \end{array}$$

and endowed with the *-structure $\alpha_{24}^* = q^{-3}\alpha_{13}$, $\alpha_{23}^* = -q^{-3}\alpha_{14}$. (Extra redundant generator $\alpha = q^{-4}(\alpha_{13}^*\alpha_{13} + \alpha_{14}^*\alpha_{14})$.)

• ${}_{N}\mathbb{R}^{4}_{q}$: via right Ore localization of $\mathcal{A}(\mathbb{G}r_{\theta}(d, n))$ with respect to Λ_{34} Generated by elements β_{13} , β_{14} , β_{23} and β_{24} with

$$\begin{split} \beta_{13}\beta_{14} &= \beta_{14}\beta_{13} , \qquad \beta_{13}\beta_{23} = q^2\beta_{23}\beta_{13} , \qquad \beta_{13}\beta_{24} = q^2\beta_{24}\beta_{13} , \\ \beta_{14}\beta_{23} &= q^2\beta_{23}\beta_{14} , \qquad \beta_{14}\beta_{24} = q^2\beta_{24}\beta_{14} , \qquad \beta_{23}\beta_{24} = \beta_{24}\beta_{23} . \end{split}$$

and *-structure $\beta^*_{24} = q^{-1}\beta_{13}$, $\beta^*_{23} = -q^{-1}\beta_{14}$. (Extra gener. β redundant.)

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

The intersection of the two 'charts' ${}_{N}\mathbb{R}^{4}_{q}$ and ${}_{s}\mathbb{R}^{4}_{q}$

- ${}_{s}\mathbb{R}^{4}_{q}$ with generators $\alpha_{13}, \ \alpha_{14}, \ \alpha_{23}$ and α_{24} (and α)
- ${}_{N}\mathbb{R}^{4}_{q}$ with generators β_{13} , β_{14} , β_{23} and β_{24} (and β)

The intersection of the two 'charts' ${}_{N}\mathbb{R}_{q}^{4}$ and ${}_{s}\mathbb{R}_{q}^{4}$ is geometrically obtained by removing the 'origin' in each patch. Algebraically:

- $_{NS}\mathbb{R}^4_q$ by extending $_{S}\mathbb{R}^4_q$ with an element α^{-1} as inverse of α
- ${}_{SN}\mathbb{R}^4_q$ by extending ${}_{N}\mathbb{R}^4_q$ with an element β^{-1} , inverse of β

In the overlap of the two patches there are two sets of generators to describe 'points',

```
\exists *-algebra isomorphism \mathcal{Q}: {}_{SN}\mathbb{R}^4_q \rightarrow {}_{NS}\mathbb{R}^4_q
```

Q describes how to pass from the coordinates β_{ij} to the coordinates α_{ij} .

Sheaf of Hopf-Galois extensions

Goal: construct a (quantum) Hopf bundle over $\mathcal{A}(S_q^4)$ and its instanton connection

Fact: previous approaches used to construct bundles on quantum spheres (e.g. globally defined instanton projector) cannot be used for $\mathcal{A}(S_q^4)$.

Definition

Let X be a topological space. Let \mathcal{F} be a sheaf of (not necessarily commutative) algebras over X and H a Hopf algebra. We say that \mathcal{F} is a sheaf of H-Hopf-Galois extensions if for each $U \subseteq X$ open set,

(i) \mathcal{F} is a sheaf of H-comodule algebras

 $\delta_U : \mathcal{F}(U) \to \mathcal{F}(U) \otimes H$ (coaction)

and for each $W \subset U$ the restriction map $\rho_{UW} : \mathcal{F}(U) \to \mathcal{F}(W)$ is a morphism of *H*-comodule algebras;

(ii) $\mathcal{F}(U)^{co(H)} \subseteq \mathcal{F}(U)$ is a Hopf-Galois extension.

Let *M* be a topological space with an open covering $(U_i)_i$. Let **A** a subcategory of the category of all associative \mathbb{C} -algebras.

- [Pflaum (1994)] A quantum principal bundle $(\mathcal{P}, \mathcal{M}, H)$ over M is the data of:
 - a sheaf \mathcal{M} over M with objects in **A** (the base quantum space),
 - a sheaf \mathcal{P} over M with objects in **A** (the total quantum space),
 - a Hopf algebra H called the structure quantum group,
 - a family of sheaf morphisms $\Omega_i : \mathcal{M}(U_i) \#_i H \to \mathcal{P}(U_i)$ (local trivializations) + conditions for $\Omega_{ji} := \Omega_i^{-1} \Omega_i$ on $U \subset U_i \cap U_j$.

Let *M* be a topological space with an open covering $(U_i)_i$. Let **A** a subcategory of the category of all associative \mathbb{C} -algebras.

• [Pflaum (1994)] A quantum principal bundle $(\mathcal{P}, \mathcal{M}, H)$ over M is the data of:

- a sheaf \mathcal{M} over M with objects in **A** (the base quantum space),
- a sheaf \mathcal{P} over M with objects in **A** (the total quantum space),
- a Hopf algebra H called the structure quantum group,
- a family of sheaf morphisms $\Omega_i : \mathcal{M}(U_i) \#_i H \to \mathcal{P}(U_i)$ (local trivializations) + conditions for $\Omega_{ji} := \Omega_i^{-1} \Omega_i$ on $U \subset U_i \cap U_j$.

Proposition

A sufficient condition for a quantum principal bundle \mathcal{P} to be a sheaf of Hopf-Galois extensions (in fact, locally cleft) is that \mathcal{P} is a flabby sheaf. In the opposite direction, every locally cleft sheaf of Hopf-Galois extensions is a quantum principal bundle.

The base quantum space $\mathcal{A}(S_q^4)$

Base of the topology: $U_N := S^4 \setminus \{NP\}$, $U_S := S^4 \setminus \{SP\}$ and their intersection U_{SN}

The quantum space of the noncommutative 4-sphere S_q^4 is the sheaf of noncommutative *-algebras $\mathcal{O}_{S_q^4}$ over the classical 4-sphere S^4 defined by the assignment

$$\mathcal{O}_{S_q^4}(U_N) := {}_N\mathbb{R}_q^4, \qquad \mathcal{O}_{S_q^4}(U_S) := {}_s\mathbb{R}_q^4, \qquad \mathcal{O}_{S_q^4}(U_{SN}) := \overbrace{s_N\mathbb{R}_q^4}^{\sim}$$

together with restriction maps

$$\begin{array}{rcl} \rho_{N,SN} & : & {}_{N}\mathbb{R}_{q}^{4} \to \overbrace{s_{N}\mathbb{R}_{q}^{4}}^{4}, & \beta_{ij} & \mapsto \beta_{ij} \\ \rho_{S,SN} & : & {}_{s}\mathbb{R}_{q}^{4} \to \overbrace{s_{N}\mathbb{R}_{q}^{4}}^{4}, & \alpha_{ij} & \mapsto \widetilde{\mathcal{Q}}(\alpha_{ij}) \end{array}$$

(Here $\int_{SN\mathbb{R}_q^4}$ the *-algebra generated by elements $\{\beta_{13}, \beta_{14}, \beta_{23}, \beta_{24}, r^{-1}\}$, for $\beta^{-1} = r^{-2}$).

$$\begin{aligned} \mathcal{O}_{S_{q}^{4}}(S^{4}) &= \mathcal{O}_{S_{q}^{4}}(U_{N} \cup U_{S}) \\ &= \{(a_{N}, a_{S}, a_{S}, n) \in \mathcal{O}_{S_{q}^{4}}(U_{N}) \oplus \mathcal{O}_{S_{q}^{4}}(U_{S}) \oplus \mathcal{O}_{S_{q}^{4}}(U_{SN}) \mid \rho_{N, SN}(a_{N}) = \rho_{S, SN}(a_{S}) = a_{SN}\} \\ &\simeq \{(a_{N}, a_{S}) \in \mathcal{O}_{S_{q}^{4}}(U_{N}) \oplus \mathcal{O}_{S_{q}^{4}}(U_{S}) \mid \rho_{N, SN}(a_{N}) = \rho_{S, SN}(a_{S})\}. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

(日) (同) (三) (三) (三) (○) (○)

Aim: (re)construct the sheaf \mathcal{P} of the total space from transition functions

$$au_{ji}: SU(2)
ightarrow \mathcal{M}(U_i \cap U_j)$$

Strategy: recognize an SU(2) inside the intersection of the two patches

 $_{SN}\mathbb{R}_q^4$ can be factorized into a product of a 3-sphere $S^3 \simeq SU(2)$ and a 1-dim interval:

• Let $\mathcal A$ be the *-subalgebra of ${}_{\scriptscriptstyle SN}\mathbb R^4_q$ generated by the elements

$$x_{23} := \beta_{23}r^{-1}, \quad x_{24} := \beta_{24}r^{-1}, \quad x_{23}^* = r^{-1}\beta_{23}^*, \quad x_{24}^* = r^{-1}\beta_{24}^*.$$

Then the sphere relation $x_{23}^*x_{23} + x_{24}^*x_{24} = 1$ holds and A is commutative. It can be endowed with a Hopf algebra structure s.t.

$$\mathcal{A}\simeq\mathcal{A}(\mathit{SU}(2))$$

• Let \mathcal{I} be the *-algebra generated by $\{r, r^{-1}\}$ satisfying the relation $rr^{-1} = r^{-1}r = 1$

 \longrightarrow Both ${\mathcal A}$ and ${\mathcal I}$ are commutative, the noncommutativity emerges from their tensor product.

We denote by $\mathcal{A} \otimes_{\Psi} \mathcal{I}$ the twisted tensor product algebra consisting of the vector space $\mathcal{A} \otimes \mathcal{I}$ endowed with the multiplication

$$m_{ heta} := (m_{\mathcal{A}} \otimes m_{\mathcal{I}})(\mathrm{id}_{\mathcal{A}} \otimes \Psi \otimes \mathrm{id}_{\mathcal{I}})$$

where $\Psi: \mathcal{I} \otimes \mathcal{A} \to \mathcal{A} \otimes \mathcal{I}$ is the linear map defined on the vector space base elements by

$$\Psi\left(r^{\pm n} \otimes x_{23}^{\mathfrak{a}} \left(x_{23}^{*}\right)^{b} x_{24}^{c} \left(x_{24}^{*}\right)^{d}\right) := q^{\pm n(\mathfrak{a}+c) \mp n(b+d)} x_{23}^{\mathfrak{a}} \left(x_{23}^{*}\right)^{b} x_{24}^{c} \left(x_{24}^{*}\right)^{d} \otimes r^{\pm r}$$

for all integers $n, a, b, c, d \in \mathbb{N} \cup \{0\}$.

Proposition

∃ a *-algebra isomorphism:

$$f_{SN}: \widetilde{\mathfrak{s}_{N}\mathbb{R}^{4}_{q}} \xrightarrow{\simeq} \mathcal{A} \otimes_{\Psi} \mathcal{I}$$

The (sheaf of the) total space \mathcal{P} of the quantum Hopf bundle

We introduce 'transition functions' $\mathcal{A} \to \mathcal{O}_{S^4_{\sigma}}(U_N \cap U_S) \simeq \mathcal{A} \otimes_{\Psi} \mathcal{I}$, for $\mathcal{A} \simeq SU(2)$

 $\begin{aligned} \tau_{\text{NN}} &: \mathcal{A} \to \mathcal{A} \otimes_{\Psi} \mathcal{I}, \quad \tau_{\text{SS}} &: \mathcal{A} \to \mathcal{A} \otimes_{\Psi} \mathcal{I}, \quad \tau_{\text{NS}} &: \mathcal{A} \to \mathcal{A} \otimes_{\Psi} \mathcal{I}, \quad \tau_{\text{SN}} &: \mathcal{A} \to \mathcal{A} \otimes_{\Psi} \mathcal{I} \\ & h \mapsto \varepsilon(h) 1 \otimes 1, \quad h \mapsto \varepsilon(h) 1 \otimes 1, \quad h \mapsto h \otimes 1, \quad h \mapsto S(h) \otimes 1 \end{aligned}$

Then we can construct the quantum total space out of the transition functions:

$$\begin{aligned} \mathcal{P}(U_N) &:= & \left\{ (b^N, b^{SN}) \in \left(\mathcal{O}_{S^4_q}(U_N) \otimes \mathcal{A} \right) \oplus \left(\mathcal{O}_{S^4_q}(U_S \cap U_N) \otimes \mathcal{A} \right) \\ & \text{ s.t. } (\rho_{N,SN} \otimes id)(b^N) = (m \otimes id)(id \otimes f_{SN}^{-1} \circ \tau_{NS} \otimes id)(id \otimes \Delta)(b^{SN}) \right\} \end{aligned}$$

and similarly $\mathcal{P}(U_S)$ while on the intersection \mathcal{P} is simply given by

$$\mathcal{P}(U_S \cap U_N) := \mathcal{O}_{S^4_q}(U_S \cap U_N) \otimes \mathcal{A}$$
 .

The (sheaf of the) total space \mathcal{P} of the quantum Hopf bundle

Finally

$$\begin{split} \mathcal{P}(S^{4}) &:= \left\{ (b^{N}, b^{S}) \in \left(\mathcal{O}_{S_{q}^{4}}(U_{N}) \otimes \mathcal{A} \right) \oplus \left(\mathcal{O}_{S_{q}^{4}}(U_{S}) \otimes \mathcal{A} \right) \\ s.t. \ (\rho_{N,SN} \otimes id)(b^{N}) &= (m \otimes id)(id \otimes f_{SN}^{-1} \circ \tau_{NS} \otimes id)(id \otimes \Delta)(\rho_{S,SN} \otimes id)(b^{S}) \right\} \,. \end{split}$$

• \mathcal{P} is a sheaf of \mathcal{A} -comodule algebras: the regular corepresentation Δ of $\mathcal{A} = \mathcal{A}(SU(2))$ on itself induces right coactions

$$\delta = (\mathit{id} \otimes \Delta)$$

of $\mathcal{A}(SU(2))$ on the two summands ${}_{N}\mathbb{R}^{4}_{q}\otimes \mathcal{A}$ and ${}_{S}\mathbb{R}^{4}_{q}\otimes \mathcal{A}$ and then on $\mathcal{P}(S^{4})$

Theorem

The subalgebra of coinvariants $\mathcal{B} := (\mathcal{P}(S^4))^{co(SU(2))}$ is

$$\mathcal{B} = \{(x \otimes 1, y \otimes 1) \in \mathcal{P}(S^4) \ / \ \rho_{N,SN}(x) = \rho_{S,SN}(y)\} = \mathcal{O}_{S^4_a}(S^4) \,.$$

The extension $\mathcal{B} \subset \mathcal{P}(S^4)$ is Hopf-Galois.

The instanton connection

- NC differential calculus of S_q^4 : a sheaf of noncommutative algebras $\Omega_{S_q^4}^{\bullet}$ over the classical 4-sphere S^4 .
- Hodge operator: the sheaf of anti-selfdual 2-forms $\Omega_q^{2,-}$
- On the local patch $_{N}\mathbb{R}_{q}^{4}$: extend $_{N}\Omega_{q}^{\bullet}$ by a generator t and its differential dt and quotient by the relation

$$t(1+r^2) = 1 = (1+r^2)t$$
.

gauge potential

$$\mathsf{A} := \frac{1}{2} t \begin{pmatrix} \eta_1 & \eta_2 \\ -\eta_2^* & \eta_1^* \end{pmatrix} \in \mathfrak{su}(2) \otimes {}_N \Omega_q^1$$

Theorem

The curvature $F_A = dA + A \wedge_q A$ of the SU(2)-potential A has the expression

$$F_{A} = t^{2} \begin{pmatrix} \mathrm{d}\beta_{23}^{*}\mathrm{d}\beta_{23} + q^{2}\mathrm{d}\beta_{24}\mathrm{d}\beta_{24}^{*} & 2\mathrm{d}\beta_{23}^{*}\mathrm{d}\beta_{24} \\ \\ -2\mathrm{d}\beta_{24}^{*}\mathrm{d}\beta_{23} & -\mathrm{d}\beta_{23}^{*}\mathrm{d}\beta_{23} - q^{2}\mathrm{d}\beta_{24}\mathrm{d}\beta_{24}^{*} \end{pmatrix}$$

and it is anti-selfdual, $\star_q F_A = - F_A$.