Higher symmetries of the Laplace and Dirac operators

Jean-Philippe Michel
(Université de Liège)

joint work with Josef Šilhan (Masaryk University)

Definition of higher symmetries

Let E and F be two vector bundles over the smooth manifold M.

Definition

Let $D \in \mathcal{D}(M ; E, F)$ be a differential operator. A diff. op. $A \in \mathcal{D}(M, E)$ is

- a higher symmetry (HS) of D if: $D \circ A=B \circ D$,
- a trivial HS if: $A=A_{0} \circ D$.
- HS preserve the kernel of D,
- the space of HS is a subalgebra of $\mathcal{D}(M, E)$, i.e., an associative and non-commutative filtered algebra.

Determine the algebra structure of $\{\mathrm{HS}\} /\{$ trivial HS$\}$,

$$
\text { for } D=\Delta, \not D, \Delta \oplus \not \square
$$

HS of Laplacian and conformal geometry

On $\mathbb{R}^{n}(\mathrm{n}=\mathrm{p}+\mathrm{q})$, we consider $\Delta=\partial_{1}^{2}+\cdots+\partial_{p}^{2}-\partial_{p+1}^{2}-\cdots \partial_{p+q}^{2}$.

- First order HS of Δ (up to constants) are given by

$$
\Delta \circ\left(X+\frac{n-2}{2 n} \partial_{i} X^{i}\right)=\left(X+\frac{n+2}{2 n} \partial_{i} X^{i}\right) \circ \Delta,
$$

where $L_{x} g \in[\mathrm{~g}]$.

- The Lie algebra of conformal Killing vector fields is $\mathfrak{g}_{\mathbb{R}}=\mathfrak{o}(p+1, q+1)$.
- For well-chosen density bundles, $\mathcal{E}[\lambda]:=\Gamma\left(\mathrm{Vol}^{\lambda}\right), \Delta$ is a $\mathfrak{g}_{\mathbb{R}}$-invariant operator

$$
\Delta: \mathcal{E}\left[\frac{n-2}{2 n}\right] \rightarrow \mathcal{E}\left[\frac{n+2}{2 n}\right] .
$$

If the metric g is conformally flat
HS of Δ on $\mathbb{R}^{n} \longleftrightarrow$ HS of $\Delta_{Y}:=\nabla_{i} \mathrm{~g}^{i j} \nabla_{j}-\frac{n-2}{4(n-1)} \mathrm{R}$ on $(M, \mathrm{~g})$

HS of Laplacian: results

Let (M, g) be conformally flat, and $\mathfrak{g}=\mathfrak{o}(n+2, \mathbb{C})$.

Theorem

The algebra of HS of Δ_{Y} is isomorphic to $\mathfrak{U}(\mathfrak{g}) / \mathcal{J}$, with \mathcal{J} the Joseph ideal [Eastwood, '02].
The algebra $\mathfrak{U}(\mathfrak{g}) / \mathcal{J}$ is the unique invariant star-deformation of $\mathbb{C}\left[\mathcal{O}_{\text {min }}\right]_{\text {[Arnal et al }}$ '94; Astashkevich-Brylinski '01].

- $\mathfrak{U}(\mathfrak{g}) / \mathcal{J}$ is an algebra of symmetries in higher spin field theories [Vasiliev et al.];
- On $M=\mathbb{S}^{p} \times \mathbb{S}^{q}$, ker Δ_{Y} is the minimal representation of $\mathrm{O}(p+1, q+1)$ [Kobayashi-Orsted, '01];
- Second order symmetries allow to classify separating coordinates for the Laplace equation $\Delta f=0$ [Boyer-Kalnins-Miller, '76].

Ingredients of proof [M., '11]

Conformally equivariant quantization [Duval-Lecomte-Ovsienko, '99]:

- there exists a unique linear isomorphism

$$
\mathcal{Q}_{\lambda, \mu}: \operatorname{Pol}_{\mu-\lambda}\left(T^{*} M\right) \rightarrow \mathcal{D}_{\lambda, \mu}(M),
$$

which is \mathfrak{g}-equivariant and preserves principal symbol (for generic $\lambda, \mu \in \mathbb{R}$).
Classification of conformally invariant operators:

- there exists a unique \mathfrak{g}-invariant operator

$$
\mathbf{G}_{0}: \operatorname{Pol}\left(T^{*} M\right) \rightarrow \operatorname{Pol}^{\frac{2}{n}}\left(T^{*} M\right) /(\sigma(\Delta)) .
$$

- $\mathbf{G}_{0} K=\{\sigma(\Delta), K\} \bmod (\sigma(\Delta))$, and $\operatorname{ker} \mathbf{G}_{0}=$ sym. of null geodesic flow.
- $\{$ Traceless conf. Killing k-tensors $\}=$ irrep of \mathfrak{g}, included in $\mathrm{S}^{k}(\mathfrak{g})$.

Symplectic reduction:

- $T^{*}\left(\mathbb{S}^{p} \times \mathbb{S}^{q}\right) / /\langle\sigma(\Delta)\rangle \cong \mathcal{O}_{\text {min }}$,
- $\operatorname{ker} \mathbf{G}_{0} /(\sigma(\Delta)) \cong \mathbb{C}\left[\mathcal{O}_{\text {min }}.\right]$

Higher symmetries of Dirac operator

Let S be the spinor bundle over the pseudo-Euclidean space $\left(\mathbb{R}^{n}, \mathrm{~g}\right)$. The Dirac operator is \mathfrak{g}-invariant,

$$
\not D: \mathcal{S}\left[\frac{n-1}{2 n}\right] \longrightarrow \mathcal{S}\left[\frac{n+1}{2 n}\right] .
$$

We have $\mathcal{D}\left(\mathbb{R}^{n}, S\right) \cong \mathcal{D}\left(\mathbb{R}^{n}\right) \otimes \mathbb{C l}(n)$, with symbol space $\operatorname{Pol}\left(T^{*} \mathbb{R}^{n} \times \Pi \mathbb{R}^{n}\right)$.
Conformally invariant operator:

- $\mathbf{G}_{0} K=\{\sigma(\not D), K\} \bmod (\sigma(\not D))$,
- $\operatorname{ker} \mathbf{G}_{0} \supset\{$ conf. Killing κ-forms $\} \cong \wedge^{\kappa} \mathbb{C}^{n+2}$ give first order HS.

Theorem ([M., '12])

For all $w \in \mathbb{R}$, there exists a unique conformally equivariant quantization

$$
\mathcal{Q}_{w}: \operatorname{Pol}\left(T^{*} \mathbb{R}^{n} \times \Pi \mathbb{R}^{n}\right) \rightarrow \mathcal{D}\left(\mathbb{R}^{n}, S[w]\right)
$$

The map $\mathcal{Q}_{\frac{n-1}{2 n}}$ induces a bijection between $\operatorname{ker} \mathbf{G}_{0}$ and HS of the Dirac operator.

HS of the system Laplace + Dirac operator

Determine the algebra of HS of the system of differential operators

$$
\begin{aligned}
\mathcal{E}\left[\frac{n-2}{2 n}\right] \oplus \mathcal{S}\left[\frac{n-1}{2 n}\right] & \rightarrow \mathcal{S}\left[\frac{n+1}{2 n}\right] \oplus \mathcal{E}\left[\frac{n+2}{2 n}\right] \\
\binom{f}{\phi} & \mapsto\binom{\Delta f}{\not \emptyset \phi}
\end{aligned}
$$

The HS read as

$$
\left(\begin{array}{cc}
\Delta & 0 \\
0 & D
\end{array}\right)\left(\begin{array}{cc}
a & \alpha^{-} \\
\alpha^{+} & A
\end{array}\right)=\left(\begin{array}{cc}
b & \beta^{+} \\
\beta^{-} & B
\end{array}\right)\left(\begin{array}{cc}
\Delta & 0 \\
0 & \not D
\end{array}\right)
$$

with new symmetries:

$$
\Delta \alpha^{-}=\beta^{+} \not D \quad \text { on } \mathcal{S}\left[\frac{n-1}{2 n}\right] \quad \text { and } \quad \not D \alpha^{+}=\beta^{-} \Delta \quad \text { on } \mathcal{E}\left[\frac{n-2}{2 n}\right]
$$

Let $\varepsilon \in S^{*} \otimes S^{*}$ be the invariant pairing on S.
Examples: if $\Lambda \in \mathcal{S}\left[\frac{1}{2}\right]$ is a twistor spinor, $\nabla_{i} \Lambda=-\frac{1}{n} \gamma_{i}(D \Lambda)$, the following are symmetries [Wess-Zumino, '74]:

$$
\begin{gathered}
\Delta \alpha_{\Lambda}^{-}=\beta_{\Lambda}^{+} \emptyset, \quad \begin{cases}\alpha_{\Lambda}^{-}(\phi)=\varepsilon(\Lambda, \phi), \\
\beta_{\Lambda}^{+}(\not D \phi)=\varepsilon\left(\Lambda, \not D^{2} \phi\right)+\frac{2}{n} \varepsilon(\not D \Lambda, \not D \phi),\end{cases} \\
\not D \alpha_{\Lambda}^{+}=\beta_{\Lambda}^{-} \Delta, \quad\left\{\begin{array}{l}
\alpha_{\Lambda}^{+}(f)=\gamma^{i}(\Lambda) \partial_{i} f+\frac{n-2}{n}(\not \emptyset \Lambda) \cdot f, \\
\beta_{\Lambda}^{-}(\Delta f)=\Lambda \cdot \Delta f,
\end{array} \quad f \in \mathcal{E}\left[-\frac{n-2}{2}\right] ;\right.
\end{gathered}
$$

Proposition ([M..Šihan, '14])

The matrix of operators $\left(\begin{array}{cc}a & \alpha^{-} \\ \alpha^{+} & A\end{array}\right)$ is a HS iff

- a is a HS of Δ and A is a HS of \square,
- $\alpha^{-}=\sum_{i} a_{i} \circ \alpha_{\Lambda_{i}}^{-}$, with $a_{i} H S$ of Δ and $\alpha_{\Lambda_{i}}^{-}$as above,
- $\alpha^{+}=\sum_{i} \alpha_{\Lambda_{i}}^{+} \circ a_{i}$, with $a_{i} H S$ of Δ and $\alpha_{\Lambda_{i}}^{+}$as above.

Composition of twistor spinors actions

Lie (super-)algebra?

Candidate: Conf. Killing vector fields \oplus Twistor-spinors. Hint from Rep. Theory:

- in odd dimension, $\mathrm{TwSp} \otimes \mathrm{TwSp} \cong \wedge^{+} \mathbb{C}^{n+2} \cong$ space of conf. Killing odd forms;
- in even dimension, $\mathrm{TwSp} \otimes \mathrm{TwSp} \cong \wedge \mathbb{C}^{n+2} \cong$ space of all conf. Killing forms, whereas $\mathrm{TwSp}^{+} \otimes \mathrm{TwSp}^{-} \cong \wedge^{+} \mathbb{C}^{n+2} \cong$ space of conf. Killing odd forms;

Fact: the composition $\alpha_{\Lambda^{\prime}}^{+} \circ \alpha_{\Lambda}^{-}$gives indeed rise to all HS of 1st order of \varnothing.
\Rightarrow Algebra of HS is not generated by a Lie (super-)algebra!
Idea: If dimension $=3$ (or 4 and $\not D: S^{+} \rightarrow S^{-}$), then the 1 st order symmetries of $\not D$ are all given by the Lie algebra $\mathfrak{o}(n+2, \mathbb{C}) \oplus \mathbb{C}$ and we have

$$
\mathfrak{o}(5) \cong \mathfrak{s p}(4) \quad \text { and } \quad \mathfrak{o}(6) \cong \mathfrak{s l}(4)
$$

Supergeometric reformulation

$\Pi S^{*} \cong \mathbb{R}^{3 \mid 2}$ is a supermanifold with sheaf of functions

$$
\mathcal{O}\left(\Pi S^{*}\right)=\mathcal{E} \oplus \mathcal{S} \oplus \wedge^{2} \mathcal{S}
$$

The pairing ε is a distinguished element of $\wedge^{2} \mathcal{S} \cong \mathcal{E}$. We define

$$
\boxtimes: \mathcal{O}\left(\Pi S^{*}\left[-\frac{1}{2}\right]\right)\left[-\frac{n-2}{2}\right] \rightarrow \mathcal{O}\left(\Pi S^{*}\left[-\frac{1}{2}\right]\right)\left[-\frac{n}{2}\right]
$$

by the formula $\boxtimes:=\varepsilon \Delta+\not \square+\varepsilon^{*}=\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & \not D & 0 \\ \Delta & 0 & 0\end{array}\right)$.

Proposition ([M.-Šlhan, '14])

The algebra of HS of \square is isomorphic to the one of $\left(\begin{array}{cc}\Delta & 0 \\ 0 & \varnothing\end{array}\right)$.

Twistor-spinors as odd vector fields

Let $\left(x^{i}, \theta^{a}\right)$ be coordinates on $\mathbb{R}^{3 \mid 2}$ and $\left(\partial_{i}, \partial_{\theta^{a}}\right)$ the corresponding derivatives. We define on $\mathcal{O}\left(\Pi S^{*}\left[-\frac{1}{2}\right]\right)[w]$

- $L_{X}=X^{i} \partial_{i}-\frac{1}{2} \gamma\left(\boldsymbol{d} X^{b}\right)_{a}^{b} \theta^{a} \partial_{\theta^{\boldsymbol{b}}}-\left(\frac{w}{n}-\frac{1}{2 n} \theta^{a} \partial_{\theta^{a}}\right)\left(\partial_{i} X^{i}\right)$,
- $L_{\Lambda}^{+}=\gamma^{i}{ }_{b} \Lambda_{a} \theta^{b} \partial_{i}-2\left(\frac{w}{n}+\frac{1}{n} \theta^{a} \partial_{\theta^{a}}\right)(D \Lambda \Lambda)$,
- $L_{\Lambda}^{-}=\varepsilon^{a b} \Lambda_{a} \partial_{\theta^{b}}$.

We have

$$
\nabla L_{X}=L_{X} \nabla, \quad \nabla L_{\Lambda}^{+}=L_{\Lambda}^{-} \nabla, \quad \nabla L_{\Lambda}^{-}=L_{\Lambda}^{+} \nabla .
$$

Proposition

The space $\left\langle c, L_{X}\right\rangle \oplus\left\langle L_{\Lambda}^{+}, L_{\Lambda}^{-}\right\rangle$is stable under the commutator in $\mathcal{D}_{w}\left(\mathbb{R}^{3 \mid 2}\right)$ and isomorphic to the Lie superalgebra $\operatorname{spo}(4 \mid 2)$.

Main result

Theorem ([M.-̇̆ilhan, '14])

The algebra of HS of \square and $\left(\begin{array}{cc}\Delta & 0 \\ 0 & \not D\end{array}\right)$ is isomorphic to $\mathfrak{U}(\mathfrak{s p o}(4 \mid 2)) / \mathcal{J}$, with \mathcal{J} the Joseph-like ideal [Coulembier-Somberg-Souček, '13].

