Formal and non-formal deformation quantizations of the complex unit ball in \mathbb{C}^{n}

Stéphane Korvers (UCL, F.R.S.-FNRS Research Fellow) Joint work with Professor Pierre Bieliavsky (UCL)

Noncommutative Geometry \& Mathematical Physics

The best place in the world (Scalea, Italy) - Friday, June 20, 2014

Formal and non-formal deformation quantizations

On a symplectic manifold M :
? $K_{\nu}(-,-,-)$? explicit 3-point kernel such that the formula

$$
\left(f *_{\nu} g\right)(x)=\int_{M \times M} K_{\nu}(x, y, z) f(y) g(z) d y d z
$$

- defines an associative product on an «interesting » space of functions ($\ni f, g$).
- admits an asymptotic expansion : $f *_{\nu} g=f g+\sum_{k=1}^{+\infty} \nu^{k} C_{k}(f, g)$

Let \mathbb{D} be a homogeneous complex bounded domain in \mathbb{C}^{n}.

General problem

Can we determine explicitly all Aut (D)-invariant, both formal and non-formal deformation quantizations of \mathbb{D} ?

Let \mathbb{D} be a homogeneous complex bounded domain in \mathbb{C}^{n}.

General problem

Can we determine explicitly all Aut (\mathbb{D})-invariant, both formal and non-formal deformation quantizations of \mathbb{D} ?

> Structural point (Pyatetskii-Shapiro theory)

- $\exists \tilde{\mathbb{S}} \subset$ Aut (\mathbb{D}) solvable Lie group acting simply transitively on \mathbb{D};
- $\tilde{\mathbb{S}}=\left(\ldots\left(\mathbb{S}_{N} \ltimes \mathbb{S}_{N-1}\right) \ltimes \ldots \ltimes \mathbb{S}_{2}\right) \ltimes \mathbb{S}_{1}$ where :
(1) \mathbb{S}_{j} is the Iwasawa group of $G_{j}=S U\left(1, n_{j}\right)$,
(2) \mathbb{S}_{j} acts simply transitively on the complex unit ball in $\mathbb{C}^{n_{j}}$.
$=>$ Look at a our problem for \mathbb{D}_{n} the unit ball in $\mathbb{C}^{n}, n \in \mathbb{N} \backslash\{0\}$ $\mathbb{D}_{n} \simeq \mathbb{S}=$ Iwasawa group of $G:=S U(1, n)=\operatorname{Aut}\left(\mathbb{D}_{n}\right)$
$=>$ Look at a our problem for \mathbb{D}_{n} the unit ball in $\mathbb{C}^{n}, n \in \mathbb{N} \backslash\{0\}$ $\mathbb{D}_{n} \simeq \mathbb{S}=$ Iwasawa group of $G:=S U(1, n)=\operatorname{Aut}\left(\mathbb{D}_{n}\right)$

Explicit resolution

- The resolution is associated with the determination of a \mathbb{S}-equivariant convolution operator that intertwines the \mathbb{S}-invariant deformation theory (Bieliavsky, Gayral, ...) with the G-invariant one.
- The kernel of this operator is described by a hierarchy of PDE's, but ...

It is not so easy ...
Here is one of the equation for $n>1: \square_{(a, \vec{v}, \xi)} \vartheta=i \xi e^{-2 a} \vartheta$ where

$$
\begin{aligned}
\square_{(a, \vec{v}, \xi)}= & \frac{i \xi \mathrm{e}^{2 a}}{4}\left[\left[\left(1+\sqrt{1-\nu^{2} \xi^{2}}\right)(\vec{v} \mid \vec{v})+2 \kappa\right]^{2}+4(n+3) \nu^{2}\right] \mathrm{Id} \\
& +4 i \nu^{2} \xi \mathrm{e}^{2 a} \partial_{\mathbf{a}} \\
& -3 i \nu^{2} \xi \mathrm{e}^{2 a} \Theta+e^{2 a}\left[\left[1+\sqrt{1-\nu^{2} \xi^{2}}-\nu^{2} \xi^{2}\right](\vec{v} \mid \vec{v})+2 \sqrt{1-\nu^{2} \xi^{2}} \kappa\right] \equiv \\
& -4 i \mathrm{e}^{2 a}\left[2-3 \nu^{2} \xi^{2}\right] \partial_{\xi} \\
& +i \nu^{2} \xi \mathrm{e}^{2 a} \partial_{\mathbf{a}}^{2} \\
& +\frac{i e^{2 a}}{2 \xi}\left[\nu^{2} \xi^{2}(\vec{v} \mid \vec{v})-2\left(-1+\sqrt{1-\nu^{2} \xi^{2}}\right) \kappa\right] \Delta \\
& +\frac{i}{\xi} e^{2 a}\left[2\left(-1+\sqrt{1-\nu^{2} \xi^{2}}\right)+\nu^{2} \xi^{2}\right]\left(\Theta^{2}-\Theta\right)+i \nu^{2} \xi e^{2 a}\left(\equiv^{2}+\Theta\right) \\
& -4 i \xi e^{2 a}\left[1-\nu^{2} \xi^{2}\right] \partial_{\xi}^{2} \\
& -\frac{2 i}{\xi} e^{2 a}\left[-1+\sqrt{1-\nu^{2} \xi^{2}}+\nu^{2} \xi^{2}\right] \Theta \partial_{a} \\
& -4 i e^{2 a}\left[1-\nu^{2} \xi^{2}\right] \partial_{a} \partial_{\xi} \\
& -4 i e^{2 a}\left[-1+\sqrt{1-\nu^{2} \xi^{2}}+\nu^{2} \xi^{2}\right] \Theta \partial_{\xi} \\
& +\frac{1}{\xi^{2}} e^{2 a}\left[-1+\sqrt{1-\nu^{2} \xi^{2}}+\nu^{2} \xi^{2}\right] \equiv \Delta \\
& -\frac{i}{4 \xi^{3}} e^{2 a}\left[2\left(-1+\sqrt{1-\nu^{2} \xi^{2}}\right)+\nu^{2} \xi^{2}\right] \Delta^{2}
\end{aligned}
$$

- These PDE's were explicitly written and solved
(1) for $n=1$: Bieliavsky, Detournay, Spindel (2009)
(2) for $n>1$:

Theorem [Bieliavsky - K., 2013]
For each G-invariant deformation theory on \mathbb{D}_{n}, there exists $g \in \mathcal{D}^{\prime}(\mathbb{R})[[\nu]]$ (with a possible reparameterization of ν), such that the convolution operator with kernel

$$
\begin{aligned}
\mathcal{V}(a, r, z)= & \int_{-\infty}^{+\infty} d \xi \nu^{2} \operatorname{sign}(\xi) e^{-2 a+i \xi z} \int_{-\infty}^{+\infty} d \gamma\left(\gamma^{2}+1\right)^{\frac{n-3}{2}} \\
& g\left(\frac{-4 \nu^{2} \operatorname{sign}(\xi) e^{-2 a}}{\gamma^{2}+1}\left(1-\cosh ^{2}\left(\frac{\operatorname{arcsinh}(i \nu \xi)}{2}\right)\left(\gamma^{2}+1\right)\right)\right) \\
& \exp \left(-\frac{\kappa}{\nu} \operatorname{arccotan}(\gamma)+\frac{\gamma}{\nu}\left(\frac{e^{-2 a}}{\gamma^{2}+1}+\cosh ^{2}\left(\frac{\operatorname{arcsinh}(i \nu \xi)}{2}\right) r^{2}\right)\right)
\end{aligned}
$$

is an intertwiner with the \mathbb{S}-invariant deformation theory.

Thank you !!

