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Formal and non-formal deformation quantizations———–

↙
On a symplectic manifold M :

? Kν (−,−,−) ? explicit 3-point kernel such that the formula

(f ∗ν g) (x) =
∫

M×M
Kν (x , y , z) f (y) g (z) dy dz

↙
(Liouville)

• defines an associative product on an « interesting »

space of functions (3 f , g).

• admits an asymptotic expansion : f ∗ν g = f g +
∑+∞

k=1 ν
kCk (f , g)
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Let D be a homogeneous complex bounded domain in Cn.

General problem

Can we determine explicitly all Aut (D)-invariant, both formal
and non-formal deformation quantizations of D ?

Structural point
(Pyatetskii-Shapiro theory)

• ∃ S̃ ⊂ Aut (D) solvable Lie group acting simply transitively on D ;

• S̃ = (... (SN n SN−1)n ...n S2)n S1 where :

(1) Sj is the Iwasawa group of Gj = SU (1, nj),
(2) Sj acts simply transitively on the complex unit ball in Cnj .
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=> Look at a our problem for Dn the unit ball in Cn, n ∈ N\ {0}
Dn ' S = Iwasawa group of G := SU (1, n) = Aut (Dn)

Explicit resolution

• The resolution is associated with the determination of a S-equivariant
convolution operator that intertwines the S-invariant deformation
theory (Bieliavsky, Gayral, ...) with the G -invariant one.

• The kernel of this operator is described by a hierarchy of PDE’s,
but ...
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It is not so easy ...
Here is one of the equation for n > 1 : �(a,~v ,ξ) ϑ = i ξ e−2a ϑ where

�(a,~v,ξ) =
i ξ e2a

4

[[(
1 +

√
1− ν2ξ2

)
(~v |~v ) + 2κ

]2
+ 4 (n + 3) ν2

]
Id

+ 4 i ν2
ξ e2a

∂a
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ξ e2a Θ + e2a
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√
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Ξ
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ξ
2
]
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∂
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2 ξ
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∆
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∂
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∂a ∂ξ
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Ξ ∆
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• These PDE’s were explicitly written and solved

(1) for n = 1 : Bieliavsky, Detournay, Spindel (2009)
(2) for n > 1 :

Theorem [Bieliavsky - K., 2013]

For each G-invariant deformation theory on Dn, there exists
g ∈ D′ (R) [[ν]] (with a possible reparameterization of ν),
such that the convolution operator with kernel

V (a, r , z) =

∫ +∞

−∞
dξ ν2 sign (ξ) e−2a + iξz

∫ +∞

−∞
dγ

(
γ2 + 1

) n−3
2

g
(
− 4 ν2 sign (ξ) e−2a

γ2 + 1

(
1 − cosh2

(
arcsinh (iνξ)

2

)(
γ2 + 1

)))
exp

(
−
κ

ν
arccotan (γ) +

γ

ν

(
e−2a

γ2 + 1
+ cosh2

(
arcsinh (iνξ)

2

)
r2
))

is an intertwiner with the S-invariant deformation theory.
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