Multiplicative integrability of Poisson symmetric spaces: $\mathbb{C P}^{n}$

joint with F. Bonechi, J. Qiu, M. Tarlini

N. Ciccoli

17.06.2014

Let (M, π) be an integrable Poisson manifold with symplectic groupoid

$$
\mathcal{G} \underset{l}{\stackrel{r}{\rightrightarrows}} M: \quad m: \mathcal{G}_{2} \rightarrow \mathcal{G}
$$

Let (M, π) be an integrable Poisson manifold with symplectic groupoid

$$
\mathcal{G} \underset{l}{\stackrel{r}{\rightrightarrows}} M: \quad m: \mathcal{G}_{2} \rightarrow \mathcal{G}
$$

Karasev-Weinstein-Zakrzewski
Apply geometric quantization to \mathcal{G} and compare the outcome with deformation quantization of (M, π).

For a Poisson manifold (M, π) the cotangent bundle $T^{*} M$ has a natural structure of Lie algebroid (i.e. Lie bracket between 1 -forms + Lie map between 1 -forms and vector fields).

For a Poisson manifold (M, π) the cotangent bundle $T^{*} M$ has a natural structure of Lie algebroid (i.e. Lie bracket between 1 -forms + Lie map between 1 -forms and vector fields).

A symplectic groupoid is a Lie groupoid integrating this Lie algebroid (much as Lie groups integrate Lie algebras - but... possible obstruction).

For a Poisson manifold (M, π) the cotangent bundle $T^{*} M$ has a natural structure of Lie algebroid (i.e. Lie bracket between 1 -forms + Lie map between 1 -forms and vector fields).

A symplectic groupoid is a Lie groupoid integrating this Lie algebroid (much as Lie groups integrate Lie algebras - but... possible obstruction).

If the obstruction is not present (meaning of the word integrable) then the groupoid as also a symplectic manifold compatible with the Lie groupoid structure.
(1) Prequantum line bundle $(L, \nabla)+\sigma$ covariantly constant normalized 2-cocycle in L;
(1) Prequantum line bundle $(L, \nabla)+\sigma$ covariantly constant normalized 2-cocycle in L;
(2) Multiplicative polarization \mathcal{F} so that $\mathcal{G} / \mathcal{F}$ groupoid inheriting (reduced) 2-cocycle σ_{0};
(1) Prequantum line bundle $(L, \nabla)+\sigma$ covariantly constant normalized 2-cocycle in L;
(2) Multiplicative polarization \mathcal{F} so that $\mathcal{G} / \mathcal{F}$ groupoid inheriting (reduced) 2-cocycle σ_{0};
(3) Bohr-Sömmerfeld condition identifying $\mathcal{G}^{B S} / \mathcal{F}$;
(1) Prequantum line bundle $(L, \nabla)+\sigma$ covariantly constant normalized 2-cocycle in L;
(2) Multiplicative polarization \mathcal{F} so that $\mathcal{G} / \mathcal{F}$ groupoid inheriting (reduced) 2-cocycle σ_{0};
(3) Bohr-Sömmerfeld condition identifying $\mathcal{G}^{B S} / \mathcal{F}$;
(4) (Twisted) convolution C^{*}-algebra $C^{*}\left(\mathcal{G}^{B S} / \mathcal{F} ; \sigma_{0}\right)$.

Let $M=\mathbb{T}^{2}$ with constant symplectic structure

$$
\pi=\theta \partial_{1} \wedge \partial_{2}
$$

Let $M=\mathbb{T}^{2}$ with constant symplectic structure

$$
\pi=\theta \partial_{1} \wedge \partial_{2}
$$

Prequantum bundle= trivial line bundle +2 -cocycle;

Let $M=\mathbb{T}^{2}$ with constant symplectic structure

$$
\pi=\theta \partial_{1} \wedge \partial_{2}
$$

Prequantum bundle= trivial line bundle +2 -cocycle;

- Horizontal polarization $\Rightarrow C^{*}\left(\mathbb{Z}^{2} ; \sigma_{0}\right)$ with $\sigma_{0}=e^{\pi}$ (Weyl);
- Cylindrical polarization $\Rightarrow C^{*}\left(\mathbb{Z} \rtimes \mathbb{S}^{1}\right)$ action groupoid with trivial cocycle (irrational rotation algebra).

Let $M=\mathbb{T}^{2}$ with constant symplectic structure

$$
\pi=\theta \partial_{1} \wedge \partial_{2}
$$

Prequantum bundle= trivial line bundle +2 -cocycle;

- Horizontal polarization $\Rightarrow C^{*}\left(\mathbb{Z}^{2} ; \sigma_{0}\right)$ with $\sigma_{0}=e^{\pi}$ (Weyl);
- Cylindrical polarization $\Rightarrow C^{*}\left(\mathbb{Z} \rtimes \mathbb{S}^{1}\right)$ action groupoid with trivial cocycle (irrational rotation algebra).

Outcome

Quantum torus $p \star q=e^{\hbar} q \star p$.

A groupoid polarization $\mathcal{F} \subseteq T^{C} \mathcal{G}$ is multiplicative (Hawkins JSG 2008) if, letting

$$
\mathcal{F}_{2}=(\mathcal{F} \times \mathcal{F}) \cap T^{\mathbb{C}} \mathcal{G}_{2}
$$

then

$$
m_{*}\left(\mathcal{F}_{2}(\gamma, \eta)\right)=\mathcal{F}(m(\gamma, \eta))
$$

for any composable pair $(\gamma, \eta) \in \mathcal{G}_{2}$.

A groupoid polarization $\mathcal{F} \subseteq T^{\mathbb{C}} \mathcal{G}$ is multiplicative (Hawkins JSG 2008) if, letting

$$
\mathcal{F}_{2}=(\mathcal{F} \times \mathcal{F}) \cap T^{\mathbb{C}} \mathcal{G}_{2}
$$

then

$$
m_{*}\left(\mathcal{F}_{2}(\gamma, \eta)\right)=\mathcal{F}(m(\gamma, \eta))
$$

for any composable pair $(\gamma, \eta) \in \mathcal{G}_{2}$.

Problem: there are topological obstructions to the existence of real multiplicative polarizations

Let π be any integrable Poisson structure on $\mathbb{C P}^{1}$, then there are no real multiplicative polarizations on its symplectic groupoid (linked to non existence of rank 1 foliations on $\mathbb{C P}^{1}$).

Let π be any integrable Poisson structure on $\mathbb{C P}^{1}$, then there are no real multiplicative polarizations on its symplectic groupoid (linked to non existence of rank 1 foliations on $\mathbb{C P}^{1}$).

Bruhat-Poisson structure on $\mathbb{C P}^{1}$:

$$
\pi_{B}=\left\{\begin{array}{cl}
-\imath\left(1+|z|^{2}\right) \partial_{z} \wedge \partial_{\bar{z}} & \text { on } \mathbb{C P}^{1} \backslash[1,0] \\
-\imath|w|^{2}\left(1+|w|^{2}\right) \partial_{w} \wedge \partial_{\bar{w}} & \text { on } \mathbb{C P}^{1} \backslash[0,1]
\end{array}\right.
$$

Still possibile to perform KWZ procedure with a singular multiplicative polarization (Bonechi, C., Staffolani, Tarlini JGP 2012).

What do we really need for a C^{*}-groupoid convolution algebra?

- $\mathcal{G} \rightarrow \mathcal{G}_{\mathcal{F}}$ Lagrangian fibration of topological groupoids;
- $\mathcal{G}_{\mathcal{F}}^{b s}$ Bohr-Sömmerfeld subgroupoid carrying a left Haar measure;
- the prequantization cocycle descending to $\mathcal{G}_{\mathcal{F}}^{b s}$;
- the modular 1-cocycle descending to $\mathcal{G}_{\mathcal{F}}^{b s}$;

What do we really need for a C^{*}-groupoid convolution algebra?

- $\mathcal{G} \rightarrow \mathcal{G}_{\mathcal{F}}$ Lagrangian fibration of topological groupoids;
- $\mathcal{G}_{F}^{b s}$ Bohr-Sömmerfeld subgroupoid carrying a left Haar measure;
- the prequantization cocycle descending to $\mathcal{G}_{\mathcal{F}}^{b s}$;
- the modular 1-cocycle descending to $\mathcal{G}_{\mathcal{F}}^{b s}$;

What do we really need for a C^{*}-groupoid convolution algebra?

- $\mathcal{G} \rightarrow \mathcal{G}_{\mathcal{F}}$ Lagrangian fibration of topological groupoids;
- $\mathcal{G}_{\mathcal{F}}^{b s}$ Bohr-Sömmerfeld subgroupoid carrying a left Haar measure;
- the prequantization cocycle descending to $\mathcal{G}_{\mathcal{F}}^{b s}$;
- the modular 1-cocycle descending to $\mathcal{G}_{\mathcal{F}}^{b s}$;

What do we really need for a C^{*}-groupoid convolution algebra?

- $\mathcal{G} \rightarrow \mathcal{G}_{\mathcal{F}}$ Lagrangian fibration of topological groupoids;
- $\mathcal{G}_{\mathcal{F}}^{b s}$ Bohr-Sömmerfeld subgroupoid carrying a left Haar measure;
- the prequantization cocycle descending to $\mathcal{G}_{\mathcal{F}}^{b s}$;
- the modular 1-cocycle descending to $\mathcal{G}_{\mathcal{F}}^{b s}$;
(M, π) Poisson, V volume form on $M \Rightarrow \chi_{V}$ modular vector field (divergence of π w.r. to V) defines a class in $H_{\pi}^{1}(M)$.
(M, π) Poisson, V volume form on $M \Rightarrow \chi_{V}$ modular vector field (divergence of π w.r. to V) defines a class in $H_{\pi}^{1}(M) . \chi_{V} \Rightarrow f_{V}$
(van Est map) 1-cocycle on \mathcal{G};
(M, π) Poisson, V volume form on $M \Rightarrow \chi_{V}$ modular vector field (divergence of π w.r. to V) defines a class in $H_{\pi}^{1}(M) . \chi_{V} \Rightarrow f_{V}$
(van Est map) 1-cocycle on $\mathcal{G} ; f_{V}$ should be quantizable,
(M, π) Poisson, V volume form on $M \Rightarrow \chi_{V}$ modular vector field (divergence of π w.r. to V) defines a class in $H_{\pi}^{1}(M) . \chi_{V} \Rightarrow f_{V}$
(van Est map) 1-cocycle on $\mathcal{G} ; f_{V}$ should be quantizable,
coincide with the modular function of the quasi invariant measure on the base space,
(M, π) Poisson, V volume form on $M \Rightarrow \chi_{V}$ modular vector field (divergence of π w.r. to V) defines a class in $H_{\pi}^{1}(M) . \chi_{V} \Rightarrow f_{V}$
(van Est map) 1-cocycle on $\mathcal{G} ; f_{V}$ should be quantizable,
coincide with the modular function of the quasi invariant measure on the base space, implement KMS condition.
integrable
A family $F=\left\{f_{1}, \ldots f_{n}\right\}$ of functions, $N=\frac{1}{2} \operatorname{dim} \mathcal{G}$, is an integrable system if are in involution $\left\{f_{i}, f_{j}\right\}=0$ and $d f_{1} \wedge \ldots d f_{N} \neq 0$ on a dense open subset of M.
integrable
A family $F=\left\{f_{1}, \ldots f_{n}\right\}$ of functions, $N=\frac{1}{2} \operatorname{dim} \mathcal{G}$, is an integrable system if are in involution $\left\{f_{i}, f_{j}\right\}=0$ and $d f_{1} \wedge \ldots d f_{N} \neq 0$ on a dense open subset of M.
multiplicative
The integrable system is called multiplicative if the distribution $\mathcal{F}=\left\langle X_{f_{1}}, \ldots X_{f_{N}}\right\rangle$ is multiplicative;
integrable
A family $F=\left\{f_{1}, \ldots f_{n}\right\}$ of functions, $N=\frac{1}{2} \operatorname{dim} \mathcal{G}$, is an integrable system if are in involution $\left\{f_{i}, f_{j}\right\}=0$ and $d f_{1} \wedge \ldots d f_{N} \neq 0$ on a dense open subset of M.
multiplicative
The integrable system is called multiplicative if the distribution $\mathcal{F}=\left\langle X_{f_{1}}, \ldots X_{f_{N}}\right\rangle$ is multiplicative;
modular
The integrable system is called modular if the modular function f_{V} is in involution with all f_{i} 's.

Consider the level sets of a multiplicative integrable system

$$
\mathcal{G}_{F}(M)=\mathcal{G} / \mathcal{F}
$$

It is well behaved if:

Consider the level sets of a multiplicative integrable system

$$
\mathcal{G}_{F}(M)=\mathcal{G} / \mathcal{F}
$$

It is well behaved if:
(1) $\mathcal{G}_{F}(M)$ is a topological groupoid and $\mathcal{G} \rightarrow \mathcal{G}_{F}(M)$ a topological groupoid epimorphism;
(2) For each pair I_{1}, I_{2} of composable leaves $m: I_{1} \times I_{2} \rightarrow I_{1} I_{2}$ induces a surjective map in homology (\Rightarrow subgroupoid $\left.\mathcal{G}_{F}^{b s}\right)$.

Consider the level sets of a multiplicative integrable system

$$
\mathcal{G}_{F}(M)=\mathcal{G} / \mathcal{F}
$$

It is well behaved if:
(1) $\mathcal{G}_{F}(M)$ is a topological groupoid and $\mathcal{G} \rightarrow \mathcal{G}_{F}(M)$ a topological groupoid epimorphism;
(2) For each pair I_{1}, l_{2} of composable leaves $m: I_{1} \times I_{2} \rightarrow I_{1} I_{2}$ induces a surjective map in homology (\Rightarrow subgroupoid $\left.\mathcal{G}_{\mathcal{F}}^{b S}\right)$.
(3) $\mathcal{G}_{F}^{b s}(M)$ admits a left Haar system (guaranteed if it is étale).

Let $S U(n+1)$ be given the standard Poisson-Lie structure $\pi_{s t d}$.
There is a one-parameter family of covariant $\left(\mathbb{C P}^{n}, \pi_{t}\right)$, non symplectic when $t \in[0,1]$.

Let $S U(n+1)$ be given the standard Poisson-Lie structure $\pi_{s t d}$.
There is a one-parameter family of covariant $\left(\mathbb{C P}^{n}, \pi_{t}\right)$, non symplectic when $t \in[0,1]$.

Non symplectic are all quotient by coisotropic subgroups:

$$
U_{t}(n)=\sigma_{t} S(U(1) \times U(n)) \sigma_{t}^{-1} \subseteq S U(n+1)
$$

where

$$
\sigma_{t}=\left(\begin{array}{ccc}
\sqrt{1-t} & 0 & \sqrt{t} \\
0 & \mathrm{id}_{n-1} & 0 \\
-\sqrt{t} & 0 & \sqrt{1-t}
\end{array}\right)
$$

Some equivalences. In fact:

$$
\psi: \mathbb{C P}^{n} \rightarrow \mathbb{C P}^{n} ; \quad \psi\left(\pi_{t}\right)=-\pi_{1-t}
$$

Some equivalences. In fact:

$$
\psi: \mathbb{C P}^{n} \rightarrow \mathbb{C P}^{n} ; \quad \psi\left(\pi_{t}\right)=-\pi_{1-t}
$$

- π_{0}, π_{1}, standard or Bruhat-Poisson
- $\left.\pi_{t}, t \in\right] 0,1[$, non standard.

Some equivalences. In fact:

$$
\psi: \mathbb{C P}^{n} \rightarrow \mathbb{C P}^{n} ; \quad \psi\left(\pi_{t}\right)=-\pi_{1-t}
$$

- π_{0}, π_{1}, standard or Bruhat-Poisson
- $\left.\pi_{t}, t \in\right] 0,1[$, non standard.

Poisson pencil

Let π_{λ} be the Fubini-Study bivector. Then $\left[\pi_{\lambda}, \pi_{0}\right]=0$ (Koroshkin-Radul-Rubtsov CMP '93) and $\pi_{t}=\pi_{0}+t \pi_{\lambda}$.

Projecting the chain of Poisson subgroups

$$
S U(1) \subseteq S U(2) \subseteq \ldots \subseteq S U(n)
$$

one gets the chain of Poisson submanifolds

$$
\{*\} \subseteq \mathbb{C P}^{1} \subseteq \ldots \subseteq \mathbb{C P}^{n-1}
$$

In homogeneous coordinates

$$
P_{k}=\left\{\left[X_{1}, \ldots, X_{k}, 0, \ldots, 0\right]\right\}
$$

is a Poisson submanifold. All symplectic leaves are contractible and symplectomorphic to standard \mathbb{C}^{k}.

Let

$$
P_{k}(t)=\left\{F_{k, t}=t \sum_{i=1}^{k}\left|X_{i}\right|^{2}-(1-t) \sum_{i=k+1}^{n}\left|X_{i}\right|^{2}=0\right\}
$$

Then $\bigcup_{i=1}^{n} P_{i}(t)$ is the singular part; complement has $n+1$ connected contractible leaves $\simeq \mathbb{C}^{n}$.

Non standard $\mathbb{C P}^{n}$: symplectic foliation

Let

$$
P_{k}(t)=\left\{F_{k, t}=t \sum_{i=1}^{k}\left|X_{i}\right|^{2}-(1-t) \sum_{i=k+1}^{n}\left|X_{i}\right|^{2}=0\right\}
$$

Then $\bigcup_{i=1}^{n} P_{i}(t)$ is the singular part; complement has $n+1$ connected contractible leaves $\simeq \mathbb{C}^{n}$.

Scheme of the singular part for $\mathbb{C P}^{3}$:

symplectic foliation of $\mathbb{C P}_{t}^{2}$

The symplectic groupoid of $\left(\mathbb{C P}^{n}, \pi_{t}\right)$

The symplectic groupoid
$\mathcal{G}\left(\mathbb{C P}^{n}, \pi_{t}\right)=\left\{[g \gamma]: g \in S U(n+1), \gamma \in S B(n+1, \mathbb{C}),{ }^{g} \gamma \in U_{t}(n)^{\perp}\right\}$ is a fibre bundle over $\mathbb{C P}{ }^{n}$ with contractible fibre $U_{t}(n)^{\perp}$.

It is an exact symplectic manifold.

The symplectic groupoid
$\mathcal{G}\left(\mathbb{C P}^{n}, \pi_{t}\right)=\left\{[g \gamma]: g \in S U(n+1), \gamma \in S B(n+1, \mathbb{C}),{ }^{g} \gamma \in U_{t}(n)^{\perp}\right\}$ is a fibre bundle over $\mathbb{C P}{ }^{n}$ with contractible fibre $U_{t}(n)^{\perp}$.

It is an exact symplectic manifold.
It carries a hamiltonian \mathbb{T}^{n}-action with momentum map

$$
h([g \gamma])=\log p_{A_{n+1}}(\gamma)
$$

The Cartan $\mathbb{T}^{n} \subseteq S U(n+1)$ acts on $\left(\mathbb{C P}^{n}, \pi_{\lambda}\right)$ with moment map

$$
c: \mathbb{C P}^{n} \rightarrow \mathfrak{t}_{n}^{*} ; \quad \operatorname{Im} c=\Delta_{n}
$$

The action is Poisson w. r. to π_{t}.

The Cartan $\mathbb{T}^{n} \subseteq S U(n+1)$ acts on $\left(\mathbb{C P}^{n}, \pi_{\lambda}\right)$ with moment map

$$
c: \mathbb{C P}^{n} \rightarrow \mathfrak{t}_{n}^{*} ; \quad \operatorname{Im} c=\Delta_{n}
$$

The action is Poisson w. r. to π_{t}.
Suitable basis H_{k} of \mathfrak{t}_{n} such that
(1) infintesimal vector fields $\sigma_{H_{k}}$ are eigenvalues of the Nijenhuis operator with eigenvector ($c_{k}-1$);

The Cartan $\mathbb{T}^{n} \subseteq S U(n+1)$ acts on $\left(\mathbb{C P}^{n}, \pi_{\lambda}\right)$ with moment map

$$
c: \mathbb{C P}^{n} \rightarrow \mathfrak{t}_{n}^{*} ; \quad \operatorname{Im} c=\Delta_{n}
$$

The action is Poisson w. r. to π_{t}.
Suitable basis H_{k} of \mathfrak{t}_{n} such that
(1) infintesimal vector fields $\sigma_{H_{k}}$ are eigenvalues of the Nijenhuis operator with eigenvector ($c_{k}-1$);
(2) $\sigma_{H_{k}}=\left\{b_{k},--\right\}$, with $b_{k}=\log \left|c_{k}-1+t\right|$.

- Hamiltonian \mathbb{T}^{n}-action on $\mathbb{C P}^{n}$ with momentum map $c: \mathbb{C P}^{n} \rightarrow \mathbb{R}^{n}$;
- Hamiltonian \mathbb{T}^{n}-action on $\mathcal{G}\left(\mathbb{C P}^{n}, \pi_{t}\right)$ with momentum map $h: \mathbb{C P}^{n} \rightarrow \mathbb{R}^{n}$ by groupoid 1-cocycles;

Let us consider

$$
\mathcal{F}=\left\{I^{*} c_{i}, h_{i} \ldots i=1, \ldots, n\right\}
$$

Theorem

\mathcal{F} is a multiplicative modular integrable system on $\mathcal{G}\left(\mathbb{C P}^{n}, \pi_{t}\right)$ with:

$$
f_{F S}=\sum_{i=1}^{n} h_{i}
$$

Theorem

\mathcal{F} is a multiplicative modular integrable system on $\mathcal{G}\left(\mathbb{C P}^{n}, \pi_{t}\right)$ with:

$$
f_{F S}=\sum_{i=1}^{n} h_{i}
$$

Aim: prove this integrable system is well behaved.

The topological groupoid of level sets

Let \mathbb{R}^{n} act on \mathbb{R}^{n} via

$$
c \cdot h=\left(1-t+e^{-h}(c+t-1)\right)
$$

and let $\left.\mathbb{R}^{n} \rtimes \mathbb{R}^{n}\right|_{\Delta_{n}}$ be the action groupoid restricted to the standard simplex.

Let \mathbb{R}^{n} act on \mathbb{R}^{n} via

$$
c \cdot h=\left(1-t+e^{-h}(c+t-1)\right)
$$

and let $\left.\mathbb{R}^{n} \rtimes \mathbb{R}^{n}\right|_{\Delta_{n}}$ be the action groupoid restricted to the standard simplex.Then:

$$
\mathcal{G}_{\mathcal{F}}(t)=\left\{\left.(c, h) \in \mathbb{R}^{n} \rtimes \mathbb{R}^{n}\right|_{\Delta_{n}}: c_{i}=c_{i+1}=1-t \Rightarrow h_{i}=h_{i+1}\right\}
$$

is the topological groupoid of level sets.

Bohr-Sömmerfeld conditions

Level sets $L_{c h}$ are connected with: $H^{1}\left(L_{c h} ; \mathbb{Z}\right)$ generated by hamiltonian flows of $h_{j}, I^{*} c_{j}$;

Level sets $L_{c h}$ are connected with: $H^{1}\left(L_{c h} ; \mathbb{Z}\right)$ generated by hamiltonian flows of $h_{j}, l^{*} c_{j}$;

Theorem

BS conditions select a discret subset of lagrangians

$$
\mathcal{G}_{\mathcal{F}}^{b s}(t)=\left\{(c, h) \in \mathcal{G}_{\mathcal{F}}(t): h_{k} \in \hbar \mathbb{Z}, \log \left|c_{k}-1+t\right| \in \hbar \mathbb{Z}\right\}
$$

This is an étale subgroupoid with a unique left Haar system.

Level sets $L_{c h}$ are connected with: $H^{1}\left(L_{c h} ; \mathbb{Z}\right)$ generated by hamiltonian flows of $h_{j}, l^{*} c_{j}$;

Theorem

BS conditions select a discret subset of lagrangians

$$
\mathcal{G}_{\mathcal{F}}^{b s}(t)=\left\{(c, h) \in \mathcal{G}_{\mathcal{F}}(t): h_{k} \in \hbar \mathbb{Z}, \log \left|c_{k}-1+t\right| \in \hbar \mathbb{Z}\right\}
$$

This is an étale subgroupoid with a unique left Haar system.

The modular function $f_{F S}$ is quantized to

$$
f_{F S}(c, h)=\sum_{i=1}^{n} h_{i}
$$

The space of units is

$$
\Delta_{n}^{\mathbb{Z}}(t)=\left\{c \in \Delta_{n}: c_{k}=1-t+e^{-\hbar n_{k}}\right\}
$$

The space of units is

$$
\Delta_{n}^{\mathbb{Z}}(t)=\left\{c \in \Delta_{n}: c_{k}=1-t+e^{-\hbar n_{k}}\right\}
$$

The quasi invariant measure associated to $f_{F S}$ is:

$$
\mu_{f s}(c)=\exp \left(-\hbar \sum_{k=1}^{n} n_{k}\right)
$$

The space of units is

$$
\Delta_{n}^{\mathbb{Z}}(t)=\left\{c \in \Delta_{n}: c_{k}=1-t+e^{-\hbar n_{k}}\right\}
$$

The quasi invariant measure associated to $f_{F S}$ is:

$$
\mu_{f s}(c)=\exp \left(-\hbar \sum_{k=1}^{n} n_{k}\right)
$$

Groupoid orbits are labelled by $(r, s): r+s \leq n$. Each is a transitive subgroupoid over
$\Delta_{r, s}^{\mathbb{Z}}(t)=\left\{(m, \infty, n) \in \overline{\mathbb{Z}}^{r} \times \infty \times \overline{\mathbb{Z}}^{s}: \begin{array}{rcc}-\frac{\log (1-t)}{\hbar} & \leq m_{i} & \leq m_{i+1} \\ n_{i} & \geq n_{i+1} & \geq-\frac{\log (t)}{\hbar}\end{array}\right\}$
(1) The Poisson antiautomorphism ψ lifts to a groupoid isomorphism;
(1) The Poisson antiautomorphism ψ lifts to a groupoid isomorphism;
(2) Poisson submanifolds are quantized by topological subgroupoids

$$
P_{k}(t)=\left\{(c, h) \mid c_{k}=1-t\right\}
$$

(1) The Poisson antiautomorphism ψ lifts to a groupoid isomorphism;
(2) Poisson submanifolds are quantized by topological subgroupoids

$$
P_{k}(t)=\left\{(c, h) \mid c_{k}=1-t\right\}
$$

(3) Groupoids thus obtained concide with:

- Sheu for $\left(\mathbb{C P}^{n}, \pi_{0}\right)$;
- Sheu for $\mathbb{S}^{2 n-1}$ as Poisson sbmfld of $\mathbb{C P}^{n}, \pi_{t}, t \neq 0,1$;
- Sheu for $\left(\mathbb{C P}^{1}, \pi_{t}\right)$.

Example: $\mathbb{C} P^{2}$

Example: $\mathbb{C} P^{2}$

Example: $\mathbb{C} P^{2}$

μ quasi-invariant measure on \mathcal{G}_{0}

$$
\begin{aligned}
& \left.\phi_{\mu}(f) A_{c}(\imath \beta) g\right)= \\
& \phi_{\mu}(g \star f)
\end{aligned}
$$

μ quasi-invariant
$\phi_{\mu}: C^{*}(\mathcal{G}) \rightarrow \mathbb{R}$

1-cocycle $c=$ $\log D \in Z^{1}(\mathcal{G} ; \mathbb{R})$
$A_{c}(t)=e^{\text {tc }}$ map in $\operatorname{Aut}\left(C^{*} \mathcal{G}\right)$
μ quasi-invariant measure on \mathcal{G}_{0}
D modular func-
tion w.r. to

$$
\begin{aligned}
& \left.\phi_{\mu}(f) A_{c}(\imath \beta) g\right)= \\
& \phi_{\mu}(g \star f)
\end{aligned}
$$

μ

$$
\begin{aligned}
& \text { 1-cocycle } c= \\
& \log D \in Z^{1}(\mathcal{G} ; \mathbb{R})
\end{aligned}
$$

$$
\begin{aligned}
& A_{c}(t)=e^{\imath t c} \text { map } \\
& \text { in } \operatorname{Aut}\left(C^{*} \mathcal{G}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\phi_{\mu}(f) A_{c}(\imath \beta) g\right)= \\
& \phi_{\mu}(g \star f)
\end{aligned}
$$

D modular function w.r. to μ
μ quasi-invariant measure on \mathcal{G}_{0}
$\phi_{\mu}: C^{*}(\mathcal{G}) \rightarrow \mathbb{R}$

Modular class in $H_{\pi}^{1}(M)$

Van den Bergh bimodule

Open questions

- What happened to the 2-cocycle? Due to $L_{X} \pi=\pi$ up to continuity?;

Open questions

- What happened to the 2-cocycle? Due to $L_{X} \pi=\pi$ up to continuity?;
- Functoriality

Open questions

- What happened to the 2-cocycle? Due to $L_{X} \pi=\pi$ up to continuity?;
- Functoriality: $\left(\mathbb{C P}^{1}, \pi_{t}\right)$ are all Poisson-Morita equivalent for $0<t<1$ and the nonstandard groupoid does not depend on t.

Open questions

- What happened to the 2-cocycle? Due to $L_{X} \pi=\pi$ up to continuity?;
- Functoriality: $\left(\mathbb{C P}^{1}, \pi_{t}\right)$ are all Poisson-Morita equivalent for $0<t<1$ and the nonstandard groupoid does not depend on t.
- What about other Hermitian symmetric spaces?
(1) F. Bonechi, N. Ciccoli, N. Staffolani, M. Tarlini, The quantization of the symplectic groupoid of the standard Podles̀ sphere. Journal of Geometry and Physics, 62, (2012) 1851-1865.
(2) F. Bonechi, N. Ciccoli, J. Qiu, M. Tarlini, The multiplicative integrability of the modular function arXive:1306.4175, 2013
(3) N. Ciccoli, A.J.-L. Sheu, Covariant Poisson Structures on Complex Grassmannians. Comm. Anal. Geom.14, (2006) 443-474.
(4) S. Khoroshkin, A. Radul, V. Rubtsov, A family of Poisson structures on hermitian symmetric spaces. Commun. Math. Phys. 152, 2, (1993), 299-315.
(5) E. Hawkins, A groupoid approach to quantization. J. Symplectic Geom., 6 (2008) 61-125
(6) A.J.-L. Sheu, Groupoid Approach to Quantum Projective Spaces. Contemporary Mathematics, 228 (1998) 341-350.

