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Introduction

Generalize Segal–Atiyah’s axioms to perturbative QFTs
boundaries vector spaces
manifolds (with boundaries) states/operators
Do it for general Lagrangian theories (including gauge theories)
First understand classical picture
then the perturbative quantum BV picture
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Lagrangian Mechanics

In Lagrangian mechanics S =
∫ t1

t0
L dt as a functional on the path

space N [t0,t1].
Usual example: L = 1

2 m||v ||2 − V (q).
Newton’s equation are recovered as Euler–Lagrange equations
(EL), i.e., critical points: δS = 0.
A solution is uniquely specified by its initial conditions. Set
C := TN, the space of Cauchy data.
For this, one sets conditions at t0 and t1 (usually by fixing the
path endpoints). Otherwise

δS = EL +α|t1t0 ,

α =
∑

i

∂L
∂v i dq i ∈ Ω1(C).

Here EL denotes the term containing the EL equations. By EL
we will denote the space of solutions to EL.
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Symplectic formulation

ω := dα is symplectic iff L is regular. In this case:

ω is the pullback on C = TN of the canonical symplectic form on
T ∗N by the Legendre mapping.
Time evolution is given by a Hamiltonian flow φ. In particular,

L := graphφt1
t0 ∈ TN × TN

is Lagrangian (canonical relation).

Remark
L may also be defined directly as L = π(EL) with

π : N [t0,t1] → TN × TN
{x(t)} 7→ ((x(t0), ẋ(t0)), (x(t1), ẋ(t1)))

This picture has to be generalized
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Example1: Geodesics

We discuss geodesics on E2 (Minkowski would be more realistic).

L = ||v ||,

S is defined on F := N [t0,t1]
0 := {immersed paths}.

EL = straight lines
Initial data:
F|((t0)) = R2×R2

∗×R∞ = R2×S1×R>0×R∞ 3 (q,v, ρ,q2,q3, . . . ).
α = v · dq
ω degenerate
L̃ := π(EL) = {(q1,v, ρ1, . . . ), (q2,v, ρ2, . . . )) : q1 − q2 ||v}
Not a graph!
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Geodesics (continued)

However:
ω|L̃ = 0, so L̃ is isotropic (actually Lagrangian).

kerω = span
(

v · ∂∂q ,
∂
∂ρ ,

∂
∂q2

, . . .
)

=

directions parallel to v, rescalings of velocity, higher jets;
so

$ : F|((t0)) → F∂ := F|((t0))/ kerω = TS1

with canonical symplectic form (identify T and T ∗ using the
metric).
L := $(L̃) = graph Id, so a graph and Lagrangian.
Actually, no time evolution after reduction (an example of
topological theory).
With target Rn+1 and Minkowski metric, one gets F∂ = THn, with
Hn the n-dimensional hyperboloid with induced hyperbolic metric.
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Example 2: 1d Polyakov action

We consider the action

S[t0,t1] =

∫ t1

t0

1
2

yẋ2 +
λ

y

where λ is a parameter and the “fields” are (x , y) : [t0, t1]→ R× R>0,
so F = (R× R>0)[t0,t1].

For λ > 0 this is equivalent to the previous example. For λ < 0
there are no critical points.
The reduction F∂ of the space of boundary jets is R2 with
coordinates (q,p) and α∂ = p dq.
The map π : F → F∂ × F∂ is

(x , y) 7→ (x(t0),−y(t0) ẋ(t0); x(t1),−y(t1) ẋ(t1)).

For λ > 0, we get L = {(q0,2λ,q1,2λ), q0,q1 ∈ R} which is
Lagrangian but not a graph.
For λ = 0, we get L = {(q,0,q,0), q ∈ R} which is not
Lagrangian.
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Example 3: Free 2d particle

SM =
∫

M ∂µφ∂
µφ on RM .

ELM = {φ ∈ RM : ∆φ = 0}.
Cauchy data (for M a cylinder S1 × I) CS1 = (RS1

)2:
field on S1 together with its normal derivative.
If ∂M consistst of n circles ∂1M, . . . , ∂nM:

π : RM → Cn
S1

φ 7→ ((φ∂1M ,n · ∇φ∂1M), . . . )

LM := π(ELM) is a graph for M a cylinder, otherwise not a graph.
However, CS1 is symplectic and LM is Lagrangian in Cn

S1 .
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General case

Following ideas by Gawedzki, Schwarz, Fock,. . .
Let SM =

∫
M L be a class of local actions determined by a

Lagrangian L. Here M is a d-manifold.
SM is defined on a space of fields FM
(e.g., maps from M to another manifold, connections on M,
sections of a fiber bundle,. . . .)

To a (d − 1)-manifold Σ we associate the space F̃Σ of germs of fields
at Σ× {0} on Σ× [0, ε] (“normal derivatives").
The boundary term in the variational calculus defines a one-form α̃Σ

on F̃Σ, for every Σ, with the property

δSM = ELM +π̃∗M α̃∂M ,

with π̃M : FM → F̃∂M the natural surjective submersion and ELM the
“EL one-form.”Define ω̃Σ := dα̃Σ.

Assumption

We assume that ω̃Σ is presymplectic for every Σ.
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Boundary structure

Denote by (F∂
Σ , ω

∂
Σ) the reduction of F̃Σ by the kernel of ω̃Σ.

For simplicity, we assume that α̃Σ also descends to a one-form
αΣ on F∂

Σ .

Then
1 ωΣ = dαΣ.
2 For every M, we get a projection πM : FM → F∂

∂M and the equation

δSM = ELM +π∗Mα
∂
∂M

Now define LM := πM(ELM), which by the previous equation is
automatically isotropic.
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Boundary structure (continued)

Assumption

We assume that LM is Lagrangian for every M.

Remark
This is a requirement for a well-defined theory. It requires, e.g., that
YM, CS and BF theories should be defined in terms of Lie algebras
or the PSM in terms of a Poisson tensor (not just any bivector field).

Definition

For every Σ we define CΣ as the space of points of F∂
Σ that can be

completed to a pair belonging to LΣ×[0,ε] for some ε. In formulae,

CΣ =
⋃

ε∈(0,+∞)

LΣ×[0,ε] ◦ F∂
Σ

In example 2, λ ≥ 0, C = {(q,2λ), q ∈ R}.
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Boundary structure: Reduction

By the assumption, CΣ is coisotropic. It represents the space of
Cauchy data. Its reduction is called the reduced phase space.

Remark
One may consider the symplectic reduction

$ : CΣ → CΣ

and also consider the reduced evolution relations

LM := $(LM) ⊂ C∂M .

The reduced phase space is usually very singular. Better to avoid
reduction and describe the quotient by some cohomological
resolution (BFV).
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Boundary structure: composition

Remark (Composition)

If M = M1 ∪Σ M2, where Σ is (part of) the boundary of M1 and of M2,

LM = LM1 ◦ LM2 ⊂ F∂
(∂M1\Σ)

∐
(∂M2\Σ),

where ◦ denotes the composition of relations.

Definition
We call L∂M the evolution relation. (More precisely, we split
∂M = ∂inM

∐
∂outM and regard LM as a relation in F∂

(∂inM)opp × F∂
∂outM .)

For a regular theory on a cylinder M = Σ× I, LM is a graph and the
composition of cylinders yields the usual composition of maps.
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Boundary structure: composition (continued)

Remark (EL)

By definition the fiber of ELM over LM is just one point if M is a short
cylinder, but in general it may be much bigger.
So it makes sense to remember it and think of ELM → F∂

∂M
as a

correspondence, the evolution correspondence.
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Gauge theories

If CΣ 6= CΣ ⊂ , we say that S defines a gauge theory.
Notice that LM is not a graph, even if M is a cylinder. In particular,

RΣ := “ lim
ε→0

”LΣ×[0,ε] ⊂ CΣ × CΣ

is not a graph.
It is an equivalence relation (gauge transformation) in CΣ and

CΣ = CΣ/RΣ.

A topological field theory is a Lagrangian field theory that is invariant
under diffeomorphisms.
So, in particular, it is a gauge theory and moreover

LΣ×I = graph(IdCΣ
)

for every interval I (no evolution).
One usually also requires all CΣs to be finite dimensional (sometimes
even compact).
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Axiomatics

We may then think of a classical Lagrangian field theory in d
dimensions as the following data:

A space of field FM for every d-manifold M
A symplectic space F∂

Σ for every (d − 1)-manifold Σ

A Lagrangian correspondence π : ELM → F∂
∂M for every M.

(F•,C•) should be thought as a functor.
It may be good to assume that the fibers of the correspondence are
finite dimensional.

Remark
In the reduced picture (in case of trivial fibers), the target “category" is
that of (singular) symplectic manifolds and canonical relations.
Notice that the reduced evolution relation for a (short) cylinder is a
graph, actually a flow. In particular,

“ lim
ε→0

”LΣ×[0,ε] = graph(IdCΣ
).
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Quantization of regular Lagrangian field theories

In a regular theory, CΣ = CΣ = F∂
Σ is symplectic;

geometric quantization: vector space HΣ.
For simplicity, assume that the symplectic manifold C∂M is
endowed with a Lagrangian foliation along which α∂M vanishes
and with a smooth leaf space B∂M . (One may change α∂M to this
goal.) Then H∂M is a space of functions on B∂M .Denote by p∂M
the projection C∂M → B∂M .
The canonical relation LM ⊂ C∂M is quantized to a state
ψM ∈ H∂M . Asymptotically,

ψM(ϕ) =

∫
Φ∈π−1

M (p−1
∂M (ϕ))

e
i
~ SM (Φ) [DΦ], ϕ ∈ B∂M

If ∂M = ∂inM
∐
∂outM, then ψM ∈ H∗∂inM ⊗ H∂outM .

Hence, operator H∂inM → H∂outM .
Composition of relations goes to composition of operators.
Cfr. Segal’s axiomatization of CFT and Atiyah’s axiomatization of
TFT.
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The BV formalism

The BV construction

In a gauge theory, this does not work since ELM is still infinite
dimensional. One introduces “symmetries” s.t. the quotient ELM
is finite dimensional (often discrete).But: Too complicated (and
often singular) to perform the Gaussian perturbative expansion.
If M has no boundary, the Batalin–Vilkovisky (BV) construction
yields a BV manifold (FM , ωM ,SM), where

1 FM is a supermanifold with additional Z-grading (containing the
original FM as its degree zero component).

2 ωM is a symplectic form of degree −1 on FM .
3 SM is a function of degree zero on FM which extends the classical

action and satisfies the CME

{SM ,SM} = 0.

One defines QM as the Hamiltonian vector field of SM

ιQMωM = dSM

QM has degree one and [QM ,QM ] = 0 (cohomological vector
field). Its zero locus ELM is the same as the critical set of SM .
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BV+BFV

The case with boundary

The equation
ιQMωM = dSM

no longer holds if M has boundary. We have to deal with the
boundary terms in computing dSM as in the first part of this talk.
Define the space F̃Σ of preboundary fields on a (d − 1)-manifold
Σ as the germs at Σ× {0} of FΣ×[0,ε]. Integration by parts in the
computation of dSΣ×[0,ε] yields a one-form α̃Σ of degree zero on
F̃Σ. We denote by ω̃Σ its differential.

Assumption
We assume that ω̃Σ is presymplectic.

Denote by (F∂Σ, ω
∂
Σ) the reduction of (F̃Σ, ω̃Σ).

For simplicity, we assume that α̃Σ also descends to a one-form
α∂Σ on F∂Σ.
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BV+BFV

The case with boundary (continued)

Let πM : FM → F∂∂M be the induced surjective submersion.
One can then prove that

1 QM descends to a cohomological vector field Q∂
∂M which is

Hamiltonian w.r.t. ω∂∂M .

Remark

One then says that the triple (F∂∂M , ω
∂
∂M ,Q

∂
∂M) is a BFV manifold.

Notice that the degree of ω∂∂M is now zero. The zero locus of Q∂
∂M is

coisotropic. Its degree zero component C∂M is also coisotropic. If its
reduction is smooth, its Poisson algebra of functions is the same as
the cohomology of Q∂

∂M in degree zero. The BFV construction has to
be thought of as a resolution of this quotient.

2 We have the fundamental equation of the BV theory for
manifolds with boundary [C, Mnëv, Reshetikhin]:

ιQMωM = dSM + π∗Mα
∂
∂M
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BV+BFV

Example: Electromagnetism

Maxwell’s equations: d∗dA = 0, A connection 1-form.
First-order formalism: Scl

M =
∫

M B dA + 1
2 B ∗ B

B a (d − 2)-form. Then EL = {∗B = dA, dB = 0}.
BV: SM =

∫
M B dA + 1

2 B ∗ B + A+ dc
A+: (d − 1)-form, ghost number −1; c: 0-form, ghost number 1.
ωM =

∫
M δA δA

+ + δB δB+ + δc δc+,
B+ and c+ do not show up in the action.
QA = dc, QA+ = dB, QB+ = ∗B + dA, Qc+ = dA+.
Boundary fields: A,B,A+, c,
S∂Σ =

∫
Σ

c dB,
α∂Σ =

∫
Σ

B δA + A+ δc,
Q∂A+ = dB, Q∂A = dc.
Interpretation:
A = vector potential, up to gauge transformations A 7→ A + dc
B = electric field constrained by Gauss law dB = 0.
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BV+BFV

Properties

The fundamental equation

ιQMωM = dSM + π∗Mα
∂
∂M (1)

has several consequences:
1 LQMωM = π∗Mω

∂
∂M (QM not symplectic).

2 “{SM ,SM}” := ιQM ιQMωM = π∗M(2S∂∂M) (modified CME).
3 ELM := {zeros of QM} coisotropic,

LM := π(ELM)
isotropic/Lagrangian

⊂ C∂∂M
coisotropic
⊂ F∂∂M .

4 For every ` ∈ LM , let
E` := π−1(orbit through ` of coisotropic foliation).
Then E` presymplectic and we have a fibration ELM → LM with
finite dimensional odd symplectic fiber E` over `.

BV canonical correspondence
Example EM:
E` = H1(M, ∂M)⊕ Hn−1(M)[−1]⊕ H0(M, ∂M)[1]⊕ Hn(M)[−2]
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Boundaries of boundaries

On every boundary component Σ, we now have a BFV manifold
(F∂Σ, ω

∂
Σ,Q

∂
Σ). Assume it is given by local data. Let S∂Σ be the

Hamiltonian function of Q∂
Σ: ιQ∂

Σ
ω∂Σ = dS∂Σ.

If Σ has a boundary γ, we may repeat the previous construction
verbatim. We get

1 A triple (F∂∂γ , ω∂∂γ = dα∂∂γ ,Q∂∂
γ ) with ω∂∂γ symplectic of degree one

and Q∂∂
γ cohomological and Hamiltonian.

2 The fundamental equation

ιQ∂
Σ
ω∂Σ = dS∂Σ + π∗

Σα
∂∂
∂Σ

3 and so on.

Remark
It makes sense however to stop if the fibers of the correpondences
become infinite dimensional. In TFTs and in 2d YM one can go down
up to dimension zero (fully extended field theories).
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Hamiltonian function of Q∂
Σ: ιQ∂

Σ
ω∂Σ = dS∂Σ.

If Σ has a boundary γ, we may repeat the previous construction
verbatim. We get

1 A triple (F∂∂γ , ω∂∂γ = dα∂∂γ ,Q∂∂
γ ) with ω∂∂γ symplectic of degree one

and Q∂∂
γ cohomological and Hamiltonian.

2 The fundamental equation

ιQ∂
Σ
ω∂Σ = dS∂Σ + π∗

Σα
∂∂
∂Σ

3 and so on.

Remark
It makes sense however to stop if the fibers of the correpondences
become infinite dimensional. In TFTs and in 2d YM one can go down
up to dimension zero (fully extended field theories).
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BV+BFV

Example: EM

Boundary fields: A,B,A+, c, S∂Σ =
∫

Σ
c dB,

α∂Σ =
∫

Σ
B δA + A+ δc, Q∂A+ = dB, Q∂A = dc.

Boundary of boundary: γ = (d − 2)-manifold
BB fields: B, c, α∂∂γ =

∫
γ

B δc, of degree +1
S∂∂γ = 0, Q∂∂

γ = 0.

ELΣ = Ω1(Σ)/exact ⊕Ωd−2
closed(Σ, ∂Σ)⊕H0(Σ, ∂Σ)[1]⊕Hd−1(Σ)[−1].

For d = 2 this space is finite dimensional.
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Quantization

1 Fix a polarization on F∂∂M such the quantization Ω∂M of S∂∂M
squares to zero.

2 For simplicity, assume we have a transversal L′ to the
polarization. So H∂M = functions on L′.

3 Define
ψM =

∫
e

i
~ SM ∈ H∂M

where the integral is over a Lagrangian submanifold of the fiber
over a boundary field in L′.

4 By standard techniques in BV, one may prove that

Ω∂MψM = 0.

Moreover, changing gauge fixing modifies ψM by an Ω∂M -exact
term. Thus,

ψM defines a class in the physical space HΩ∂M0(H∂M).
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Perturbative quantization

Usually, the only way of computing the functional integral is to perturb
around a Gaussian theory.
Let S0 be the Gaussian theory and denote by Z0

M the space of
functions on the fiber of EL0

M (“vacua"). Then
1 We get

ψM =

∫
e

i
~ SM ∈ H∂M ⊗ Z0

M

2 Because of the odd symplectic structure on these fibers, Z0
M has

a BV structure. The modified CME is quantized as

~2∆Z0
M
ψM + Ω∂MψM = 0
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Axiomatics

To each (d − 1)-manifold Σ we associate a complex (HΣ,ΩΣ).
To each d-manifold we as associate a f.d. BV manifold ELM
("moduli space of vacua"), the BV algebra ZM of functions on
ELM (endowed with a BV operator ∆), and an element ψM of
H∂M ⊗ ZM satisfying the modified QME.
Plus functorial properties.

Eventually, we may integrate over a Lagrangian submanifold of ELM
and go to the ΩΣ-cohomology getting just a state in the physical
space.

Remark
The full power of this approach is that we may cut the original
manifold M into simple, or tiny, pieces; do the perturbative
quantization there; and eventually glue and reduce.
This could provide some new insight for physical theories.
In TFTs it yields a perturbative version of Atiyah’s axioms. We expect
to be able to compute, e.g., perturbative CS invariants.
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Example: BF theory

S =
∫

M

〈
B, dA + 1

2 [A,A]
〉
, A ∈ Ω(M, g), B ∈ Ω(M, g∗)

Figure : δ
δB -foliation

Figure : δ
δA -foliation
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