DQ and Weight Homogeneous Poisson structures

Panagiotis Batakidis

Dept. of Mathematics Penn State

"Noncommutative Geometry and Mathematical Physics" Scalea 17.6.2014

イロト イポト イヨト イヨト

DQ.

- Weight homogeneous stuff.
- Extensions and applications.
- Example.

・ロト ・ 理 ト ・ ヨ ト ・

∃ 9900

Deformation Quantization.

M. Kontsevich proved the following :

Theorem

Let (\mathbb{R}^k, π) be a Poisson manifold and $F, G \in C^{\infty}(\mathbb{R}^k)$. The operator

$$F *_{\mathcal{K}} G := F \cdot G + \sum_{n=1}^{\infty} \hbar^n \left(\frac{1}{n!} \sum_{\Gamma \in \mathbf{Q}_{n,2}} \omega_{\Gamma} B_{\Gamma,\pi}(F,G) \right)$$

defines an associative product $C^{\infty}(\mathbb{R}^k))[[\hbar]] \times C^{\infty}(\mathbb{R}^k)[[\hbar]] \longrightarrow C^{\infty}(\mathbb{R}^k)[[\hbar]].$ The map $[*] \mapsto [\pi]$ is a one-to-one correspondence.

The set $\mathbf{Q}_{n,2}$ is a special family of graphs Γ . Each Γ gives rise to a bidifferential operator $B_{\Gamma,\pi}(F,G) = \sum_{R,S} b_i^{RS} \partial_R(F) \partial_S(G)$ on $C^{\infty}(\mathbb{R}^k) \times C^{\infty}(\mathbb{R}^k)$. The coefficient $\omega_{\Gamma} \in \mathbb{R}$ is calculated by integrating a differential form Ω_{Γ} also encoded in Γ .

Theorem (Kontsevich)

Let $\mathcal{U} : \mathcal{T}_{poly}(\mathbb{R}^k) \longrightarrow \mathcal{D}_{poly}(\mathbb{R}^k)$ be the map defined by its Taylor coefficients

$$\mathcal{U}_{n} := \sum_{\overline{m} \geq 0} \left(\sum_{\Gamma \in \mathbf{Q}_{n,\overline{m}}} \omega_{\Gamma} \mathcal{B}_{\Gamma}
ight).$$

Then \mathcal{U} is an L_{∞} -morhism and a quasi-isomorphism.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

A coisotropic submanifold $C \subset X$ is a submanifold such that the ideal $I(C) \subset C^{\infty}(X)$ of functions vanishing on *C*, is a Poisson subalgebra of $C^{\infty}(X)$.

The Relative Formality Theorem proves an L_{∞} quasi-isomorphism from $\mathcal{T}(X, C) = \lim_{\leftarrow} \mathcal{T}(X)/I(C)^n \mathcal{T}(X)$, the DGLA of multivector fields in an infinitesimal neighbourghood of C to $\tilde{\mathcal{D}}(\mathcal{A}) = \bigoplus_n \tilde{\mathcal{D}}^n(\mathcal{A})$ where $\tilde{\mathcal{D}}^n(\mathcal{A}) = \prod_{p+q-1=n} \operatorname{Hom}^p(\otimes^q \mathcal{A}, \mathcal{A})$, $\mathcal{A} = \Gamma(C, \wedge T_X)$.

<ロ> (四) (四) (三) (三) (三)

A coisotropic submanifold $C \subset X$ is a submanifold such that the ideal $I(C) \subset C^{\infty}(X)$ of functions vanishing on *C*, is a Poisson subalgebra of $C^{\infty}(X)$.

The Relative Formality Theorem proves an L_{∞} quasi-isomorphism from $\mathcal{T}(X, C) = \lim_{\leftarrow} \mathcal{T}(X)/I(C)^n \mathcal{T}(X)$, the DGLA of multivector fields in an infinitesimal neighbourghood of C to $\tilde{\mathcal{D}}(\mathcal{A}) = \bigoplus_n \tilde{\mathcal{D}}^n(\mathcal{A})$ where $\tilde{\mathcal{D}}^n(\mathcal{A}) = \prod_{p+q-1=n} \operatorname{Hom}^p(\otimes^q \mathcal{A}, \mathcal{A})$, $\mathcal{A} = \Gamma(C, \wedge T_X)$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Consider ℝ^k with coordinate functions x₁,..., x_k. A k – tuple of positive integers with := (with iteration is called a weight vector.
An F ∈ C[∞](ℝ^k) is called weight homogeneous with respect to with respect to with there is an r ∈ ℕ such that

 $F(\lambda^{\overline{\omega}_1}x_1,\ldots,\lambda^{\overline{\omega}_k}x_k) = \lambda^r F(x_1,\ldots,x_k), \forall \lambda \in \mathbb{R}.$

• The number *r* is called the *weight* of *F* and we will write $\overline{\omega}(F) = r$.

• A p- vector field on \mathbb{R}^k is *weight homogeneous* if applying it to weight homogeneous functions $F_1, \ldots, F_p \in C^{\infty}(\mathbb{R}^k)$ we get a weight homogeneous smooth function.

• If P, F_1, \ldots, F_p are weight homogeneous of weights $\overline{\omega}(P), \overline{\omega}(F_1), \ldots, \overline{\omega}(F_p)$ then $P(F_1, \ldots, F_p)$ is weight homogeneous of weight $\overline{\omega}(P) + \sum_{i=1}^{n} \overline{\omega}(F_i)$ (or $P(F_1, \ldots, F_p) = 0$).

• The weighted Euler vector field $E_{\overline{\omega}} = \sum_{i=1}^{k} \overline{\omega}_{i} x_{i} \frac{\partial}{\partial x_{i}}$, traces the weight of homogeneous elements; $\mathcal{L}_{E_{\overline{\omega}}}(F) = \overline{\omega}(F)F$, $\mathcal{L}_{E_{\overline{\omega}}}(P) = \overline{\omega}(P)P$.

Consider ℝ^k with coordinate functions x₁,..., x_k. A k- tuple of positive integers w̄ := (w̄₁,..., w̄_k) is called a *weight vector*.
An F ∈ C[∞](ℝ^k) is called *weight homogeneous* with respect to w̄ if there is an r ∈ ℕ such that

 $F(\lambda^{\overline{\omega}_1}x_1,\ldots,\lambda^{\overline{\omega}_k}x_k) = \lambda^r F(x_1,\ldots,x_k), \forall \lambda \in \mathbb{R}.$

• The number *r* is called the *weight* of *F* and we will write $\overline{\omega}(F) = r$.

• A p- vector field on \mathbb{R}^k is *weight homogeneous* if applying it to weight homogeneous functions $F_1, \ldots, F_p \in C^{\infty}(\mathbb{R}^k)$ we get a weight homogeneous smooth function.

• If P, F_1, \ldots, F_p are weight homogeneous of weights $\overline{\omega}(P), \overline{\omega}(F_1), \ldots, \overline{\omega}(F_p)$ then $P(F_1, \ldots, F_p)$ is weight homogeneous of weight $\overline{\omega}(P) + \sum_{i=1}^{n} \overline{\omega}(F_i)$ (or $P(F_1, \ldots, F_p) = 0$).

• The weighted Euler vector field $E_{\overline{\omega}} = \sum_{i=1}^{k} \overline{\omega}_{i} x_{i} \frac{\partial}{\partial x_{i}}$, traces the weight of homogeneous elements ; $\mathcal{L}_{E_{\overline{\omega}}}(F) = \overline{\omega}(F)F$, $\mathcal{L}_{E_{\overline{\omega}}}(P) = \overline{\omega}(P)P$.

Consider ℝ^k with coordinate functions x₁,..., x_k. A k- tuple of positive integers w̄ := (w̄₁,..., w̄_k) is called a *weight vector*.
An F ∈ C[∞](ℝ^k) is called *weight homogeneous* with respect to w̄ if there is an r ∈ ℕ such that

 $F(\lambda^{\overline{\omega}_1}x_1,\ldots,\lambda^{\overline{\omega}_k}x_k) = \lambda^r F(x_1,\ldots,x_k), \forall \lambda \in \mathbb{R}.$

• The number *r* is called the *weight* of *F* and we will write $\overline{\omega}(F) = r$.

• A p-vector field on \mathbb{R}^k is *weight homogeneous* if applying it to weight homogeneous functions $F_1, \ldots, F_p \in C^{\infty}(\mathbb{R}^k)$ we get a weight homogeneous smooth function.

• If P, F_1, \ldots, F_p are weight homogeneous of weights $\overline{\omega}(P), \overline{\omega}(F_1), \ldots, \overline{\omega}(F_p)$ then $P(F_1, \ldots, F_p)$ is weight homogeneous of weight $\overline{\omega}(P) + \sum_{i=1}^{n} \overline{\omega}(F_i)$ (or $P(F_1, \ldots, F_p) = 0$).

• The weighted Euler vector field $E_{\overline{\omega}} = \sum_{i=1}^{k} \overline{\omega}_{i} x_{i} \frac{\partial}{\partial x_{i}}$, traces the weight of homogeneous elements ; $\mathcal{L}_{E_{\overline{\omega}}}(F) = \overline{\omega}(F)F$, $\mathcal{L}_{E_{\overline{\omega}}}(P) = \overline{\omega}(P)P$.

• Consider \mathbb{R}^k with coordinate functions x_1, \ldots, x_k . A k- tuple of positive integers $\overline{\omega} := (\overline{\omega}_1, \ldots, \overline{\omega}_k)$ is called a *weight vector*. • An $F \in C^{\infty}(\mathbb{R}^k)$ is called *weight homogeneous* with respect to $\overline{\omega}$ if there is an $r \in \mathbb{N}$ such that

 $F(\lambda^{\overline{\omega}_1}x_1,\ldots,\lambda^{\overline{\omega}_k}x_k)=\lambda^r F(x_1,\ldots,x_k), \forall \lambda \in \mathbb{R}.$

• The number *r* is called the *weight* of *F* and we will write $\overline{\omega}(F) = r$.

• A p-vector field on \mathbb{R}^k is *weight homogeneous* if applying it to weight homogeneous functions $F_1, \ldots, F_p \in C^{\infty}(\mathbb{R}^k)$ we get a weight homogeneous smooth function.

• If P, F_1, \ldots, F_p are weight homogeneous of weights $\overline{\omega}(P), \overline{\omega}(F_1), \ldots, \overline{\omega}(F_p)$ then $P(F_1, \ldots, F_p)$ is weight homogeneous of weight $\overline{\omega}(P) + \sum_{i=1}^{n} \overline{\omega}(F_i)$ (or $P(F_1, \ldots, F_p) = 0$).

• The weighted Euler vector field $E_{\overline{\omega}} = \sum_{i=1}^{k} \overline{\omega}_{i} x_{i} \frac{\partial}{\partial x_{i}}$, traces the weight of homogeneous elements ; $\mathcal{L}_{E_{\overline{\omega}}}(F) = \overline{\omega}(F)F$, $\mathcal{L}_{E_{\overline{\omega}}}(P) = \overline{\omega}(P)P$.

• Consider \mathbb{R}^k with coordinate functions x_1, \ldots, x_k . A k- tuple of positive integers $\overline{\omega} := (\overline{\omega}_1, \ldots, \overline{\omega}_k)$ is called a *weight vector*. • An $F \in C^{\infty}(\mathbb{R}^k)$ is called *weight homogeneous* with respect to $\overline{\omega}$ if there is an $r \in \mathbb{N}$ such that

 $F(\lambda^{\overline{\omega}_1}x_1,\ldots,\lambda^{\overline{\omega}_k}x_k)=\lambda^r F(x_1,\ldots,x_k), \forall \lambda \in \mathbb{R}.$

• The number *r* is called the *weight* of *F* and we will write $\overline{\omega}(F) = r$.

• A p-vector field on \mathbb{R}^k is *weight homogeneous* if applying it to weight homogeneous functions $F_1, \ldots, F_p \in C^{\infty}(\mathbb{R}^k)$ we get a weight homogeneous smooth function.

• If P, F_1, \ldots, F_p are weight homogeneous of weights $\overline{\omega}(P), \overline{\omega}(F_1), \ldots, \overline{\omega}(F_p)$ then $P(F_1, \ldots, F_p)$ is weight homogeneous of weight $\overline{\omega}(P) + \sum_{i=1}^{n} \overline{\omega}(F_i)$ (or $P(F_1, \ldots, F_p) = 0$).

• The weighted Euler vector field $E_{\overline{\omega}} = \sum_{i=1}^{k} \overline{\omega}_{i} x_{i} \frac{\partial}{\partial x_{i}}$, traces the weight of homogeneous elements ; $\mathcal{L}_{E_{\overline{\omega}}}(F) = \overline{\omega}(F)F$, $\mathcal{L}_{E_{\overline{\omega}}}(P) = \overline{\omega}(P)P$.

As a bivector π , a Poisson structure on \mathbb{R}^k is weight homogeneous iff the functions $\{x_i, x_j\}$ are weight homogeneous of weight $\overline{\omega}(\pi) + \overline{\omega}_i + \overline{\omega}_j$.

Standard examples include

• Ordinary polynomial Poisson structures (quadratic, cubic, etc); take $\overline{\omega} = (1, ..., 1)$.

• Transverse Poisson structures to adjoint orbits (a nilpotent orbit in a semi-simple Lie algebra).

• Graded symplectic forms are weight homogeneous elements of $C^{\infty}(T[1]M)$.

Can be extended to Nambu-Poisson structures.

イロト 不得 とくほ とくほ とうほ

As a bivector π , a Poisson structure on \mathbb{R}^k is weight homogeneous iff the functions $\{x_i, x_j\}$ are weight homogeneous of weight $\overline{\omega}(\pi) + \overline{\omega}_i + \overline{\omega}_j$.

Standard examples include

- Ordinary polynomial Poisson structures (quadratic, cubic, etc) ; take $\overline{\omega} = (1, \dots, 1)$.
- Transverse Poisson structures to adjoint orbits (a nilpotent orbit in a semi-simple Lie algebra).
- Graded symplectic forms are weight homogeneous elements of $C^{\infty}(T[1]M)$.

Can be extended to Nambu-Poisson structures.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

As a bivector π , a Poisson structure on \mathbb{R}^k is weight homogeneous iff the functions $\{x_i, x_j\}$ are weight homogeneous of weight $\overline{\omega}(\pi) + \overline{\omega}_i + \overline{\omega}_j$.

Standard examples include

- Ordinary polynomial Poisson structures (quadratic, cubic, etc); take $\overline{\omega} = (1, \dots, 1)$.
- Transverse Poisson structures to adjoint orbits (a nilpotent orbit in a semi-simple Lie algebra).
- Graded symplectic forms are weight homogeneous elements of $C^{\infty}(T[1]M)$.

Can be extended to Nambu-Poisson structures.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Weight homogeneous Formality.

Let π be a weight homogeneous Poisson structure on \mathbb{R}^k and F_i , G be weight homogeneous smooth functions. A polydifferential operator is called weight homogeneous iff $\overline{\omega}(B) = \overline{\omega}(B(F_1, \dots, F_s)) - \sum_{i=1}^s \overline{\omega}(F_i).$

• If $F, G \in C^{\infty}(\mathbb{R}^k)$ are weight homogeneous, then the terms in the Taylor expansion of F * G are weight homogeneous.

$$\overline{\omega}(\pmb{B}^{\pi}_{\!\!\!\Gamma})=-t\cdot\overline{\omega}(\pi), \hspace{1em} orall \Gamma\in \pmb{Q}_{t,2}$$

• If ψ_1, \ldots, ψ_l are weight homogeneous skew-symmetric multivector fields, the same is true for the terms in the Taylor expansion of the Formality morphism

$$\overline{\omega}(B^{\psi_1,...,\psi_l}_{\Gamma}) = -\sum_{i=1}^{l}\overline{\omega}(\psi_i), \ \forall \Gamma \in \mathcal{Q}_{l,ullet}$$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Weight homogeneous Formality.

Let π be a weight homogeneous Poisson structure on \mathbb{R}^k and F_i , G be weight homogeneous smooth functions. A polydifferential operator is called weight homogeneous iff $\overline{\omega}(B) = \overline{\omega}(B(F_1, \dots, F_s)) - \sum_{i=1}^s \overline{\omega}(F_i).$

• If $F, G \in C^{\infty}(\mathbb{R}^k)$ are weight homogeneous, then the terms in the Taylor expansion of F * G are weight homogeneous.

$$\overline{\omega}(\mathcal{B}_{\Gamma}^{\pi})=-t\cdot\overline{\omega}(\pi), \hspace{1em} orall \Gamma\in \mathcal{Q}_{t,2}$$

• If ψ_1, \ldots, ψ_l are weight homogeneous skew-symmetric multivector fields, the same is true for the terms in the Taylor expansion of the Formality morphism

$$\overline{\omega}(\mathcal{B}_{\Gamma}^{\psi_1,...,\psi_l})=-\sum_{i=1}^{l}\overline{\omega}(\psi_i), \ \forall \Gamma \in \mathcal{Q}_{l,ullet}$$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Weight homogeneous Formality.

Let π be a weight homogeneous Poisson structure on \mathbb{R}^k and F_i , G be weight homogeneous smooth functions. A polydifferential operator is called weight homogeneous iff $\overline{\omega}(B) = \overline{\omega}(B(F_1, \dots, F_s)) - \sum_{i=1}^s \overline{\omega}(F_i).$

• If $F, G \in C^{\infty}(\mathbb{R}^k)$ are weight homogeneous, then the terms in the Taylor expansion of F * G are weight homogeneous.

$$\overline{\omega}(\mathcal{B}_{\Gamma}^{\pi})=-t\cdot\overline{\omega}(\pi), \hspace{1em} orall \Gamma\in \mathcal{Q}_{t,2}$$

• If ψ_1, \ldots, ψ_l are weight homogeneous skew-symmetric multivector fields, the same is true for the terms in the Taylor expansion of the Formality morphism

$$\overline{\omega}(B_{\Gamma}^{\psi_{1},\ldots,\psi_{l}}) = -\sum_{i=1}^{l} \overline{\omega}(\psi_{i}), \ \forall \Gamma \in Q_{l,\bullet}$$

Let's look at Lie algebras for a moment.

• Taking a Lie subalgebra $\mathfrak{m} \subset \mathfrak{g}$ and a character χ of \mathfrak{m} one can apply the Relative Formality Theorem for $X = \mathfrak{g}^*, C = \mathfrak{m}_{\chi}^{\perp}$. There is an extensive study of the construction, the algebraic properties and the relations to harmonic analysis of Lie groups, of the **reduction algebra** $H^0(\mathfrak{m}_{\chi}^{\perp}, d)$ (Cattaneo-Torossian).

• The differential d : $S(\mathfrak{g/m}) \longrightarrow S(\mathfrak{g/m}) \otimes \mathfrak{m}^*$ is written as $d = \sum_{i=1}^{\infty} d^{(i)}$ where $d^{(i)} = \sum_{\Gamma \in \mathcal{B}_i \cup \mathcal{BW}_i} \omega_{\Gamma} B_{\Gamma}$.

• If π is weight homogeneous, then $\Gamma \in \mathcal{B}_t \Rightarrow \overline{\omega}(\mathcal{B}_{\Gamma}) = -t\overline{\omega}(\pi) - \overline{\omega}(\mathcal{L}(e_{\infty}))$ and $\Gamma \in \mathcal{BW}_t \Rightarrow \overline{\omega}(\mathcal{B}_{\Gamma}) = -t\overline{\omega}(\pi).$

イロト 不得 とくほ とくほ とうほ

Let's look at Lie algebras for a moment.

• Taking a Lie subalgebra $\mathfrak{m} \subset \mathfrak{g}$ and a character χ of \mathfrak{m} one can apply the Relative Formality Theorem for $X = \mathfrak{g}^*, C = \mathfrak{m}_{\chi}^{\perp}$. There is an extensive study of the construction, the algebraic properties and the relations to harmonic analysis of Lie groups, of the **reduction algebra** $H^0(\mathfrak{m}_{\chi}^{\perp}, d)$ (Cattaneo-Torossian).

• The differential $d : S(\mathfrak{g}/\mathfrak{m}) \longrightarrow S(\mathfrak{g}/\mathfrak{m}) \otimes \mathfrak{m}^*$ is written as $d = \sum_{i=1}^{\infty} d^{(i)}$ where $d^{(i)} = \sum_{\Gamma \in \mathcal{B}_i \cup \mathcal{BW}_i} \omega_{\Gamma} \mathcal{B}_{\Gamma}$.

• If π is weight homogeneous, then $\Gamma \in \mathcal{B}_t \Rightarrow \overline{\omega}(B_{\Gamma}) = -t\overline{\omega}(\pi) - \overline{\omega}(L(e_{\infty}))$ and $\Gamma \in \mathcal{BW}_t \Rightarrow \overline{\omega}(B_{\Gamma}) = -t\overline{\omega}(\pi).$

イロン 不良 とくほう 不良 とうほ

Let's look at Lie algebras for a moment.

• Taking a Lie subalgebra $\mathfrak{m} \subset \mathfrak{g}$ and a character χ of \mathfrak{m} one can apply the Relative Formality Theorem for $X = \mathfrak{g}^*, C = \mathfrak{m}_{\chi}^{\perp}$. There is an extensive study of the construction, the algebraic properties and the relations to harmonic analysis of Lie groups, of the **reduction algebra** $H^0(\mathfrak{m}_{\chi}^{\perp}, d)$ (Cattaneo-Torossian).

• The differential $d : S(\mathfrak{g}/\mathfrak{m}) \longrightarrow S(\mathfrak{g}/\mathfrak{m}) \otimes \mathfrak{m}^*$ is written as $d = \sum_{i=1}^{\infty} d^{(i)}$ where $d^{(i)} = \sum_{\Gamma \in \mathcal{B}_i \cup \mathcal{BW}_i} \omega_{\Gamma} \mathcal{B}_{\Gamma}$.

• If π is weight homogeneous, then $\Gamma \in \mathcal{B}_t \Rightarrow \overline{\omega}(\mathcal{B}_{\Gamma}) = -t\overline{\omega}(\pi) - \overline{\omega}(\mathcal{L}(\mathbf{e}_{\infty}))$ and $\Gamma \in \mathcal{BW}_t \Rightarrow \overline{\omega}(\mathcal{B}_{\Gamma}) = -t\overline{\omega}(\pi).$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

A variant of the generalized Duflo Isomorphism.

Theorem (B) For every Lie algebra \mathfrak{g} , (\mathfrak{m} , χ as before), there is a non-canonical associative algebra isomorphism

$$\mathcal{Q}_{\hbar}:\ H^{\mathbf{0}}_{(\hbar)}(\mathfrak{m}_{\chi}^{\perp}, \mathrm{d}^{(\hbar)}) \overset{\sim}{\longrightarrow} \left(\mathit{U}_{(\hbar)}(\mathfrak{g}) / \mathit{U}_{(\hbar)}(\mathfrak{g})\mathfrak{m}_{\chi}
ight)^{\mathfrak{m}}$$

It combines what you would expect from the generalized Duflo Isomorphism $(\overline{\beta}_{\mathfrak{q},(\hbar)} \circ \partial_{q_{(\hbar)}^{-1}})$, with Kontsevich's graphs and operators.

Technical difficulty : The deformation parameter \hbar is important. $\hbar = 1$ is not the same as no \hbar at all. However, if the linear Poisson structure is weight homogeneous, one can drop \hbar and get an analogous isomorphism Q.

イロト 不得 とくほ とくほ とうほ

A variant of the generalized Duflo Isomorphism.

Theorem (B) For every Lie algebra \mathfrak{g} , (\mathfrak{m} , χ as before), there is a non-canonical associative algebra isomorphism

$$\mathcal{Q}_{\hbar}:\ H^{\mathbf{0}}_{(\hbar)}(\mathfrak{m}_{\chi}^{\perp},\mathrm{d}^{(\hbar)})\overset{\sim}{\longrightarrow} \left(\mathit{U}_{(\hbar)}(\mathfrak{g})/\mathit{U}_{(\hbar)}(\mathfrak{g})\mathfrak{m}_{\chi}
ight)^{\mathfrak{m}}$$

It combines what you would expect from the generalized Duflo Isomorphism $(\overline{\beta}_{\mathfrak{q},(\hbar)} \circ \partial_{q_{(\hbar)}^{-1}})$, with Kontsevich's graphs and operators.

Technical difficulty : The deformation parameter \hbar is important. $\hbar = 1$ is not the same as no \hbar at all. However, if the linear Poisson structure is weight homogeneous, one can drop \hbar and get an analogous isomorphism Q.

直 とう かい うちょう

An basic example of weight homogeneous Poisson structure is the following :

Let \mathfrak{g} be a semisimple Lie algebra, $\{e, h, f\}$ an \mathfrak{sl}_2 - triple. The adh- action induces the decomposition $\mathfrak{g} = \bigoplus_i \mathfrak{g}(i)$, let n_x be the eigenvalue of $x \in \mathfrak{g}$.

For $\{x_1, \ldots, x_k\}$ a basis of g, fix $\overline{\omega} = (n_1 + 2, \ldots, n_k + 2)$ (Kazhdan weight).

- Damianou et al : The transverse Poisson structure to $G \cdot e$ has $\overline{\omega}(\pi) = -2$.

The Kazdan weight respects $PBW : S(\mathfrak{g}) \longrightarrow U(\mathfrak{g})$.

イロン 不良 とくほう 不良 とうほ

An basic example of weight homogeneous Poisson structure is the following :

Let \mathfrak{g} be a semisimple Lie algebra, $\{e, h, f\}$ an \mathfrak{sl}_2 - triple. The adh- action induces the decomposition $\mathfrak{g} = \bigoplus_i \mathfrak{g}(i)$, let n_x be the eigenvalue of $x \in \mathfrak{g}$.

For $\{x_1, \ldots, x_k\}$ a basis of \mathfrak{g} , fix $\overline{\omega} = (n_1 + 2, \ldots, n_k + 2)$ (Kazhdan weight).

- Damianou et al : The transverse Poisson structure to $G \cdot e$ has $\overline{\omega}(\pi) = -2$.

The Kazdan weight respects $PBW : S(\mathfrak{g}) \longrightarrow U(\mathfrak{g})$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let \mathfrak{g} be a semisimple Lie algebra, $Q := Z_G(e, h, f)$ and \mathfrak{q} be the corresponding Lie algebra. The *Slodowy slice* is $S := e + \operatorname{kerad} f \subset \mathfrak{g}^*$. **Def. I** : The *W*- algebra associated to (\mathfrak{g}, e) is

$$U(\mathfrak{g}, e) := \left(\mathbb{K}[G imes S][[\hbar]]
ight)^G|_{\hbar=1}$$

Losev : For $V = [\mathfrak{g}, f]$ and for suitable completions $U_{\hbar}(\mathfrak{g})^{\wedge} := \mathbb{K}[\mathfrak{g}^*]^{\wedge}_{\chi}[[\hbar]], \mathbf{A}^{\wedge}_{\hbar} := \mathbb{K}[V^*]^{\wedge}_{0}[[\hbar]], \mathcal{W}^{\wedge}_{\hbar} := \mathbb{K}[S]^{\wedge}_{\chi}[[\hbar]]$ there is a $Q \times \mathbb{K}^{\times}-$ equivariant topological $\mathbb{K}[[\hbar]]-$ algebra isomorphism

$$\Phi_{\hbar}: U_{\hbar}(\mathfrak{g})^{\wedge} \longrightarrow \mathbf{A}_{\hbar}^{\wedge} \bigotimes_{\mathbb{K}[[\hbar]]}^{\wedge} \mathcal{W}_{\hbar}^{\wedge}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Let \mathfrak{g} be a semisimple Lie algebra, $Q := Z_G(e, h, f)$ and \mathfrak{q} be the corresponding Lie algebra. The *Slodowy slice* is $S := e + \operatorname{kerad} f \subset \mathfrak{g}^*$. **Def. I** : The *W*- algebra associated to (\mathfrak{g}, e) is

$$U(\mathfrak{g}, e) := \left(\mathbb{K}[G imes S][[\hbar]]
ight)^G|_{\hbar=1}$$

Losev : For $V = [\mathfrak{g}, f]$ and for suitable completions $U_{\hbar}(\mathfrak{g})^{\wedge} := \mathbb{K}[\mathfrak{g}^*]^{\wedge}_{\chi}[[\hbar]], \mathbf{A}^{\wedge}_{\hbar} := \mathbb{K}[V^*]^{\wedge}_{0}[[\hbar]], \mathcal{W}^{\wedge}_{\hbar} := \mathbb{K}[S]^{\wedge}_{\chi}[[\hbar]]$ there is a $Q \times \mathbb{K}^{\times}$ – equivariant topological $\mathbb{K}[[\hbar]]$ – algebra isomorphism

$$\Phi_{\hbar}: U_{\hbar}(\mathfrak{g})^{\wedge} \longrightarrow \mathbf{A}^{\wedge}_{\hbar} \bigotimes^{\wedge}_{\mathbb{K}[[\hbar]]} \mathcal{W}^{\wedge}_{\hbar}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Def. II $U(\mathfrak{g}, e) := (U(\mathfrak{g})/U(\mathfrak{g})\mathfrak{m}_{\chi})^{\mathfrak{m}}.$

 \bullet With the quantization map $\mathcal Q$ we have defined a new model for it.

• Let $\mathfrak{z}_{\chi} := \text{kerad} e$. This space has an induced weight space decomposition. Let x_1, \ldots, x_r span \mathfrak{z}_{χ} . **Premet** constructs elements Θ_i , $i = 1, \ldots, r$ of the W- algebra, forming a PBW basis.

• If $[x_i, x_j] = \sum_{k=1}^r \alpha_{ij}^k x_k$ then modulo the appropriate level of the Kazhdan filtration in the *W*- algebra, the commutation relations between the Θ_i are

$$[\Theta_i, \Theta_j] = \sum_{k=1}^r \alpha_{ij}^k \Theta_k + q_{ij}(\Theta_1, \dots, \Theta_r)$$

where q_{ii} are quadratic polynomials.

(本間) (本語) (本語) (二語

Def. II $U(\mathfrak{g}, e) := (U(\mathfrak{g})/U(\mathfrak{g})\mathfrak{m}_{\chi})^{\mathfrak{m}}.$

 \bullet With the quantization map $\mathcal Q$ we have defined a new model for it.

• Let $\mathfrak{z}_{\chi} := \text{kerad} e$. This space has an induced weight space decomposition. Let x_1, \ldots, x_r span \mathfrak{z}_{χ} . **Premet** constructs elements Θ_i , $i = 1, \ldots, r$ of the *W*- algebra, forming a PBW basis.

• If $[x_i, x_j] = \sum_{k=1}^r \alpha_{ij}^k x_k$ then modulo the appropriate level of the Kazhdan filtration in the *W*- algebra, the commutation relations between the Θ_i are

$$[\Theta_i, \Theta_j] = \sum_{k=1}^r \alpha_{ij}^k \Theta_k + q_{ij}(\Theta_1, \dots, \Theta_r)$$

where q_{ij} are quadratic polynomials.

Def. II $U(\mathfrak{g}, e) := (U(\mathfrak{g})/U(\mathfrak{g})\mathfrak{m}_{\chi})^{\mathfrak{m}}.$

 \bullet With the quantization map $\mathcal Q$ we have defined a new model for it.

• Let $\mathfrak{z}_{\chi} := \text{kerad} e$. This space has an induced weight space decomposition. Let x_1, \ldots, x_r span \mathfrak{z}_{χ} . **Premet** constructs elements Θ_i , $i = 1, \ldots, r$ of the *W*- algebra, forming a PBW basis.

• If $[x_i, x_j] = \sum_{k=1}^r \alpha_{ij}^k x_k$ then modulo the appropriate level of the Kazhdan filtration in the *W*- algebra, the commutation relations between the Θ_i are

$$[\Theta_i,\Theta_j] = \sum_{k=1}^r \alpha_{ij}^k \Theta_k + q_{ij}(\Theta_1,\ldots,\Theta_r)$$

where q_{ij} are quadratic polynomials.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ 二 国

Premet : The abelian subalgebra $U(\mathfrak{g}, e)^{ab}$ of $U(\mathfrak{g}, e)$ can be used to determine the maximal spectrum and thus the 1-dimensional representations of $U(\mathfrak{g}, e)$.

 \rightarrow Use $\mathcal Q$ and the *- commutator $[\cdot,\cdot]_*$ instead.

Non-trivial example : The minimal orbit of \mathfrak{g}_2 . dim $(\mathfrak{g}_2) = 14$, dim $(\mathfrak{m}) = 8$. We can compute all the brackets $\Theta_i * \Theta_j - \Theta_j * \Theta_i$ and compute its 1-dimensional representation. (Only using GAP4 so far).

イロン 不良 とくほう 不良 とうほ

Premet : The abelian subalgebra $U(\mathfrak{g}, e)^{ab}$ of $U(\mathfrak{g}, e)$ can be used to determine the maximal spectrum and thus the 1-dimensional representations of $U(\mathfrak{g}, e)$.

 \rightarrow Use $\mathcal Q$ and the *- commutator $[\cdot,\cdot]_*$ instead.

Non-trivial example : The minimal orbit of \mathfrak{g}_2 . dim $(\mathfrak{g}_2) = 14$, dim $(\mathfrak{m}) = 8$. We can compute all the brackets $\Theta_i * \Theta_j - \Theta_j * \Theta_i$ and compute its 1-dimensional representation. (Only using GAP4 so far).

イロト イポト イヨト イヨト 三日

When g is nilpotent, the commutativity of $(U(g)/U(g)\mathfrak{h}_{\chi})^{\mathfrak{h}}$ is directly related to the finite multiplicity condition in the spectral decomposition of $\operatorname{Ind}(G \uparrow H, \chi)$, the induced by H, χ unitary representation of G (think of a well-defined L^2 - space on G/Hwith χ -invariant, compactly supported functions) :

Namely, the multiplicities $m(\tau)$ in

$$au_{\chi} \simeq \int_{\widehat{G}} m(au) au \mathrm{d} \mu(au) \simeq \int_{(\chi+\mathfrak{h}^{\perp})/H} au \mathrm{d}
u(l)$$

are finite iff $(U(\mathfrak{g})/U(\mathfrak{g})\mathfrak{h}_{\chi})^{\mathfrak{h}}$ is commutative.

<ロ> (四) (四) (三) (三) (三)

When g is nilpotent, the commutativity of $(U(g)/U(g)\mathfrak{h}_{\chi})^{\mathfrak{h}}$ is directly related to the finite multiplicity condition in the spectral decomposition of $\operatorname{Ind}(G \uparrow H, \chi)$, the induced by H, χ unitary representation of G (think of a well-defined L^2 - space on G/Hwith χ -invariant, compactly supported functions) :

Namely, the multiplicities $m(\tau)$ in

$$au_{\chi} \simeq \int_{\widehat{G}} m(au) au \mathrm{d} \mu(au) \simeq \int_{(\chi+\mathfrak{h}^{\perp})/H} au_{I} \mathrm{d}
u(I)$$

are finite iff $(U(\mathfrak{g})/U(\mathfrak{g})\mathfrak{h}_{\chi})^{\mathfrak{h}}$ is commutative.

・ロト ・回ト ・ヨト ・ヨト - ヨ