Twisted K-Classes and 1-Cocycles

Perspectives in Deformation Quantization and Noncommutative Geometry RIMS, Kyoto University February 21-23, 2011

Pedram Hekmati
School of Mathematical Sciences

Outline

- Preliminaries on twisted K-theory and loop groups LG.
- Dirac family construction of classes in $K_G^*(G, \Omega)$.
- Generalisation to gauge groups $\mathcal G$ and obstacles.
- Fractional loop group L_qG and 1-cocycles.

(Joint work with Jouko Mickelsson)

Twisted K-theory

- Let X be a paracompact, Hausdorff topological space and $\mathcal H$ an infinite-dimensional complex separable Hilbert space.
- Let $Fred(\mathcal{H})$ denote the space of bounded Fredholm operators on \mathcal{H} (with norm topology), and $Fred_*(\mathcal{H})$ the subspace of bounded self-adjoint Fredholm operators with <u>both</u> positive and negative essential spectrum.
- (Atiyah-Jänich)

$$K^0(X) = [X, Fred(\mathcal{H})], \quad K^1(X) = [X, Fred_*(\mathcal{H})]$$

 A gerbe introduces a twist in K-theory on X and is characterised by an element Ω ∈ H³(X, Z).

Twisted K-theory

- Recall that $PU(\mathcal{H}) = U(\mathcal{H})/S^1 \simeq K(\mathbb{Z},2)$. Let P_{Ω} denote a principal $PU(\mathcal{H})$ -bundle determined by its Dixmier-Douady class $\Omega \in H^3(X,\mathbb{Z})$.
- The projective unitary group $PU(\mathcal{H})$ acts continuously on $Fred(\mathcal{H})$ by the conjugation action of $U(\mathcal{H})$. Let

$$P_{\Omega}(Fred) = P_{\Omega} \times_{PU(\mathcal{H})} Fred(\mathcal{H})$$

denote the associated bundle of Fredholm operators on X.

Twisted K-theory groups are defined by

$$K^0(X,\Omega) = \pi_0(\Gamma_c(X,P_\Omega(Fred)))$$

$$K^1(X,\Omega) = \pi_0(\Gamma_c(X,P_{\Omega}(\textit{Fred}_*)))$$

i.e. homotopy classes of compactly supported continuous sections of the associated bundles.

Twisted K-theory

 A twisted K-class is a family of locally defined Fredholm operators T_i: U_i → Fred(H) satisfying

$$T_i(x) = Ad_{\hat{g}_{ii}}(T_i)(x)$$

on contractible intersections, where \hat{g}_{ij} are lifts of the transition functions $g_{ij}: U_i \cap U_j \to PU(\mathcal{H})$ to the unitary group $U(\mathcal{H})$.

• Equivalently, a twisted K-class is a $PU(\mathcal{H})$ -equivariant map $T: P_{\Omega} \to Fred(\mathcal{H})$, i.e.

$$T(pg) = g^{-1}T(p)g$$

for all $g \in PU(\mathcal{H})$.

Loop group

• Let G be a compact Lie group. The loop group $LG = C^{\infty}(S^1, G)$ has many central extensions

$$1 \to \textbf{S}^1 \to \widehat{\textbf{LG}} \to \textbf{LG} \to 1 \ .$$

For *G* simple and simply connected, there is a *universal* central extension.

- Construction: $\widehat{LG} = (DG \times_{\gamma} S^1)/C^{\infty}(S^2, G)_0$
- The principal S^1 -bundle \widehat{LG} is determined by its first Chern class up to isomorphism. When G is connected and simply connected, the transgression map

$$H^2(LG,\mathbb{Z}) \to H^3(G,\mathbb{Z})$$

is an isomorphism.

Central extension

The corresponding Lie algebra extension

$$0 \to i\mathbb{R} \to \widehat{L\mathfrak{g}} \to L\mathfrak{g} \to 0$$

is determined by the 2-cocycle

$$c_0(X,Y) = \frac{k}{2\pi} \int_{S^1} \langle X, dY \rangle_{\mathfrak{g}} ,$$

where $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$ is a symmetric invariant bilinear form on \mathfrak{g} .

• In Fourier basis, the generators $T_m^a = T^a z^m$ of the Lie algebra $\widehat{L}\mathfrak{g}$ satisfy

$$[T_m^a, T_n^b] = \sum_{c=1}^{\text{olim}\mathfrak{g}} \lambda^{abc} T_{m+n}^c + km \delta_{m,-n} \langle T^a, T^b \rangle_{\mathfrak{g}}$$

where the central element *k* is called the *level*.

Positive energy representations of LG

- LG has a distinguished class of unitary irreducible integrable projective highest weight representations $V_{(k,\lambda)}$, labelled by the level $k \in \mathbb{Z}_+$ and dominant integral weights λ of \mathfrak{g} .
- $V_{(k,\lambda)}$ can be obtained from geometric quantization of affine coadjoint orbits at level k.
- For a given level *k*, there are only finitely many irreducible representations.
- The free abelian group generated by isomorphism classes of irreducible representations,

$$R(LG, k) = R(G)/\mathcal{I}_k$$

forms a ring under fusion product, the Verlinde algebra.

 Let G be a compact, connected, simply connected, simple Lie group. Then

$$H^3(G,\mathbb{Z})=H^3_G(G,\mathbb{Z})=\mathbb{Z}$$

(with generator $\Omega_0 = \frac{1}{24\pi^2} \text{Tr}(g^{-1} dg)^3$, so that $\Omega = k\Omega_0$).

- Let A_{S^1} denote the affine space of connections on $Q = S^1 \times G$.
- We have the universal ΩG-bundle

$$\Omega G \rightarrow \mathcal{A}_{S^1} \rightarrow G$$
,

where ΩG is the group of based loops, acting on \mathcal{A}_{S^1} by gauge transformations

$$\Omega G \times \mathcal{A}_{S^1} o \mathcal{A}_{S^1}, \quad (g, A) \mapsto A^g = g^{-1}Ag + g^{-1}dg$$

and the projection $\mathcal{A}_{S^1} \to G$ is given by the holonomy around the circle. Note that $LG = \Omega G \rtimes G$.

• The gerbe associated to $\Omega = k\Omega_0$ is given by

$$P_{\Omega} = \mathcal{A}_{S^1} \times_{\Phi} PU(\mathcal{H})$$

where $\Phi: LG \to PU(\mathcal{H})$ is a level k projective representation.

- Next we want to construct a $PU(\mathcal{H})$ -equivariant family of Fredholm operators $T: P_{\Omega} \to Fred(\mathcal{H})$.
- Let $V_{(k,\lambda)}$ be a level k representation and $S_{(h^{\vee},\rho)}$ denote the spin representation of $\widehat{L\mathfrak{g}}$.
- S_(h[∨],ρ) is constructed by fixing a representation of the Clifford algebra Cliff(Lg),

$$\{\psi_{\it m}^{\it a},\psi_{\it p}^{\it b}\}=2\delta^{\it ab}\delta_{\it m,-p}\;.$$

 The operators are realised explicitly as bilinears in the Clifford generators

$$K_m^a = -\frac{1}{4} \sum_{b,c,n} \lambda^{abc} : \psi_{m-n}^b \psi_n^c : .$$

- The full Hilbert space $\mathcal{H} = V_{(k,\lambda)} \otimes S_{(h^\vee,\rho)}$ carries a tensor product representation of $\widehat{L\mathfrak{g}}$ of level $k+h^\vee$. The DD-class of the gerbe is $\Omega = (k+h^\vee)\Omega_0$, where the degree shift h^\vee is the dual Coxeter number of G.
- Consider the affine cubic Dirac operator

$$\begin{split} \partial &= i \sum_{a,m} : \left(T_m^a \otimes \psi_{-m}^a + \frac{1}{3} \mathbf{1} \otimes \psi_m^a K_{-m}^a \right) : \\ &= i : \left(\sum_{a,m} T_m^a \otimes \psi_{-m}^a - \frac{1}{12} \sum_{a,b,c,m,n} \mathbf{1} \otimes \lambda^{abc} \psi_m^a \psi_{-m-n}^b \psi_n^c \right) : \end{split}$$

acting on the Hilbert space $\mathcal{H} = V_{(k,\lambda)} \otimes S_{(h^{\vee},\rho)}$.

• Next perturbe ∂ by coupling to the Clifford action of $A \in \mathcal{A}_{S^1}$,

$$\partial_{A} = \partial + i\bar{k}\langle\psi,A\rangle$$

where
$$\langle \psi, A \rangle = \sum_{a,m} \psi_m^a A_{-m}^a$$
 and $\bar{k} = \left(\frac{k+h^\vee}{4}\right)$.

• This produces a continuous family of self-adjoint unbounded Fredholm operators ∂_A that is \widehat{LG} -equivariant,

$$\Phi(g)^{-1}\partial_{A}\Phi(g)=\partial_{A^{g}}$$

where $\Phi: LG \to PU(\mathcal{H})$ is the level $k + h^{\vee}$ embedding of the loop group.

Replacing ∂_A by the approximate sign operator

$$F_A = \frac{\partial_A}{(1+\partial_A^2)^{\frac{1}{2}}} ,$$

we obtain a bounded family of Fredholm operators.

 T: P_Ω → Fred(H), given by T = g⁻¹F_Ag with g ∈ PU(H), determines a class in G-equivariant twisted K-theory on G. Parity of dimG determines whether the class is in even or odd K-theory.

Theorem. (Freed-Hopkins-Teleman)

The bounded Dirac family provides an isomorphism of graded free abelian groups

$$R(LG,k)\cong K_G^{dim\ G}(G,k+h^{\vee})$$
.

Gauge groups

- LG is the gauge group of the trivial bundle $Q = S^1 \times G$.
- Natural generalisation is to replace S¹ by a higher dimensional compact manifold X.
- We have a principal *G*-bundle $Q \to X$ with gauge group $\mathcal{G} = \Gamma(X, \operatorname{Ad} Q)$.
- Objective: construct classes in $K^*(A/\mathcal{G}, \Omega)$.
- Obstacles to merely reproducing the standard theory for the circle:
 - No natural triangular decomposition giving meaning to the highest weight condition.
 - 2. Divergencies and absence of a canonical central extension.

Example: Fock representation

- Let $\mathcal{B} = \{ \psi(u), \psi^{\dagger}(v) \mid u, v \in \mathcal{H} \}$ denote the CAR C^* -algebra.
- Fix a polarisation $\mathcal{H}=\mathcal{H}_+\oplus\mathcal{H}_-$ with projections $P_\pm:\mathcal{H}\to\mathcal{H}_\pm$ and $\epsilon=P_+-P_ \left(=\frac{\mathcal{D}}{|\mathcal{D}|}\right)$.
- Free Fock space

$$\mathcal{F}_0 = \mathcal{B}/\langle \psi^{\dagger}(P_-u), \psi(P_+v) \rangle = \bigoplus_{p,q} \bigwedge^p \mathcal{H}_+ \otimes \bigwedge^q \mathcal{H}_-^*.$$

- (Shale-Stinespring) $g \in \mathcal{G}$ is implementable on \mathcal{F}_0 if and only if $[\epsilon, g]$ is Hilbert-Schmidt (i.e. $|[\epsilon, g]|^2$ is trace class).
- Asymptotic analysis: [ε, g] is Hilbert-Schmidt if and only if ord([ε, g]) < -dim(X)/2.

Example: Fock representation

- However ord([ε, g]) = −1, so there is a UV-divergency when dim(X)>1.
- Regularization: Pick an appropriate family of unitaries $R: \mathcal{A} \to \mathcal{U}(\mathcal{H})$ and introduce

$$\omega(g;A)=R_{Ag}^{\dagger}gR_{A}$$

such that $\text{Tr}[\epsilon, \omega(g; A)]^2 < \infty$.

- For instance when dim X=3, set $R_A=\exp(\frac{i}{4}|\mathcal{D}|^{-1}[\mathcal{D},\mathcal{A}]|\mathcal{D}|^{-1})$.
- ω is an operator-valued 1-cocycle:

$$\omega(gg'; A) = \omega(g; A^{g'})\omega(g'; A)$$

• Associated Hilbert bundle $\mathcal{F} = \mathcal{A} \times_{\omega} \mathcal{F}_0$, where

$$(A, v) \sim (A^g, \widehat{\omega}(g; A)^{-1}v)$$
.

Fractional loop group: motivation

There are many different kinds of loop groups,

$$L_{pol}G \subset L_{rat}G \subset L_{anal}G \subset LG \subset L^{c}G$$

where $L^cG = C^0(S^1, G)$ is the Banach Lie group of continuous loops.

- We wish to study the "thicker" loop group L_qG , by relaxing the smoothness property of maps $g: S^1 \to G$.
- There is still a good notion of triangular decomposition, but the central extension breaks down.

Definition.

Let G denote a compact Lie group and fix an embedding $G \subset U_N(\mathbb{C})$. The fractional loop group L_qG for Sobolev exponent $q>\frac{1}{2}$ is the Hilbert Lie group defined by

$$L_qG = \{g \in \mathit{Map}(S^1,G) \mid \|g\|_{2,q}^2 = \sum_{m \in \mathbb{Z}} (1+m^2)^q |\hat{g}_m|^2 < \infty\}$$

where $|\hat{g}_m|$ is the standard matrix norm of the m^{th} Fourier component of $g: S^1 \to G$.

Remark: Clearly $LG \subset L_qG$, and by Rellich-Kondrachov theorem, also $L_qG \subset L^cG$.

Spectral triple

There is a natural spectral triple arising here,

$$(A, D^q, \mathcal{H})$$

where $\mathcal{H}=L^2(S^1)$, an associative, commutative *-algebra $A=L_q\mathbb{C}$ and a *fractional Dirac operator* on the circle defined by

$$D^q f(x) = \sum_{m \in \mathbb{Z}} \operatorname{sign}(m) |m|^q \hat{f}_m e^{imx}$$
.

- The spectral dimension is given by $\frac{1}{q}$.
- L_qG is the gauge group in "non-commutative" Yang-Mills theory.

Critical value $q = \frac{1}{2}$

• Recall that the central extension $\widehat{L\mathfrak{g}}$ is fixed by the 2-cocycle

$$c_0(T_m^a, T_n^b) = km\delta_{m,-n}\langle T^a, T^b \rangle_{\mathfrak{g}}.$$

Ву

$$\left|\left|\frac{df}{dx}\right|\right|_{L^2}^2 = \sum_{m \in \mathbb{Z}} m^2 |\hat{f}_m|^2 ,$$

it follows that $c_0(X, Y)$ is well-defined for $X, Y \in L_{q\mathfrak{g}}$ if and only if $q \geq \frac{1}{2}$.

- LG is not dense in $L_{\frac{1}{2}}G$.
- For $q \leq \frac{1}{2}$, the Sobolev spaces $H^q(S^1)$ are not algebras!

• L_qG acts as operators on the Hilbert space $\mathcal{H}=L^2(S^1,\mathbb{C}^N)$, $M:L_qG\to GL(\mathcal{H}),\ g\mapsto M_g$ by pointwise multiplication

$$(M_g\psi)(x)=g(x)\psi(x).$$

- The sign operator $\epsilon = \frac{D^q}{|D^q|}$ defines an orthogonal decomposition $\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-$ into positive and negative Fourier modes.
- Consider the p-th Schatten class

$$\mathcal{L}_{2p} = \{ A \in \mathcal{B}(\mathcal{H}) \mid \|A\|_{2p} = \left[\operatorname{Tr}(A^{\dagger}A)^{p} \right]^{\frac{1}{2p}} < \infty \}$$

which is a two-sided ideal in the algebra of bounded operators $\mathcal{B}(\mathcal{H}).$

• The subgroup $GL_p \subset GL(\mathcal{H})$ is defined by

$$GL_p = \{A \in GL(\mathcal{H}) \mid [\epsilon, A] \in \mathcal{L}_{2p}\}$$
.

Writing elements in $GL(\mathcal{H})$ in block form with respect to the Hilbert space polarisation,

$$A = \begin{pmatrix} A_{++} & A_{+-} \\ A_{-+} & A_{--} \end{pmatrix}$$

the condition

$$[\epsilon,A]=2egin{pmatrix}0&A_{+-}\-A_{-+}&0\end{pmatrix}\in\mathcal{L}_{2p}$$

means that the off-diagonal blocks are not "too large".

· Given the topology defined by the norm

$$\|A_{++}\| + \|A_{+-}\|_{2p} + \|A_{-+}\|_{2p} + \|A_{--}\|$$

where

$$\|a\| = \sup_{\|\psi\|=1} \|a\psi\|,$$

 GL_p is a Banach Lie group with the Lie algebra

$$\mathfrak{gl}_p = \{X \in \mathcal{B}(\mathcal{H}) \mid [\epsilon, X] \in \mathcal{L}_{2p}\}$$
 .

Fractional loop group L_qG

Proposition.

 L_qG is contained in GL_p , if $p \ge \frac{1}{2q}$.

Definition.

The fractional loop group L_qG for real index $0 < q < \frac{1}{2}$ is defined to be $L^cG \cap GL_{\frac{1}{2q}}$, with the induced Banach-Lie structure coming from the embedding.

Regularisation

• The cocycle defining the central extension $\widehat{L_qg}$ can be written

$$c_0(X,Y) = \frac{1}{8} \operatorname{Tr} \Big(\epsilon[[\epsilon,X],[\epsilon,Y]] \Big) = \operatorname{Tr} \Big(X_{+-} Y_{-+} - Y_{+-} X_{-+} \Big)$$

for $X,Y\in L_q\mathfrak{g}$. It diverges unless $[\epsilon,X]$ and $[\epsilon,Y]$ belong to \mathcal{L}_2 .

• We regularise by shifting by a 1-cochain $\eta_p(X; F)$,

$$T(X) \mapsto T(X) + \eta_p(X; F),$$

where $X \in L_{qg}$ and in component notation $T(X) = \sum_{a,m} T_m^a X_{-m}^a$.

The new commutation relations will be

$$[T(X), T(Y)] = T([X, Y]) + c_p(X, Y; F)$$

where

$$c_p(X, Y; F) = c_0(X, Y) + (\delta \eta_p)(X, Y; F).$$

Construction of 1-cochain

• Here $\eta_p(X; F)$ is a 1-cochain parametrised by points on the Grassmannian,

$$\textit{Gr}_p = \textit{GL}_p/B = \{F \in \textit{GL}_p|F = F^*, F^2 = 1, F - \epsilon \in \textit{L}_{2p}\} \; .$$

Group action:

$$L_q G imes Gr_p o Gr_p \;, \quad (g,F) \mapsto g^{-1} F g$$

Infinitesimal action:

$$L_q \mathfrak{g} imes Gr_p o Gr_p \;, \quad (X,F) \mapsto [F,X]$$

• Note: $F - \epsilon = g^{-1}[\epsilon, g]$ is a "flat connection".

Construction of 1-cochain

• The abelian group Map(Gr_p , \mathbb{C}) is naturally a $L_q\mathfrak{g}$ module:

$$(X, f) \mapsto \mathcal{L}_X f(F) = \frac{d}{dt} f\Big(e^{-tX}(F - \epsilon)e^{tX} + t[\epsilon, X]\Big)\Big|_{t=0}$$

Define a 1-cochain by

$$\eta_p(X;F) = \sum_{k=0}^{p-1} Tr(\epsilon(F-\epsilon)^{2k+1}[\epsilon,X]).$$

• This leads to an abelian extension $\widehat{L_q\mathfrak{g}}=L_q\mathfrak{g}\oplus \operatorname{Map}(Gr_p,\mathbb{C}).$

Abelian extension

Explicit formula for the 2-cocycle:

$$c_p(X,Y;F) = \sum_{m=0}^p \operatorname{Tr} \Biggl((F-\epsilon)^{2m} [\epsilon,X] (F-\epsilon)^{2p-2m} Y - (X \leftrightarrow Y) \Biggr)$$

• Notice that $c_p(X, Y; F)$ respects the triangular decomposition

$$\widehat{L_q\mathfrak{g}} = \left(L_q\mathfrak{g}_+ \oplus \mathfrak{g}_+\right) \oplus \left(\mathfrak{h} \oplus \textit{Map}(\textit{Gr}_p, \mathbb{C})\right) \oplus \left(\mathfrak{g}_- \oplus L_q\mathfrak{g}_-\right) \,.$$

- The corresponding abelian group extension $\widehat{L_qG}$ by $Map(Gr_p, \mathbb{C}^*)$ can be constructed using the method of path fibration.
- Equivalently, this can be viewed as a S^1 -central extension of the Banach Lie groupoid $Gr_p \rtimes L_qG \rightrightarrows Gr_p$.

Generalised Verma modules

- There is an algebraic formulation of a generalised vacuum representation $V_{\lambda,k}=\mathcal{U}(\widehat{L_q\mathfrak{g}})/I_\lambda$, where $\mathcal{U}(\widehat{L_q\mathfrak{g}})$ is the universal enveloping algebra generated by the T_n^a 's and ψ_n^a 's at level $k+h^\vee$, and I_λ is the left ideal generated by the annihilators.
- This means that the cocycle c_p(X, Y; F), when restricted to the smooth subalgebra LG, is cohomologous to k + h[∨] times the basic cocycle.
- However for $q < \frac{1}{2}$, due to the large abelian ideal in $\widehat{L}_{q}\widehat{\mathfrak{g}}$, we cannot construct any invariant hermitian semidefinite form on the Verma module.

Homotopy 1-Cocycle

 Let F: G → H be a homotopy equivalence between topological groups G and H, and fix a representation ρ of H. We can then produce an operator-valued 1-cocycle by setting

$$\omega(f;g) = \rho(F(g)^{-1}F(fg)).$$

- This corresponds to a representation of G in the group of matrices with entries in the algebra of complex functions on G, but with a G-action on functions through right translation.
- Applying this to $LG \simeq L_qG \simeq L^cG$, we have $\widehat{\omega}: L_qG \times L_qG \to \widehat{LG}$.

• For any $g \in L_qG$, one has

$$\hat{\omega}(f;g)^{-1}\partial\hat{\omega}(f;g) = \partial + i\bar{k} < \psi, \omega(f;g)^{-1}\partial_{\theta}\omega(f;g) > 0$$

where ∂_{θ} is the differentiation with respect to the loop parameter.

- In the case of central extension the connections on LG can be taken to be left invariant and they are written as a fixed connection plus a left invariant 1-form A on LG.
- The form A at the identity element is identified as a vector in the dual Lg* which again is identified, through an invariant inner product, as a vector in Lg defining a g-valued 1-form on the circle.
- The right translations on *LG* induce the gauge action on the potentials *A*.

• Consider next a perturbation of ∂ by a function $A: L_qG \to L_q\mathfrak{g}$,

$$\partial_{A} = \partial + i\bar{k}\langle\psi,A\rangle$$
.

- The group L_qG acts on A by right translation $(g \cdot A)(f) = A(fg)$.
- Let $\Phi(g)$ denote the operator consisting of right translation on functions and by $\widehat{\omega}(\cdot;g)$ on values of functions via the LG representation in the Hilbert space $\mathcal{H}=V_{(k,\lambda)}\otimes S_{(h^\vee,\rho)}$.
- Then

$$\Phi(g)^{-1}\partial_{A}\Phi(g)=\partial_{A^{g}}$$

where

$$(A^g)(f) = \omega(f;g)^{-1}A(fg)\omega(f;g) + \omega(f;g)^{-1}\partial\omega(f;g)$$

• The associated abelian extension by $Map(L_qG, i\mathbb{R})$ defined by the 2-cocycle

$$\widetilde{c}_p(f;X,Y) = [\widehat{d\omega}(f;X),\widehat{d\omega}(f;Y)] - \widehat{d\omega}(f;[X,Y]) - \mathcal{L}_X\widehat{d\omega}(f;Y) + \mathcal{L}_Y\widehat{d\omega}(f;X)$$

is cohomologous to that previously defined by c_p .

- In the case of L_qG and the abelian extension, the connections on $S^1 \times G$ are no longer preserved under the action of L_qG because of the modified gauge transformation.
- Geometrically, the L_qG -action on functions A has the following interpretation: the abelian extension $\widehat{L_qG}$ carries a natural connection form given by

$$\Psi = Ad_{\hat{q}}^{-1} \mathrm{pr}_{c}(d\hat{g}\hat{g}^{-1})$$

where pr_c is the projection onto the abelian ideal $Map(L_qG, i\mathbb{R})$.

- Restriction to constant maps in $Map(L_qG, S^1)$ defines a circle bundle L on L_qG , and it carries a connection ∇ induced by the identification of L as subbundle of $\widehat{L_qG} \to L_qG$.
- An arbitrary connection in the bundle *L* is then written as a sum
 ∇ + *A* with *A* ∈ *A*, and right translation by *L_qG* produces the
 above gauge transformation on *A*.
- Thus, it means that we have to consider the larger family of Dirac operators parametrized by the space \mathcal{A} of all connections of a circle bundle over L_aG .
- This is still an affine space, the extension of L_qG acts on it. The family of Dirac operators transforms equivariantly under the extension and it follows that it can be viewed as an element in twisted K-theory of the moduli stack $\mathcal{A}//L_qG$.

Upshot

- The study of gauge groups and L_qG suggests the following generalised notion of twisted K-classes.
- Let P → X be a principal G-bundle and fix a 1-cocycle:

$$\omega: P \times \mathcal{G} \rightarrow PU(\mathcal{H}) , \quad \omega(gg; p) = \omega(g; pg')\omega(g'; p) .$$

• A continuous map $T: P \rightarrow Fred(\mathcal{H})$ with

$$T(pg) = \omega(g; p)^{-1} T(p) \omega(g; p)$$

defines a class in the twisted K-theory group $K^0(X, \omega)$.

• Moreover, the abelian extension determined by ω ,

$$1 \to Map(P, S^1) \to \widehat{\mathcal{G}}_{\omega} \xrightarrow{\pi} \mathcal{G} \to 1$$

is related to the twisting as follows.

Upshot

- Let $\tau: P^{[2]} \to \mathcal{G}$ denote the difference map defined by $p_2 = p_1 \tau(p_1, p_2)$.
- Introduce the bundle of abelian groups P = P ×_G Map(P, S¹), where

$$(p,a)\sim(pg,\hat{g}^{-1}a\hat{g})$$

and $\pi(\hat{g}) = \tau(p, pg)$.

 The Čech representative of the Dixmier-Douday class is then given by

$$\epsilon_{lphaeta\gamma} = [s_eta, \hat{g}_{eta\gamma}\hat{g}_{\gammalpha}\hat{g}_{lphaeta}] \in \check{H}^2(X,\underline{\mathbb{P}})$$

where $s_{\alpha}: U_{\alpha} \to P$, $s_{\alpha} = s_{\beta}g_{\beta\alpha}$ are local sections and $\hat{g}_{\alpha\beta}$ denote lifts of the transition functions to the group $\widehat{\mathcal{G}}_{\omega}$.

Thanks for your attention!