A (nonlinear) noncommutative sigma model

 $f: A \longrightarrow A_{\Theta}$

RIMS International Conference on Noncommutative Geometry and Physics Japan, 12th November 2010

> Mathai Varghese School of Mathematical Sciences

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ つへで

[MR]

V. Mathai and J. Rosenberg, **A noncommutative sigma-model,** . *Journal of Noncommutative Geometry,* (accepted) [0902.4341]

(日) (日) (日) (日) (日) (日) (日) (日)

Motivation

In classical sigma-models in string theory, the fields are maps $g: \Sigma \to X$, where Σ is closed and 2-dimensional, representing a *string worldsheet*, and the target space X is 10-dimensional space-time.

The leading terms in the action are

$$S(g) = \int_{\Sigma} \|\nabla g(x)\|^2 d\sigma(x) + \int_{\widehat{\Sigma}} \widehat{g}^*(H), \qquad (1)$$

where σ is volume measure on Σ and the 2nd term is the Wess-Zumino term.

Without the WZ term, the critical points of the action are just harmonic maps $\Sigma \to X$. T-duality considerations suggested that very often one should consider spacetimes which are *noncommutative* spaces. For example, "bundles" of noncommutative tori over some base space, such as the *C**-algebra of the discrete Heisenberg group. as discussed in earlier lectures. What should replace maps $g: \Sigma \to X$ and the action (**??**) when *X* becomes noncommutative? It's natural to start with the simplest interesting case, where X is a noncommutative 2-torus (or rotation algebra) $A = A_{\Theta}$. We are primarily interested in the case where Θ is irrational.

Naively, since a map $g: \Sigma \to X$ is equivalent to a C^* -algebra morphism $C_0(X) \to C(\Sigma)$, one's first guess would be to consider *-homomorphisms $A \to C(\Sigma)$, where Σ is still an ordinary 2-manifold.

But if *A* is simple, there are no non-trivial such maps. Hence we are led to consider a sigma-model based on *-homomorphisms between *A* and noncommutative tori.

$$A \rightarrow A_{\theta}$$

Recall that a spectral triple $(\mathcal{A}, \mathcal{H}, D)$ is given by an involutive unital algebra \mathcal{A} represented as bounded operators on a Hilbert space \mathcal{H} and a self-adjoint operator D with compact resolvent such that the commutators [D, a] are bounded for all $a \in \mathcal{A}$.

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ is said to be *even* if the Hilbert space \mathcal{H} is endowed with a \mathbb{Z}_2 -grading γ which commutes with all $a \in \mathcal{A}$ and anti-commutes with D. Suppose in addition that $(\mathcal{A}, \mathcal{H}, D)$ is $(2, \infty)$ -summable, which means (assuming for simplicity that D has no nullspace) that $\text{Tr}_{\omega}(a|D|^{-2}) < \infty$, where Tr_{ω} denotes the Dixmier trace.

<ロト < 母 > < 臣 > < 臣 > 三 の < @ </p>

Now

$$\psi_2(a_0, a_1, a_2) = \text{Tr}((1 + \gamma)a_0[D, a_1][D, a_2])$$

defines a positive Hochschild 2-cocycle on \mathcal{A} , where $\gamma = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ is the grading operator on \mathcal{H} , and where Tr denotes the Dixmier trace composed with D^{-2} . The positivity of ψ_2 means that $\langle a_0 \otimes a_1, b_0 \otimes b_1 \rangle = \psi_2(b_0^*a_0, a_1, b_1^*)$ defines a positive sesquilinear form on $\mathcal{A} \otimes \mathcal{A}$.

Although we consider the canonical trace Tr instead of the above trace, all the properties go through with either choice. Using the Dixmier trace Tr_{ω} composed with D^{-2} has the advantage of **scale invariance**, i.e., it is invariant under the replacement of D by λD for any nonzero $\lambda \in \mathbb{C}$, which becomes relevant when one varies the metric, although for special classes of metrics, the scale invariance can be obtained by other means also.

We now give a prescription for energy functionals in the sigma-model consisting of homomorphisms $\varphi \colon \mathcal{B} \longrightarrow \mathcal{A}$, from a smooth subalgebra of a C^* -algebra \mathcal{B} with target the given even $(2, \infty)$ -summable spectral triple $(\mathcal{A}, \mathcal{H}, D)$.

Observing that $\varphi^*(\psi_2)$ is a positive Hochschild 2-cocycle on \mathcal{B} , we need to choose a formal "metric" on \mathcal{B} , which is a positive element $G \in \Omega^2(\mathcal{B})$ in the space of universal 2-forms on \mathcal{B} . Then evaluation

$$\mathcal{L}_{{m G},{m D}}(arphi)=arphi^*(\psi_2)({m G})\geq 0$$
 .

defines a general sigma-model action.

Summarizing, the data for a general sigma-model action

- A $(2,\infty)$ -summable spectral triple $(\mathcal{A},\mathcal{H},D)$;
- **2** A positive element $G \in \Omega^2(\mathcal{B})$ in the space of universal 2-forms on \mathcal{B} , known as a metric on \mathcal{B} .

Consider a unital *C*^{*}-algebra generated by the *n* unitaries $\{U_j : i = 1, ..., n\}$, with finitely many relations, and let \mathcal{B} be a suitable subalgebra consisting of rapidly vanishing series whose terms are (noncommutative) monomials in the U_i 's. Then a choice of metric $G \in \Omega^2(\mathcal{B})$ is given by

$$G=\sum_{j,k=1}^n G_{jk}(dU_j)^*dU_k,$$

where the matrix (G_{jk}) is symmetric, real-valued, and positive definite. Then we compute the energy functional in this case,

$$\mathcal{L}_{G,D}(\varphi) = \varphi^*(\psi_2)(G) = \sum_{j,k=1}^n G_{jk} \operatorname{Tr}((1+\gamma)[D,\varphi(U_j)^*][D,\varphi(U_k)]) \ge 0.$$

The *Euler-Lagrange equations* for φ to be a critical point of $\mathcal{L}_{G,D}$ can be derived, but since the equations are long, we omit them.

We next give several examples of this sigma-model energy functional. In all of these cases, the target algebra will be A^{∞}_{θ} .

The first example is the Dąbrowski-Krajewski-Landi model, consisting of non-unital *-homomorphisms $\varphi \colon \mathbb{C} \longrightarrow A_{\theta}^{\infty}$. Note that $\varphi(1) = e$ is a projection in the noncommutative torus A_{θ} , and for any $(2, \infty)$ -summable spectral triple $(A_{\theta}^{\infty}, \mathcal{H}, D)$ on the noncommutative torus, our sigma-model energy functional is

$$\mathcal{L}_{D}(\varphi) = \operatorname{Tr}\left[(1+\gamma)[D, e][D, e]\right].$$

Choose the even spectral triple given by $\mathcal{H} = L^2(A_\theta) \otimes \mathbb{C}^2$ consisting of the Hilbert space closure of A_θ in the canonical scalar product coming from the trace, tensored with the 2-dimensional representation space of spinors.

Let $D = \gamma_1 \delta_1 + \gamma_2 \delta_2$ be the Dirac operator, where

$$\gamma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \gamma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

are the Pauli matrices, we calculate that

$$\mathcal{L}_{\mathcal{D}}(\varphi) = \sum_{j=1}^{2} \operatorname{Tr}\left[(\delta_{j} \boldsymbol{e})^{2} \right],$$

recovering the action in [DKL] and the Euler-Lagrange equation $(\Delta e)e = e(\Delta e)$ there.

<ロト < 団ト < 巨ト < 巨ト 三 のへの</p>

Next, we consider the model due to Rosenberg. It consists of a unital *-homomorphisms $\varphi \colon C(S^1) \longrightarrow A_{\theta}^{\infty}$. Let *U* be the unitary given by multiplication by the coordinate function *z* on *S*¹ (considered as the unit circle \mathbb{T} in \mathbb{C}). The metric $G \in \Omega^2(C(S^1))$ given by dU^*dU .

Then $\varphi(U)$ is a unitary in the noncommutative torus A_{θ} , and for any $(2, \infty)$ -summable spectral triple $(A_{\theta}^{\infty}, \mathcal{H}, D)$ on the noncommutative torus, our sigma-model energy functional is

$$\mathcal{L}_{D}(\varphi) = \operatorname{Tr}\left[(1+\gamma)[D,\varphi(U)^{*}][D,\varphi(U)]\right].$$

Choosing the particular spectral triple on the noncommutative torus as above, we calculate that

$$\mathcal{L}_{D}(\varphi) = \sum_{j=1}^{2} \operatorname{Tr} \left[(\delta_{j}(\varphi(U)))^{*} \delta_{j}(\varphi(U)) \right],$$

recovering the action and the Euler-Lagrange equation

 $\varphi(U)^*\Delta(\varphi(U)) + (\delta_1(\varphi(U)))^*\delta_1(\varphi(U)) + (\delta_2(\varphi(U)))^*\delta_2(\varphi(U)) = 0$

The final example is the one treated in this talk. For any (smooth) homomorphism $\varphi \colon A_{\Theta} \longrightarrow A_{\theta}$ and any $(2, \infty)$ -summable spectral triple $(A_{\theta}^{\infty}, \mathcal{H}, D)$, and any positive element $G \in \Omega^{2}(\mathcal{A}_{\Theta})$ (or metric on \mathcal{A}_{Θ}) given by

$$G=\sum_{j,k=1}^2 G_{ij}(dU_j)^*dU_k,$$

the energy of φ is

$$\mathcal{L}_{G,D}(\varphi) = \varphi^*(\psi_2)(G) = \sum_{j,k=1}^2 G_{jk} \operatorname{Tr}((1+\gamma)[D,\varphi(U_j)^*][D,\varphi(U_k)]) \ge 0.$$

《曰》 《聞》 《臣》 《臣》 三臣

where *U*, *V* are the canonical generators of A_{Θ} .

More explicitly, let $g = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} \in M_2(\mathbb{R})$ be a symmetric real-valued positive definite matrix. Then one can consider the 2-dimensional complexified Clifford algebra, with self-adjoint generators $\gamma_{\mu} \in M_2(\mathbb{C})$ and relations

$$\gamma_{\mu}\gamma_{\nu} + \gamma_{\nu}\gamma_{\mu} = g^{\mu\nu}, \qquad \mu, \nu = 1, 2,$$

where $(g^{\mu\nu})$ denotes the matrix g^{-1} . Then with \mathcal{H} as before, define $D = \sum_{\mu=1}^{2} \gamma_{\mu} \delta_{\mu}$. The energy in this more general case is

$$\mathcal{L}_{G,D}(\varphi) = \varphi^*(\psi_2)(G) = \sum_{j,k=1}^2 \sum_{\mu,\nu=1}^2 G_{jk} g^{\mu\nu} \operatorname{Tr}(\delta_{\mu}(\varphi(U_j))^* \delta_{\nu}(\varphi(U_k)) \ge 0$$
(2)

In this case, the trace Tr is either the Dixmier trace composed with D^{-2} , or the canonical trace on A_{θ} multiplied by the factor $\sqrt{\det(g)}$, to make the energy scale invariant.

There is a rather large literature on "noncommutative Wess-Zumino theory" or "noncommutative WZW theory".

Most of this literature seems to deal with the Wess-Zumino-Witten model (where spacetime is a compact group) or with the Moyal product, but we have been unable to find anything that applies to our situation where both spacetime and the worldsheet are represented by noncommutative C^* -algebras (or dense subalgebras thereof). For that reason, we will attempt here to reformulate the theory from scratch.

The classical Wess-Zumino term is associated to a closed 3-form *H* with integral periods on *X* (the spacetime manifold). If Σ^2 is the boundary of a 3-manifold W^3 , and if $\varphi \colon \Sigma \to X$ extends to $\tilde{\varphi} \colon W \to X$, the Wess-Zumino term is

$$\mathcal{L}_{WZ}(\varphi) = \int_{W} (\widetilde{\varphi})^* (H).$$

The fact that *H* has integral periods guarantees that $e^{2\pi i \mathcal{L}_{WZ}(\varphi)}$ is well-defined, i.e., independent of the choice of *W* and the extension $\tilde{\varphi}$ of φ .

To generalize this to the noncommutative world, we need to dualize all spaces and maps. We replace *X* by \mathcal{B} (which in the classical case would be $C_0(X)$), Σ by \mathcal{A} , and *W* by \mathcal{C} .

Since *H* classically was a cochain on *X* (for de Rham cohomology), it becomes a **degree 3 cyclic cycle** on \mathcal{B} . The integral period condition can be replaced by requiring

$$\langle H, u \rangle \in \mathbb{Z}$$
 (3)

for all classes $u \in K^1(\mathcal{B})$ in K-homology. The inclusion $\Sigma \hookrightarrow W$ dualizes to a map $q: \mathcal{C} \to \mathcal{A}$, and we suppose $\varphi: \mathcal{B} \to \mathcal{A}$ has a factorization

$$\mathcal{B} \xrightarrow{\widetilde{\varphi}} \mathcal{A}. \overset{\widetilde{\varphi}}{\underset{\varphi}{\widetilde{\varphi}}} \mathcal{C} \qquad \qquad \mathcal{C} \qquad \qquad \mathcal{C} \qquad \qquad \qquad \mathcal{C} \qquad \qquad \mathcal{C} \qquad \qquad \qquad \mathcal{C} \qquad \qquad \mathcal{$$

The noncommutative Wess-Zumino term then becomes

 $\mathcal{L}_{WZ}(\varphi) = \langle \widetilde{\varphi}_*(H), [\mathcal{C}] \rangle,$

with [C] a cyclic cochain (corresponding to integration over W.)

The integral period condition is relevant for the same reason as in the classical case—if we have another "boundary" map $q': \mathcal{C}' \to \mathcal{A}$ and corresponding $\tilde{\varphi}': \mathcal{B} \to \mathcal{C}'$, and if $\mathcal{C} \oplus_{\mathcal{A}} \mathcal{C}'$ is "closed," so that $[\mathcal{C}] - [\mathcal{C}']$ corresponds to a class $u \in K^1(\mathcal{C} \oplus_{\mathcal{A}} \mathcal{C}')$, then

 $\langle \widetilde{\varphi}_*(\mathcal{H}), [\mathcal{C}]
angle - \langle \widetilde{\varphi}'_*(\mathcal{H}), [\mathcal{C}']
angle = \langle \mathcal{H}, (\widetilde{\varphi} \oplus \widetilde{\varphi}')^*(u)
angle \in \mathbb{Z},$

- thus $e^{2\pi i \mathcal{L}_{WZ}(\varphi)}$ is the same when computed via $[\mathcal{C}]$ or via $[\mathcal{C}']$.

▲ロト ▲母 ▶ ▲目 ▶ ▲目 ● ● ● ●

Now we want to apply this theory when $\mathcal{A} = A_{\theta}$ (or a suitable smooth subalgebra, say A_{θ}^{∞}). If we realize A_{θ} as the crossed product $C^{\infty}(S^1) \rtimes_{\theta} \mathbb{Z}$, we can view A_{θ}^{∞} as the "boundary" of $\mathcal{C} = C^{\infty}(D^2) \rtimes_{\theta} \mathbb{Z}$, where D^2 denotes the unit disk in \mathbb{C} . The natural element [\mathcal{C}] is the trace on \mathcal{C} coming from normalized Lebesgue measure on D^2 .

To summarize, it is possible to enhance the sigma-model action on a spacetime algebra \mathcal{B} with the addition of a Wess-Zumino term $\mathcal{L}_{WZ}(\varphi)$, depending on a choice of a "flux" H.

It occurs geometrically as the foliation algebra associated to Kronecker foliations on the torus.

For each $\theta \in [0, 1]$, the **<u>noncommutative torus</u>** A_{θ} is defined abstractly as the C^* -algebra generated by two unitaries U and V in an infinite dimensional Hilbert space satisfying the **Weyl commutation relation**, $UV = \exp(2\pi i\theta)VU$. Elements in A_{θ} can be represented by infinite power series

$$f = \sum_{(m,n)\in\mathbb{Z}^2} a_{(n,m)} U^m V^n, \qquad (4)$$

For each $\theta \in [0, 1]$, the noncommutative torus A_{θ} is Morita equivalent to the foliation algebra associated to the foliation on \mathbb{T}^2 defined by the differential equation $dx = \theta \, dy$ on \mathbb{T}^2 .

There is a natural smooth subalgebra A_{θ}^{∞} called the **smooth noncommutative torus**, which is defined as those elements in A_{θ} that can be represented by infinite power series (??) with $(a_{(m,n)}) \in S(\mathbb{Z}^2)$, the Schwartz space of rapidly decreasing sequences on \mathbb{Z}^2 .

When θ is rational, A_{θ} is noncommutative, but is Morita equivalent to $C(\mathbb{T}^2)$. However, when θ is irrational, A_{θ} is a simple (i.e. highly noncommutative!). A_{θ} is also called a **rotation algebra** in the literature.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

We begin by classifying maps between irrational rotation algebras, using what is known about their ordered *K*-theory (see, e.g., Rieffel).

Theorem

Fix Θ and θ in (0, 1), both irrational, and $n \in \mathbb{N}$, $n \ge 1$. There is a unital *-homomorphism $\varphi \colon A_{\Theta} \to M_n(A_{\theta})$ if and only if $n\Theta = c\theta + d$ for some $c, d \in \mathbb{Z}, c \ne 0$. Such a *-homomorphism φ can be chosen to be an isomorphism onto its image if and only if n = 1 and $c = \pm 1$.

<ロト <部ト <注入 <注) = 1

This can be reformulated in the following more algebraic language. In what follows, Tr denotes the normalized trace on A_{θ} , extended as usual to matrices. The monoid *M* also appears in the theory of Hecke operators.

Lemma

Let M be the submonoid (**not** a subgroup) of $GL(2, \mathbb{Q})$ consisting of matrices in $M_2(\mathbb{Z})$ with non-zero determinant, i.e., of integral matrices having inverses that are not necessarily integral.

Then M is generated by $GL(2, \mathbb{Z})$ and by the matrices of the form $\begin{pmatrix} r & 0 \\ 0 & 1 \end{pmatrix}$, $r \in \mathbb{Z} \smallsetminus \{0\}$.

Theorem

Fix Θ and θ in (0, 1), both irrational. Then there is a non-zero *-homomorphism $\varphi: A_{\Theta} \to M_n(A_{\theta})$ for some n, not necessarily unital, if and only if Θ lies in the orbit of θ under the action of the monoid M of Lemma **??** on \mathbb{R} by linear fractional transformations. The possibilities for $\text{Tr}(\varphi(1_{A_{\Theta}}))$ are precisely the numbers $t = c\theta + d > 0$, $c, d \in \mathbb{Z}$ such that $t\Theta \in \mathbb{Z} + \theta\mathbb{Z}$. Once t is chosen, n can be taken to be any integer $\geq t$.

The maps in Theorems above can always be chosen to be smooth (i.e. mapping the smooth subalgebra A_{Θ}^{∞} to $M_n(A_{\theta}^{\infty})$).

Maps between irrational rotation algebras: existence

The following improves a result of Kodaka.

Theorem

Suppose θ is irrational. Then there is a (necessarily injective) unital *-endomorphism $\Phi: A_{\theta} \rightarrow A_{\theta}$, with image $B \subsetneq A_{\theta}$ having non-trivial relative commutant and with a conditional expectation of index-finite type from A_{θ} onto B, if and only if θ is a quadratic irrational number.

The maps Φ in Theorem above can be chosen to be smooth and to induce an arbitrary group endomorphism of $K_1(A_\theta)$. But when θ is not a quadratic irrational, we do not know if A_θ has any *smooth* proper *-endomorphisms. Now that we understand maps between irrational rotation algebras, we study the analogue of the action functional.

Definition

Let φ denote a unital *-homomorphism $A_{\Theta} \to A_{\theta}$. As before, denote the canonical generators of A_{Θ} and A_{θ} by U and V, u and v, respectively. The action S(g) in our situation is

$$S(\varphi) = \operatorname{Tr}\Big(\delta_1(\varphi(U))^* \delta_1(\varphi(U)) + \delta_2(\varphi(U))^* \delta_2(\varphi(U)) \\ + \delta_1(\varphi(V))^* \delta_1(\varphi(V)) + \delta_2(\varphi(V))^* \delta_2(\varphi(V))\Big).$$
(5)

《曰》 《卽》 《臣》 《臣》 三臣

The harmonic map equation for noncommutative tori

Critical points for this action are called **harmonic maps**. Here δ_1 and δ_2 are the infinitesimal generators for the "gauge action" of the group \mathbb{T}^2 on A_{θ} . More precisely, δ_1 and δ_2 are defined on the smooth subalgebra A_{θ}^{∞} by the formulas

$$\delta_1(u) = 2\pi i u, \quad \delta_2(u) = 0, \quad \delta_1(v) = 0, \quad \delta_2(v) = 2\pi i v.$$

Note that $S(\varphi)$ in (??) is just the sum $E(\varphi(U)) + E(\varphi(V))$, where for a unitary $W \in A^{\infty}_{\theta}$,

$$E(W) = \operatorname{Tr}\Big(\delta_1(W)^* \delta_1(W) + \delta_2(W)^* \delta_2(W)\Big).$$
(6)

It was conjectured that the "special" unitaries $u^n v^m$ minimize the energy *E* in the connected components of $U(A_{\theta}^{\infty})$.

Theorem (Euler-Lagrange equations)

Let $S(\varphi)$ denote the energy functional for a unital *-endomorphism φ of A_{θ} . Then the Euler-Lagrange equations for φ to be a **harmonic map**, that is, a critical point of \mathcal{L} , are:

$$0 = \sum_{j=1}^{2} \left\{ \operatorname{Tr} \left(A \, \delta_{j} \left[\varphi(u)^{*} \delta_{j}(\varphi(u)) \right] \right) + \operatorname{Tr} \left(B \, \delta_{j} \left[\varphi(v)^{*} \delta_{j}(\varphi(v)) \right] \right) \right\}$$

where A, B are self-adjoint elements in A_{θ} , constrained to satisfy the equation,

$$A - \varphi(v)^* A \varphi(v) = B - \varphi(u)^* B \varphi(u).$$

《曰》 《圖》 《注》 《注》 三 注

The harmonic map equation for noncommutative tori

Proof.

Consider the 1-parameter family of *-endomorphisms of A_{θ} defined by

$$\begin{aligned} \varphi_t(u) &= \varphi(u)e^{ih_1(t)} \\ &= \varphi(u)[1 + ith'_1(0) + O(t^2)], \\ \varphi_t(v) &= \varphi(v)e^{ih_2(t)} \\ &= \varphi(u)[1 + ith'_2(0) + O(t^2)], \end{aligned}$$

where $h_j(t)$, j = 1, 2 are 1-parameter families of self-adjoint operators with $h_1(0) = 0 = h_2(0)$. Differentiate & simplify.

The harmonic map equation for noncommutative tori

For Θ a quadratic irrational, it was proved by [MR], as well as other interesting cases. Recently been proved by Hanfeng Li:

Theorem (Hanfeng Li)

For W in the connected component of $U(A_{\theta}^{\infty})$ containing $u^n v^m$, $E(W) \ge E(u^n v^m) = 4\pi^2(m^2 + n^2)$, with equality if and only if $W = \lambda u^n v^m$ for some $\lambda \in \mathbb{T}$.

Corollary ("Minimal Energy Conjecture")

Suppose φ : $A_{\theta}^{\infty} \bigcirc$ is a *-endomorphism inducing the map on K_1 given by $\begin{pmatrix} p & q \\ r & s \end{pmatrix} \in SL(2, \mathbb{Z})$. Then $S(\varphi) \ge 4\pi^2(p^2 + q^2 + r^2 + s^2)$, with equality if and only if $\varphi(u) = \lambda u^p v^q$, $\varphi(v) = \mu u^r v^s$, $\lambda, \mu \in \mathbb{T}$.

In general, we would like to understand the nature of **all critical points** of the action functional, not just the minima.

This has been only in the analysed in the special case when Θ is rational in [MR], but the irrational case is a mystery.

In the rational case, we have constructed explicit solutions to the harmonic map equation, and they turn out to be related to solutions of the equation governing a nonlinear pendulum.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

To write the partition function for the sigma model studied here, recall the expression for the energy

$$S_G(\varphi) = \sqrt{\det(g)} \sum_{i,j=1}^n G_{ij} g^{\mu\nu} \operatorname{Tr}(\delta_\mu(\varphi(U_i))^* \delta_\nu(\varphi(U_j)).$$

It is possible to parametrize the metrics $(g_{\mu\nu})$ by a complex parameter au,

$$oldsymbol{g}(au) = (oldsymbol{g}_{\mu
u}(au)) = \left(egin{array}{cc} oldsymbol{1} & au_1 \ au_1 & | au|^2 \end{array}
ight)$$

where $\tau = \tau_1 + i\tau_2 \in \mathbb{C}$ is such that $\tau_2 > 0$. Note that *g* is invertible with inverse given by

$$g^{-1}(au) = (g^{\mu
u}(au)) = au_2^{-2} \left(egin{array}{cc} | au|^2 & - au_1 \ - au_1 & 1 \end{array}
ight)$$

and $\sqrt{\det(g)} = \tau_2$.

The partition function is

$$Z(G,z) = \int_{\tau \in \mathbb{C}, \tau_2 > 0} \frac{d\tau \wedge d\bar{\tau}}{{\tau_2}^2} Z(G,\tau,z)$$

where

$$Z(G, au, z) = \int \mathcal{D}[\varphi] e^{-z \mathcal{S}_{G, au}(\varphi)} / \int \mathcal{D}[\varphi].$$

is the renormalized integral.

This integral is much too difficult to deal with even in the commutative case, so we oversimplify by considering the semiclassical approximation, which is a sum over the critical points. Even this turns out to be highly nontrivial, and we discuss it below.

In the special case when $\Theta = \theta$ and is not a quadratic irrational, then the semiclassical approximation to the partition function above is

$$Z(G, \tau, z) \approx \sum_{m \in M/\{\pm 1\}} \sum_{A} e^{-z S_{G, \tau}(\varphi_A)},$$

up to a normalizing factor, in the notation as explained later in this section. In this approximation,

$$Z(G,z) pprox \int_{ au \in \mathbb{C}, au_2 > 0} rac{d au \wedge dar{ au}}{{ au_2}^2} \sum_{m \in M/\{\pm 1\}} \sum_A e^{-z \mathcal{S}_{G, au}(arphi_A)}.$$

We expect Z(G) and $Z(G^{-1})$ to be related as in the classical case as a manifestation of T-duality.

In the remainder we only consider contributions from the critical points (harmonic maps).

The simplified partition function then looks like

$$Z(z) \approx \sum_{m \in M/\{\pm 1\}} \sum_{A} e^{-4\pi^2 \mathcal{D}(m,\theta) \|A\|_{HS}^2}.$$
 (7)

The formula $4\pi^2 \mathcal{D}(m, \theta) \|A\|_{HS}^2$ for the energy is valid not just for the automorphisms φ_A but also for the map $U \mapsto u^p v^q$, $V \mapsto u^r v^s$ with

$$A = \begin{pmatrix} p & q \\ r & s \end{pmatrix}, \quad \det A = n$$

from $A_{n\theta}$ to A_{θ} , which one can check to be harmonic, just as in done earlier. The associated map on K_0 corresponds to

$$m = \begin{pmatrix} n & 0 \\ 0 & 1 \end{pmatrix}$$

with $\mathcal{D}(m, \theta) = 1$. Many thanks for your attention!