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Motivation
In classical sigma-models in string theory, the fields are maps
g : Σ → X , where Σ is closed and 2-dimensional, representing
a string worldsheet, and the target space X is 10-dimensional
space-time.
The leading terms in the action are

S(g) =

∫
Σ
‖∇g(x)‖2dσ(x) +

∫
bΣ ĝ∗(H), (1)

where σ is volume measure on Σ and the 2nd term is the
Wess-Zumino term.

Without the WZ term, the critical points of the action are just
harmonic maps Σ → X . T-duality considerations suggested that
very often one should consider spacetimes which are
noncommutative spaces. For example, “bundles” of
noncommutative tori over some base space, such as the
C∗-algebra of the discrete Heisenberg group. as discussed in
earlier lectures. What should replace maps g : Σ → X and the
action (??) when X becomes noncommutative?



Motivation

It’s natural to start with the simplest interesting case, where X
is a noncommutative 2-torus (or rotation algebra) A = AΘ. We
are primarily interested in the case where Θ is irrational.

Naively, since a map g : Σ → X is equivalent to a C∗-algebra
morphism C0(X ) → C(Σ), one’s first guess would be to
consider ∗-homomorphisms A → C(Σ), where Σ is still an
ordinary 2-manifold.

But if A is simple, there are no non-trivial such maps. Hence we
are led to consider a sigma-model based on ∗-homomorphisms
between A and noncommutative tori.

A → Aθ



Sigma model: the general case

Recall that a spectral triple (A,H,D) is given by an involutive
unital algebra A represented as bounded operators on a Hilbert
space H and a self-adjoint operator D with compact resolvent
such that the commutators [D,a] are bounded for all a ∈ A.

A spectral triple (A,H,D) is said to be even if the Hilbert space
H is endowed with a Z2-grading γ which commutes with all
a ∈ A and anti-commutes with D. Suppose in addition that
(A,H,D) is (2,∞)-summable, which means (assuming for
simplicity that D has no nullspace) that Trω(a|D|−2) <∞, where
Trω denotes the Dixmier trace.



Now
ψ2(a0,a1,a2) = Tr((1 + γ)a0[D,a1][D,a2])

defines a positive Hochschild 2-cocycle on A, where

γ =

(
1 0
0 −1

)
is the grading operator on H, and where Tr

denotes the Dixmier trace composed with D−2. The positivity of
ψ2 means that 〈a0 ⊗ a1,b0 ⊗ b1〉 = ψ2(b∗0a0,a1,b∗1) defines a
positive sesquilinear form on A⊗A.

Although we consider the canonical trace Tr instead of the
above trace, all the properties go through with either choice.
Using the Dixmier trace Trω composed with D−2 has the
advantage of scale invariance, i.e., it is invariant under the
replacement of D by λD for any nonzero λ ∈ C, which becomes
relevant when one varies the metric, although for special
classes of metrics, the scale invariance can be obtained by
other means also.



We now give a prescription for energy functionals in the
sigma-model consisting of homomorphisms ϕ : B −→ A, from a
smooth subalgebra of a C∗-algebra B with target the given even
(2,∞)-summable spectral triple (A,H,D).

Observing that ϕ∗(ψ2) is a positive Hochschild 2-cocycle on B,
we need to choose a formal “metric” on B, which is a positive
element G ∈ Ω2(B) in the space of universal 2-forms on B.
Then evaluation

LG,D(ϕ) = ϕ∗(ψ2)(G) ≥ 0

defines a general sigma-model action.

Summarizing, the data for a general sigma-model action
1 A (2,∞)-summable spectral triple (A,H,D);
2 A positive element G ∈ Ω2(B) in the space of universal

2-forms on B, known as a metric on B.



Consider a unital C∗-algebra generated by the n unitaries
{Uj : i = 1, . . .n}, with finitely many relations, and let B be a
suitable subalgebra consisting of rapidly vanishing series
whose terms are (noncommutative) monomials in the Ui ’s.
Then a choice of metric G ∈ Ω2(B) is given by

G =
n∑

j,k=1

Gjk (dUj)
∗dUk ,

where the matrix (Gjk ) is symmetric, real-valued, and positive
definite. Then we compute the energy functional in this case,

LG,D(ϕ) = ϕ∗(ψ2)(G) =
n∑

j,k=1

Gjk Tr((1+γ)[D, ϕ(Uj)
∗][D, ϕ(Uk )]) ≥ 0.

The Euler-Lagrange equations for ϕ to be a critical point of LG,D
can be derived, but since the equations are long, we omit them.



We next give several examples of this sigma-model energy
functional. In all of these cases, the target algebra will be A∞θ .

The first example is the Da̧browski-Krajewski-Landi model,
consisting of non-unital ∗-homomorphisms ϕ : C −→ A∞θ . Note
that ϕ(1) = e is a projection in the noncommutative torus Aθ,
and for any (2,∞)-summable spectral triple (A∞θ ,H,D) on the
noncommutative torus, our sigma-model energy functional is

LD(ϕ) = Tr [(1 + γ)[D,e][D,e]] .

Choose the even spectral triple given by H = L2(Aθ)⊗ C2

consisting of the Hilbert space closure of Aθ in the canonical
scalar product coming from the trace, tensored with the
2-dimensional representation space of spinors.



Let D = γ1δ1 + γ2δ2 be the Dirac operator, where

γ1 =

(
0 1
1 0

)
, γ2 =

(
0 −i
i 0

)
are the Pauli matrices, we calculate that

LD(ϕ) =
2∑

j=1

Tr
[
(δje)2

]
,

recovering the action in [DKL] and the Euler-Lagrange equation
(∆e)e = e(∆e) there.



Next, we consider the model due to Rosenberg.
It consists of a unital ∗-homomorphisms ϕ : C(S1) −→ A∞θ .
Let U be the unitary given by multiplication by the coordinate
function z on S1 (considered as the unit circle T in C). The
metric G ∈ Ω2(C(S1)) given by dU∗dU.

Then ϕ(U) is a unitary in the noncommutative torus Aθ, and for
any (2,∞)-summable spectral triple (A∞θ ,H,D) on the
noncommutative torus, our sigma-model energy functional is

LD(ϕ) = Tr [(1 + γ)[D, ϕ(U)∗][D, ϕ(U)]] .

Choosing the particular spectral triple on the noncommutative
torus as above, we calculate that

LD(ϕ) =
2∑

j=1

Tr
[
(δj(ϕ(U)))∗δj(ϕ(U))

]
,

recovering the action and the Euler-Lagrange equation

ϕ(U)∗∆(ϕ(U))+(δ1(ϕ(U)))∗δ1(ϕ(U))+(δ2(ϕ(U)))∗δ2(ϕ(U)) = 0



The final example is the one treated in this talk. For any
(smooth) homomorphism ϕ : AΘ −→ Aθ and any
(2,∞)-summable spectral triple (A∞θ ,H,D), and any positive
element G ∈ Ω2(AΘ) (or metric on AΘ) given by

G =
2∑

j,k=1

Gij(dUj)
∗dUk ,

the energy of ϕ is

LG,D(ϕ) = ϕ∗(ψ2)(G) =
2∑

j,k=1

Gjk Tr((1+γ)[D, ϕ(Uj)
∗][D, ϕ(Uk )]) ≥ 0.

where U, V are the canonical generators of AΘ.



More explicity, let g =

(
g11 g12
g21 g22

)
∈ M2(R) be a symmetric

real-valued positive definite matrix. Then one can consider the
2-dimensional complexified Clifford algebra, with self-adjoint
generators γµ ∈ M2(C) and relations

γµγν + γνγµ = gµν , µ, ν = 1,2,

where (gµν) denotes the matrix g−1. Then with H as before,

define D =
2∑

µ=1

γµδµ. The energy in this more general case is

LG,D(ϕ) = ϕ∗(ψ2)(G) =
2∑

j,k=1

2∑
µ,ν=1

Gjkgµν Tr(δµ(ϕ(Uj))
∗δν(ϕ(Uk )) ≥ 0.

(2)
In this case, the trace Tr is either the Dixmier trace composed
with D−2, or the canonical trace on Aθ multiplied by the factor√

det(g), to make the energy scale invariant.



The Wess-Zumino term

There is a rather large literature on “noncommutative
Wess-Zumino theory” or “noncommutative WZW theory”.

Most of this literature seems to deal with the
Wess-Zumino-Witten model (where spacetime is a compact
group) or with the Moyal product, but we have been unable to
find anything that applies to our situation where both spacetime
and the worldsheet are represented by noncommutative
C∗-algebras (or dense subalgebras thereof). For that reason,
we will attempt here to reformulate the theory from scratch.



The classical Wess-Zumino term is associated to a closed
3-form H with integral periods on X (the spacetime manifold).
If Σ2 is the boundary of a 3-manifold W 3, and if ϕ : Σ → X
extends to ϕ̃ : W → X , the Wess-Zumino term is

LWZ (ϕ) =

∫
W

(ϕ̃)∗(H).

The fact that H has integral periods guarantees that e2πiLWZ (ϕ)

is well-defined, i.e., independent of the choice of W and the
extension ϕ̃ of ϕ.



To generalize this to the noncommutative world, we need to
dualize all spaces and maps. We replace X by B (which in the
classical case would be C0(X )), Σ by A, and W by C.

Since H classically was a cochain on X (for de Rham
cohomology), it becomes a degree 3 cyclic cycle on B.
The integral period condition can be replaced by requiring

〈H,u〉 ∈ Z (3)

for all classes u ∈ K 1(B) in K-homology.
The inclusion Σ ↪→ W dualizes to a map q : C → A, and we
suppose ϕ : B → A has a factorization

C
q

��
B

ϕ //

eϕ >>

A.



The noncommutative Wess-Zumino term then becomes

LWZ (ϕ) = 〈ϕ̃∗(H), [C]〉,

with [C] a cyclic cochain (corresponding to integration over W . )

The integral period condition is relevant for the same reason as
in the classical case—if we have another “boundary” map
q′ : C′ → A and corresponding ϕ̃′ : B → C′, and if C ⊕A C′ is
“closed,” so that [C]− [C′] corresponds to a class
u ∈ K 1(C ⊕A C′), then

〈ϕ̃∗(H), [C]〉 − 〈ϕ̃′∗(H), [C′]〉 = 〈H, (ϕ̃⊕ ϕ̃′)∗(u)〉 ∈ Z,

- thus e2πiLWZ (ϕ) is the same when computed via [C] or via [C′].



Now we want to apply this theory when A = Aθ (or a suitable
smooth subalgebra, say A∞θ ). If we realize Aθ as the crossed
product C∞(S1) oθ Z, we can view A∞θ as the “boundary” of
C = C∞(D2) oθ Z, where D2 denotes the unit disk in C. The
natural element [C] is the trace on C coming from normalized
Lebesgue measure on D2.

To summarize, it is possible to enhance the sigma-model action
on a spacetime algebra B with the addition of a Wess-Zumino
term LWZ (ϕ), depending on a choice of a “flux” H.



Maps between irrational rotation algebras: existence

It occurs geometrically as the foliation algebra associated to
Kronecker foliations on the torus.
For each θ ∈ [0,1], the noncommutative torus Aθ is defined
abstractly as the C∗-algebra generated by two unitaries U and
V in an infinite dimensional Hilbert space satisfying the
Weyl commutation relation, UV = exp(2πiθ)VU.
Elements in Aθ can be represented by infinite power series

f =
∑

(m,n)∈Z2

a(n,m) UmV n, (4)

For each θ ∈ [0,1], the noncommutative torus Aθ is Morita
equivalent to the foliation algebra associated to the foliation on
T2 defined by the differential equation dx = θ dy on T2.



Maps between irrational rotation algebras: existence

There is a natural smooth subalgebra A∞θ called the
smooth noncommutative torus, which is defined as those
elements in Aθ that can be represented by infinite power series
(??) with (a(m,n)) ∈ S(Z2), the Schwartz space of rapidly
decreasing sequences on Z2.

When θ is rational, Aθ is noncommutative, but is Morita
equivalent to C(T2). However, when θ is irrational, Aθ is a
simple (i.e. highly noncommutative!). Aθ is also called a
rotation algebra in the literature.



Maps between irrational rotation algebras: existence

We begin by classifying maps between irrational rotation
algebras, using what is known about their ordered K -theory
(see, e.g., Rieffel).

Theorem

Fix Θ and θ in (0, 1), both irrational, and n ∈ N, n ≥ 1. There is
a unital ∗-homomorphism ϕ : AΘ → Mn(Aθ) if and only if
nΘ = cθ + d for some c, d ∈ Z, c 6= 0. Such a
∗-homomorphism ϕ can be chosen to be an isomorphism onto
its image if and only if n = 1 and c = ±1.



Maps between irrational rotation algebras: existence

This can be reformulated in the following more algebraic
language. In what follows, Tr denotes the normalized trace on
Aθ, extended as usual to matrices. The monoid M also appears
in the theory of Hecke operators.

Lemma

Let M be the submonoid (not a subgroup) of GL(2,Q)
consisting of matrices in M2(Z) with non-zero determinant, i.e.,
of integral matrices having inverses that are not necessarily
integral.
Then M is generated by GL(2,Z) and by the matrices of the

form
(

r 0
0 1

)
, r ∈ Z r {0}.



Maps between irrational rotation algebras: existence

Theorem

Fix Θ and θ in (0, 1), both irrational. Then there is a non-zero
∗-homomorphism ϕ : AΘ → Mn(Aθ) for some n, not necessarily
unital, if and only if Θ lies in the orbit of θ under the action of the
monoid M of Lemma ?? on R by linear fractional
transformations. The possibilities for Tr(ϕ(1AΘ

)) are precisely
the numbers t = cθ + d > 0, c, d ∈ Z such that tΘ ∈ Z + θZ.
Once t is chosen, n can be taken to be any integer ≥ t .

The maps in Theorems above can always be chosen to be
smooth (i.e. mapping the smooth subalgebra A∞Θ to Mn(A∞θ )).



Maps between irrational rotation algebras: existence

The following improves a result of Kodaka.

Theorem

Suppose θ is irrational. Then there is a (necessarily injective)
unital ∗-endomorphism Φ: Aθ → Aθ, with image B ( Aθ having
non-trivial relative commutant and with a conditional
expectation of index-finite type from Aθ onto B, if and only if θ is
a quadratic irrational number.

The maps Φ in Theorem above can be chosen to be smooth
and to induce an arbitrary group endomorphism of K1(Aθ). But
when θ is not a quadratic irrational, we do not know if Aθ has
any smooth proper ∗-endomorphisms.



The harmonic map equation for noncommutative tori

Now that we understand maps between irrational rotation
algebras, we study the analogue of the action functional.

Definition
Let ϕ denote a unital ∗-homomorphism AΘ → Aθ. As before,
denote the canonical generators of AΘ and Aθ by U and V , u
and v , respectively. The action S(g) in our situation is

S(ϕ) = Tr
(
δ1(ϕ(U))∗δ1(ϕ(U)) + δ2(ϕ(U))∗δ2(ϕ(U))

+ δ1(ϕ(V ))∗δ1(ϕ(V )) + δ2(ϕ(V ))∗δ2(ϕ(V ))
)
.

(5)



The harmonic map equation for noncommutative tori

Critical points for this action are called harmonic maps. Here
δ1 and δ2 are the infinitesimal generators for the “gauge action”
of the group T2 on Aθ. More precisely, δ1 and δ2 are defined on
the smooth subalgebra A∞θ by the formulas

δ1(u) = 2πiu, δ2(u) = 0, δ1(v) = 0, δ2(v) = 2πiv .

Note that S(ϕ) in (??) is just the sum E(ϕ(U)) + E(ϕ(V )),
where for a unitary W ∈ A∞θ ,

E(W ) = Tr
(
δ1(W )∗δ1(W ) + δ2(W )∗δ2(W )

)
. (6)

It was conjectured that the “special” unitaries unvm minimize
the energy E in the connected components of U(A∞θ ).



The harmonic map equation for noncommutative tori

Theorem (Euler-Lagrange equations)

Let S(ϕ) denote the energy functional for a unital
∗-endomorphism ϕ of Aθ. Then the Euler-Lagrange equations
for ϕ to be a harmonic map, that is, a critical point of L, are:

0 =
2∑

j=1

{
Tr

(
A δj

[
ϕ(u)∗δj(ϕ(u))

])
+ Tr

(
B δj

[
ϕ(v)∗δj(ϕ(v))

]) }
where A,B are self-adjoint elements in Aθ, constrained to
satisfy the equation,

A− ϕ(v)∗Aϕ(v) = B − ϕ(u)∗Bϕ(u).



The harmonic map equation for noncommutative tori

Proof.
Consider the 1-parameter family of ∗-endomorphisms of Aθ

defined by

ϕt(u) = ϕ(u)eih1(t)

= ϕ(u)[1 + ith′1(0) + O(t2)],

ϕt(v) = ϕ(v)eih2(t)

= ϕ(u)[1 + ith′2(0) + O(t2)],

where hj(t), j = 1,2 are 1-parameter families of self-adjoint
operators with h1(0) = 0 = h2(0). Differentiate & simplify.



The harmonic map equation for noncommutative tori

For Θ a quadratic irrational, it was proved by [MR], as well as
other interesting cases. Recently been proved by Hanfeng Li:

Theorem (Hanfeng Li)

For W in the connected component of U(A∞θ ) containing unvm,
E(W ) ≥ E(unvm) = 4π2(m2 + n2), with equality if and only if
W = λunvm for some λ ∈ T.

Corollary (“Minimal Energy Conjecture”)

Suppose ϕ : A∞θ 	 is a ∗-endomorphism inducing the map on

K1 given by
(

p q
r s

)
∈ SL(2,Z). Then

S(ϕ) ≥ 4π2(p2 + q2 + r2 + s2), with equality if and only if
ϕ(u) = λupvq, ϕ(v) = µur vs, λ, µ ∈ T.



The harmonic map equation for noncommutative tori

In general, we would like to understand the nature of all critical
points of the action functional, not just the minima.

This has been only in the analysed in the special case when Θ
is rational in [MR], but the irrational case is a mystery.

In the rational case, we have constructed explicit solutions to
the harmonic map equation, and they turn out to be related to
solutions of the equation governing a nonlinear pendulum.



A physical model
To write the partition function for the sigma model studied here,
recall the expression for the energy

SG(ϕ) =
√

det(g)
n∑

i,j=1

Gijgµν Tr(δµ(ϕ(Ui))
∗δν(ϕ(Uj)).

It is possible to parametrize the metrics (gµν) by a complex
parameter τ ,

g(τ) = (gµν(τ)) =

(
1 τ1
τ1 |τ |2

)
where τ = τ1 + iτ2 ∈ C is such that τ2 > 0.
Note that g is invertible with inverse given by

g−1(τ) = (gµν(τ)) = τ−2
2

(
|τ |2 −τ1
−τ1 1

)
and

√
det(g) = τ2.



A physical model

The partition function is

Z (G, z) =

∫
τ∈C,τ2>0

dτ ∧ d τ̄
τ2

2 Z (G, τ, z)

where
Z (G, τ, z) =

∫
D[ϕ]e−zSG,τ (ϕ)/

∫
D[ϕ].

is the renormalized integral.

This integral is much too difficult to deal with even in the
commutative case, so we oversimplify by considering the
semiclassical approximation, which is a sum over the critical
points. Even this turns out to be highly nontrivial, and we
discuss it below.



A physical model

In the special case when Θ = θ and is not a quadratic irrational,
then the semiclassical approximation to the partition function
above is

Z (G, τ, z) ≈
∑

m∈M/{±1}

∑
A

e−zSG,τ (ϕA),

up to a normalizing factor, in the notation as explained later in
this section. In this approximation,

Z (G, z) ≈
∫

τ∈C,τ2>0

dτ ∧ d τ̄
τ2

2

∑
m∈M/{±1}

∑
A

e−zSG,τ (ϕA).

We expect Z (G) and Z (G−1) to be related as in the classical
case as a manifestation of T-duality.
In the remainder we only consider contributions from the critical
points (harmonic maps).



A physical model
The simplified partition function then looks like

Z (z) ≈
∑

m∈M/{±1}

∑
A

e−4π2D(m,θ)‖A‖2
HSz . (7)

The formula 4π2D(m, θ)‖A‖2
HS for the energy is valid not just for

the automorphisms ϕA but also for the map U 7→ upvq,
V 7→ ur vs with

A =

(
p q
r s

)
, det A = n

from Anθ to Aθ, which one can check to be harmonic, just as in
done earlier. The associated map on K0 corresponds to

m =

(
n 0
0 1

)
with D(m, θ) = 1.
Many thanks for your attention!


