Renormalizable noncommutative QFT II Kyoto, 22 nd February 2011

Harald Grosse

Faculty of Physics, University of Vienna

Introduction

- Motivation: Improve QFT in 4 dimensions
- Renormalizable QFT (not summmable)
- add "gravity" effects or
- Quantize Space-Time
- Renormalizable Noncommutative QFT IR/UV mixing
 - Main Result HG+R Wulkenhaar ...
 - use renormalized pertubation theory
 - needs regularization renormalization
 - use Renormalization group methods
 - Taming the Landau Ghost (Borel) summable?
- almost Solvable, nontrivial!
- Fermions Spectral triple

Introduction

- Classical field theories for fundamental interactions (electroweak, strong, gravitational) are of geometrical origin
- Quantum field theory for standard model (electroweak+strong) is renormalisable
- Gravity is not renormalisable

Renormalisation group interpretation

- space-time being smooth manifold ⇒ gravity scaled away
- weakness of gravity determines Planck scale where geometry is something different

promising approach: noncommutative geometry unifies standard model with gravity as classical field theories

Can we make sense of renormalisation in NCG?

First step: construct quantum field theories on simple noncommutative geometries, e.g. the Moyal space

Moyal space

algebra of rapidly decaying functions over *D*-dimensional Euclidean space with *-product

$$(a \star b)(x) = \int d^D y d^D k a(x + \frac{1}{2} \Theta \cdot k) b(x + y) e^{iky}$$
 where $\Theta = -\Theta^T \in M_D(\mathbb{R})$

- *-product is associative, noncommutative, and most importantly: non-local
- construction of field theories with non-local interaction
- This non-locality has serious consequences for the renormalisation of the resulting quantum field theory

nc Scalar field model

Operator formulation

$$[c\hat{T},\hat{X}]=i\Theta$$

 ϕ^4 on nc \mathbb{R}^4 , $[\hat{x}^\mu,\hat{x}^
u]=i\theta^{\mu
u}$ antisymmetric, $u_p=e^{ip\hat{x}}$ or equivalently star product,

$$\partial_{\mu} u_{p} = i p_{\mu} u_{p} = i [\tilde{\mathbf{x}}_{\mu}, u_{p}]$$

$$\tilde{\mathbf{x}}_{\mu} := (\theta^{-1})_{\mu\nu} \,\hat{\mathbf{x}}^{\nu}$$

$$\Phi = \int dp e^{ip\hat{x}} \Phi_p$$

 ϕ^4 action

$$S = \frac{1}{2} Tr(-[\tilde{x}_{\mu}, \Phi][\tilde{x}^{\mu}, \Phi] + m^2 \Phi \Phi + \frac{\lambda}{2} \Phi^4)$$

yields Schrödinger equation:

$$[\tilde{\mathbf{x}}_{\mu},[\tilde{\mathbf{x}}^{\mu},\Phi]]+m^{2}\Phi+\lambda\Phi^{3}=E\Phi$$

UV/IR-mixing

• naïve ϕ^4 -action (ϕ -real, Euclidean space) on Moyal plane

$$S = \int d^4x \Big(\frac{1}{2} \partial_\mu \phi \star \partial^\mu \phi + \frac{m^2}{2} \phi \star \phi + \frac{\lambda}{4} \phi \star \phi \star \phi \star \phi \Big) (x)$$

Feynman rules:

$$\frac{p}{p_3} = \frac{1}{p^2 + m^2}$$

$$p_4 = \frac{\lambda}{4} \exp\left(-\frac{i}{2} \sum_{i < j} p_i^{\mu} p_j^{\nu} \theta_{\mu\nu}\right)$$

cyclic order of vertex momenta is essential
 ⇒ ribbon graphs

• one-loop two-point function, *planar contribution*:

to be treated by usual regularisation methods, can be put to 0

planar nonregular contribution:

$$=\frac{\lambda}{12}\int \frac{d^4k}{(2\pi)^4}\frac{\mathrm{e}^{\mathrm{i}k\cdot\Theta\cdot p}}{k^2+m^2}\sim (\Theta p)^{-2}$$

- non-planar graphs finite (noncommutativity as a regulator) but $\sim p^{-2}$ for small momenta (renormalisation not possible)
- ⇒ leads to non-integrable integrals when inserted as subgraph into bigger graphs: UV/IR-mixing

The UV/IR-mixing problem and its solution

 observation: euclidean quantum field theories on Moyal space suffer from UV/IR mixing problem which destroys renormalisability if quadratic divergences are present

Theorem

The quantum field theory defined by the action

$$S = \int d^4x \left(\frac{1}{2}\phi \star \left(\Delta + \Omega^2 \tilde{\mathbf{x}}^2 + \mu^2\right)\phi + \frac{\lambda}{4!}\phi \star \phi \star \phi \star \phi\right)(\mathbf{x})$$

with $\tilde{\mathbf{x}} = 2\Theta^{-1} \cdot \mathbf{x}$, ϕ – real, Euclidean metric is perturbatively renormalisable to all orders in λ .

The additional oscillator potential $\Omega^2 \tilde{\chi}^2$

- implements mixing between large and small distance scales
- results from the renormalisation proof

Intuitive remarks

Langmann-Szabo duality

$$\left.egin{array}{ll} \widetilde{\mathbf{x}} &\longmapsto \mathbf{p} \ \phi(\mathbf{x}) &\longmapsto \widehat{\phi}(\mathbf{p}) \end{array}
ight.
ight. + ext{Fourier transformation}$$

- leaves $\int d^4x \, (\phi \star \phi \star \phi \star \phi)(x)$ and $\int d^4x \, (\phi \star \phi)(x)$ invariant
- transforms $\int d^4x \, (\phi \star \Delta \phi)(x)$ into $\int d^4x \, (\phi \star \tilde{x}^2 \phi)(x)$
- with also its LS-dual is divergent
- also the LS-dual of is divergent

renormalisation requires $\int d^4x \, (\phi \star \tilde{x}^2 \phi)(x)$ in initial action

History of the renormalisation proof

exact renormalisation group equation in matrix base

H. G., R.Wulkenhaar

- simple interaction, complicated propagator
- power-counting from decay rate and ribbon graph topology
- multi-scale analysis in matrix base

V. Rivasseau, F. Vignes-Tourneret, R.Wulkenhaar

- rigorous bounds for the propagator (requires large Ω)
- multi-scale analysis in position space

R. Gurau, J. Magnen, V. Rivasseau, F. Vignes-Tourneret

- simple propagator (Mehler kernel), oscillating vertex
- distinction between sum and difference of propagator ends
- Schwinger parametric representation

R. Gurau, V. Rivasseau, T. Krajewski,...

reduction to Symanzik type hyperbolic polynomials

The matrix base of the Moyal plane

central observation (in 2D):

$$f_{00} := 2e^{-\frac{1}{\theta}(x_1^2 + x_2^2)} \quad \Rightarrow \quad f_{00} \star f_{00} = f_{00}$$

left and right creation operators:

$$f_{mn}(x_{1}, x_{2}) = \frac{(x_{1} + ix_{2})^{*m}}{\sqrt{m!(2\theta)^{m}}} * \left(2e^{-\frac{1}{\theta}(x_{1}^{2} + x_{2}^{2})}\right) * \frac{(x_{1} - ix_{2})^{*n}}{\sqrt{n!(2\theta)^{n}}}$$

$$f_{mn}(\rho, \varphi) = 2(-1)^{m} \sqrt{\frac{m!}{n!}} e^{i\varphi(n-m)} \left(\sqrt{\frac{2}{\theta}}\rho\right)^{n-m} e^{-\frac{\rho^{2}}{\theta}} L_{m}^{n-m}(\frac{2}{\theta}\rho^{2})$$

• satisfies:
$$(f_{mn} \star f_{kl})(x) = \delta_{nk} f_{ml}(x)$$

$$\int d^2 x f_{mn}(x) = \delta_{mn}$$

Fourier transformation has the same structure

Extension to four dimensions

non-vanishing components: $\theta = \Theta_{12} = -\Theta_{21} = \Theta_{34} = -\Theta_{43}$ double indices

non-local ⋆-product becomes simple matrix product

$$S[\phi] = \sum_{m,n,k,l \in \mathbb{N}^2} \left(\frac{1}{2} \phi_{mn} \Delta_{mn,kl} \phi_{kl} + \frac{\lambda}{4!} \phi_{mn} \phi_{nk} \phi_{kl} \phi_{lm} \right)$$

important: $\Delta_{mn;kl} = 0$ unless m-l = n-k $SO(2) \times SO(2)$ angular momentum conservation

- diagonalisation of Δ yields recursion relation for Meixner polynomials
- closed formula for propagator $G = (\Delta)^{-1}$

•
$$G_{0\ 0\ 0\ 0\ 0\ 0}^{\ m\ m\ m\ m} \sim \frac{\theta/8}{\sqrt{\frac{4}{\pi}(m+1) + \Omega^2(m+1)^2}}$$

$$\bullet \ \ G_{\frac{m_1}{m_2},\frac{m_1}{m_2},\frac{0}{0},\frac{0}{0}}^{m_1} = \frac{\theta}{2(1+\Omega)^2(m_1+m_2+1)} \left(\frac{1-\Omega}{1+\Omega}\right)^{m_1+m_2}$$

RG FLOW

Wilson RG-Flow divide covariance for free Euclidean scalar field into slices

$$\Phi_m = \sum_{j=0}^m \phi_j, \quad C_j = \int_{M^{-2j}}^{M^{-2(j-1)}} d\alpha \frac{e^{-m^2\alpha - x^2/4\alpha}}{\alpha^{D/2}}$$

integrate out degrees of freedom

$$Z_{m-1}(\Phi_{m-1}) = \int d\mu_m(\phi_m) e^{-S_m(\phi_m + \Phi_{m-1})}$$
 $Z_{m-1}(\Phi_{m-1}) = e^{-S_{m-1}(\Phi_{m-1})}$

Landau Ghost

superficial degree of divergence for Feynman graph G

$$D=4$$
 $\omega(G)=4-N(G)$

- BPHZ Theorem: renormalizability
- but: certain chain of finite subgraphs with m bubbles grows like

$$\int rac{d^4q}{\left(q^2+m^2
ight)^3} \left(\log|q|
ight)^m \simeq C^m m!$$

not Borel summable

$$\lambda_j \simeq \frac{\lambda_0}{1 - \beta \lambda_0 j}$$

• sign of β positive: Landau ghost, triviality

Ribbon graphs

Feynman graphs are ribbon graphs with V vertices

- edges $\stackrel{n}{\underset{m}{\longrightarrow}} = G_{mn;kl}$ and N external legs
 - leads to F faces, B of them with external legs
 - ribbon graph can be drawn on Riemann surface of genus $g = 1 \frac{1}{2}(F I + V)$ with B holes

$$F = 1$$
 $g = 1$
 $I = 3$ $B = 1$
 $V = 2$ $N = 2$

First proof: exact renormalisation group equations

QFT defined via partition function
$$Z[J] = \int \mathcal{D}[\phi] \, \mathrm{e}^{-S[\phi] - \mathrm{tr}(\phi J)}$$

- Wilson's strategy: integration of field modes ϕ_{mn} with indices $\geq \theta \Lambda^2$ yields effective action $L[\phi, \Lambda]$
- variation of cut-off function χ(Λ) with Λ modifies effective action:

exact renormalisation group equation [Polchinski equation]

$$\Lambda \frac{\partial L[\phi,\Lambda]}{\partial \Lambda} = \sum_{m,n,k,l} \frac{1}{2} Q_{mn;kl}(\Lambda) \left(\frac{\partial L[\phi,\Lambda]}{\partial \phi_{mn}} \frac{\partial L[\phi,\Lambda]}{\partial \phi_{kl}} - \frac{\partial^2 L[\phi,\Lambda]}{\partial \phi_{mn} \partial \phi_{kl}} \right)$$
with $Q_{mn;kl}(\Lambda) = \Lambda \frac{\partial (G_{mn;kl} \chi_{mn;kl}(\Lambda))}{\partial \Lambda}$

 renormalisation = proof that there exists a regular solution which depends on only a finite number of initial data

Second proof: multi-scale analysis

propagator cut into slices: $G_{mn;kl} = \sum_{i=1}^{\infty} G_{mn;kl}^{i}$ estimations:

$$0 \le G_{mn,kl}^{i} \le K_{1} \underline{\mathsf{M}}^{-i} e^{-c_{1}} \underline{\mathsf{M}}^{-i} (\|m\| + \|n\| + \|k\| + \|I\|) \delta_{m-1, -(k-n)}$$

$$\sum_{l} \binom{\max}{n(l), k(l)} G_{mn,kl}^{i} \ge K_{2} \underline{\mathsf{M}}^{-i} e^{-c_{2}} \underline{\mathsf{M}}^{-i} \|m\|$$

- lacksquare induces scale attribution $i_{\delta} \in \mathbb{N}^+$ for each edge δ of the graph
- SO(2) × SO(2) symmetry implemented by dual graphs (vertices ⇔ faces)

- index-difference (= angular momentum) conserved at propagators and vertices
- opwer-counting degree of divergence of graphs 2 #(inner vertices) #(edges) = $2(F-B) - I = 4-4g-2V+I - 2B = (2-\frac{N}{2}) - 2(2g+B-1)$

Conclusion

All non-planar graphs and all planar graphs with > 6 external legs are convergent

Introduction Circumventing UV/IR The matrix base of Moyal space RG Flow Renormalisation The β-function Spectral Triple Summar

Renormalisation

Problem: infinitely many planar 2- and 4-leg graphs diverge Solution: discrete Taylor expansion about reference graphs:

• similar for all $A_{mn;nk;kl;lm}^{planar}$ $A_{mn;nm}^{planar}$ and $A_{m^{1}+1,n^{$

Renormalisation of noncommutative ϕ_A^4 -model to all orders

by normalisation conditions for mass, field amplitude, coupling constant and oscillator frequency

Introduction Circumventing UV/IR The matrix base of Moyal space RG Flow Renormalisation The β-function Spectral Triple Summa

The β -function

one-loop calculation

$$\frac{\lambda[\Lambda]}{\Omega^2[\Lambda]} = \text{const}$$

$$\frac{d\lambda}{d\Lambda} = \beta_{\lambda} = \lambda^2 \frac{(1-\Omega^2)}{(1+\Omega^2)^3} + \mathcal{O}(\lambda^3)$$

 $\lambda[\Lambda]$ diverges in commutative case

- perturbation theory remains valid at all scales!
- non-perturbative construction of the model seems possible!

How does this work?

- four-point function renormalisation with usual sign
- \exists one-loop wavefunction renormalisation which compensates four-point function renormalisation for $\Omega \to 1$

The self-dual model

- \bullet $\Omega = 1$ leads to constant matrix indices for each face
- angular momentum ℓ is zero
 exponential decay in |ℓ| for general case
 ⇒ self-dual model also captures general behaviour
- powerful techniques from matrix models available
 - solvable (trivial) scalar model E. Langmann, R. Szabo, K. Zarembo
 - renormalisation of ϕ_6^3 by relation to Kontsevich model H. Grosse, H. Steinacker

idea M. Disertori, V. Rivasseau

```
compute \beta-function for \Omega=1 \rightarrow model is asymptotically safe up to three loops (cancellations established by formidable graph calculation) \beta=0 to all orders....
```


Asymptotic safety to all orders

M. Disertorti, R. Gurau, J. Magnen, V. Rivasseau

Theorem

$$\Gamma^4(0,0,0,0) = \lambda(1-(\partial\Sigma)(0,0))^2$$
 to all orders in λ (up to irr.) where $(\partial\Sigma)(0,0) := \Sigma(1,0) - \Sigma(0,0)$ Taylor subtraction

Supersymmetric quantum mechanics

Let X be a d-dimensional smooth manifold, T^*X trivial

$$\bullet \ \ a_{\mu} = e^{-\omega h} \partial_{\mu} e^{\omega h} = \partial_{\mu} + W_{\mu} \ , \quad a_{\mu}^{\dagger} = -e^{\omega h} \partial_{\mu} e^{-\omega h} = -\partial_{\mu} + W_{\mu} \\ h \in C^{\infty}(X) \ \, \text{Morse function}, \ \, W_{\mu} = \omega \partial_{\mu} h$$

commutation relations:

$$[\mathbf{a}_{\mu},\mathbf{a}_{
u}]=[\mathbf{a}_{\mu}^{\dagger},\mathbf{a}_{
u}^{\dagger}]=0\;,\qquad [\mathbf{a}_{\mu},\mathbf{a}_{
u}^{\dagger}]=2\omega\partial_{\mu}\partial_{
u}\mathbf{h}$$

d fermionic ladder operators:

$$\{ m{b}_{\mu}, m{b}_{
u} \} = 0 \; , \qquad \{ m{b}_{\mu}^{\dagger}, m{b}_{
u}^{\dagger} \} = 0 \; , \qquad \{ m{b}_{\mu}, m{b}_{
u}^{\dagger} \} = \delta_{\mu
u}$$

supercharges:

$$\mathfrak{Q}:=\sum_{\mu=1}^d a_\mu\otimes b_\mu^\dagger\;,\qquad \mathfrak{Q}^\dagger:=\sum_{\mu=1}^d a_\mu^\dagger\otimes b_\mu$$

supersymmetry algebra:

$$\begin{split} \{\mathfrak{Q},\mathfrak{Q}^{\dagger}\} &= \mathfrak{H} = \left(-\partial_{\mu}\partial^{\mu} + \omega^{2}(\partial_{\mu}h)(\partial^{\mu}h)\right) \otimes 1 + \omega(\partial^{\mu}\partial^{\nu}h) \otimes [b_{\mu}^{\dagger},b_{\nu}] \\ \{\mathfrak{Q},\mathfrak{Q}\} &= \{\mathfrak{Q}^{\dagger},\mathfrak{Q}^{\dagger}\} = 0 \;, \quad [\mathfrak{Q},\mathfrak{H}] = [\mathfrak{Q}^{\dagger},\mathfrak{H}] = 0 \end{split}$$

cohomology of \mathfrak{Q} related to Morse theory for h

Harmonic oscillator spectral triple $(A, \mathcal{H}, \mathcal{D}_i)$

Morse function $h = \frac{1}{2} ||x||^2$

implies constant $[a_{\mu},a_{
u}^{\dagger}]=2\omega\delta_{\mu
u}$

Hilbert space
$$\mathcal{H} = \ell^2(\mathbb{N}^d) \otimes \bigwedge(\mathbb{C}^d)$$
: declare ONB $\left\{ (a_1^{\dagger})^{n_1} \dots (a_d^{\dagger})^{n_d} \otimes (b_1^{\dagger})^{s_1} \dots (b_d^{\dagger})^{s_d} | 0 \right\} : n_{\mu} \in \mathbb{N}, s_{\mu} \in \{0, 1\} \right\}$

TWO Dirac operators $\mathcal{D}_1 = \mathfrak{Q} + \mathfrak{Q}^{\dagger}$, $\mathcal{D}_2 = i\mathfrak{Q} - i\mathfrak{Q}^{\dagger}$

$$\begin{array}{l} \mathcal{D}_{1}^{2} = \mathcal{D}_{2}^{2} = \mathfrak{H} = \sum_{\mu=1}^{d} \left(\mathbf{a}_{\mu}^{\dagger} \mathbf{a}_{\mu} \otimes \mathbf{1} + 2\omega \otimes \mathbf{b}_{\mu}^{\dagger} \mathbf{b}_{\mu} \right) \\ = 2\omega (N_{b} + N_{f}) = \mathbf{H} \otimes \mathbf{1} + \omega \otimes \mathbf{\Sigma} \end{array}$$

where

$$H = -\frac{\partial^2}{\partial x_\mu \partial x^\mu} + \omega^2 x_\mu x^\mu$$
 – harmonic oscillator hamiltonian

$$\Sigma = \sum_{\mu=1}^{d} [b_{\mu}^{\dagger}, b_{\mu}]$$
 – spin matrix

algebra $A = S(\mathbb{R}^d)$ uniquely determined by smoothness All axioms of spectral triples satisfied, with minor adaptation

Summary

- Renormalisation is compatible with noncommutative geometry
- We can renormalise models with new types of degrees of freedom, such as dynamical matrix models
- Equivalence of renormalisation schemes is confirmed
- Important tools (multi-scale analysis) are worked out
- Construction of NCQF theories is promising
- Other models
 - Gross-Neveu model D = 2 F. Vignes-Tourneret
 - Degenerate ⊖ matrix model H. G. F. Vignes-Tourneret needs five relevant/marginal operators!
 - Fermions
 - induced Yang-Mills theory ? A. de Goursac, J.-C. Wallet, R. Wulkenhaar; H. G, M. Wohlgenannt

