Renormalizable noncommutative QFT II Kyoto, 22 nd February 2011

Harald Grosse

Faculty of Physics, University of Vienna

Introduction

- Motivation: Improve QFT in 4 dimensions
- Renormalizable QFT (not summmable)
- add "gravity" effects or
- Quantize Space-Time
- Renormalizable Noncommutative QFT IR/UV mixing
- Main Result ha + R wulkenhar ..
- use renormalized pertubation theory
- needs regularization - renormalization
- use Renormalization group methods
- Taming the Landau Ghost (Borel) summable ?
- almost Solvable, nontrivial !
- Fermions - Spectral triple

Introduction

- Classical field theories for fundamental interactions (electroweak, strong, gravitational) are of geometrical origin
- Quantum field theory for standard model (electroweak+strong) is renormalisable
- Gravity is not renormalisable

Renormalisation group interpretation

- space-time being smooth manifold \Rightarrow gravity scaled away
- weakness of gravity determines Planck scale where geometry is something different
promising approach: noncommutative geometry unifies standard model with gravity as classical field theories

Can we make sense of renormalisation in NCG?

First step: construct quantum field theories on simple noncommutative geometries, e.g. the Moyal space

Moyal space

algebra of rapidly decaying functions over D-dimensional Euclidean space with *-product

$$
(a \star b)(x)=\int d^{D} y d^{D} k a\left(x+\frac{1}{2} \Theta \cdot k\right) b(x+y) \mathrm{e}^{\mathrm{i} k y}
$$

where $\Theta=-\Theta^{T} \in M_{D}(\mathbb{R})$

- *-product is associative, noncommutative, and most importantly: non-local
- construction of field theories with non-local interaction
- This non-locality has serious consequences for the renormalisation of the resulting quantum field theory

nc Scalar field model

Operator formulation

$$
\text { e g : } D=2 \quad[c \hat{T}, \hat{X}]=i \Theta
$$

ϕ^{4} on nc $\mathbb{R}^{4}, \quad\left[\hat{X}^{\mu}, \hat{x}^{\nu}\right]=i \theta^{\mu \nu}$ antisymmetric, $u_{p}=e^{i p \hat{x}}$ or equivalently star rooduct,
$\partial_{\mu} u_{p}=i p_{\mu} u_{p}=i\left[\tilde{x}_{\mu}, u_{p}\right]$ $\tilde{x}_{\mu}:=\left(\theta^{-1}\right)_{\mu \nu} \hat{x}^{\nu}$

$$
\Phi=\int d p e^{i p \hat{x}} \Phi_{p}
$$

ϕ^{4} action

$$
S=\frac{1}{2} \operatorname{Tr}\left(-\left[\tilde{x}_{\mu}, \Phi\right]\left[\tilde{x}^{\mu}, \Phi\right]+m^{2} \Phi \Phi+\frac{\lambda}{2} \Phi^{4}\right)
$$

yields Schrödinger equation:

$$
\left[\tilde{x}_{\mu},\left[\tilde{x}^{\mu}, \Phi\right]\right]+m^{2} \Phi+\lambda \Phi^{3}=E \Phi
$$

UV/IR-mixing

- naïve ϕ^{4}-action (ϕ-real, Euclidean space) on Moyal plane

$$
S=\int d^{4} x\left(\frac{1}{2} \partial_{\mu} \phi \star \partial^{\mu} \phi+\frac{m^{2}}{2} \phi \star \phi+\frac{\lambda}{4} \phi \star \phi \star \phi \star \phi\right)(x)
$$

- Feynman rules:
$\bar{p}=\frac{1}{p^{2}+m^{2}}$

- cyclic order of vertex momenta is essential \Rightarrow ribbon graphs
- one-loop two-point function, planar contribution:

to be treated by usual regularisation methods, can be put to 0
- planar nonregular contribution:

- non-planar graphs finite (noncommutativity as a regulator) but $\sim p^{-2}$ for small momenta (renormalisation not possible)
\Rightarrow leads to non-integrable integrals when inserted as subgraph into bigger graphs: UV/IR-mixing

The UV/IR-mixing problem and its solution

- observation: euclidean quantum field theories on Moyal space suffer from UV/IR mixing problem which destroys renormalisability if quadratic divergences are present

Theorem

The quantum field theory defined by the action

$$
S=\int d^{4} x\left(\frac{1}{2} \phi \star\left(\Delta+\Omega^{2} \tilde{x}^{2}+\mu^{2}\right) \phi+\frac{\lambda}{4!} \phi \star \phi \star \phi \star \phi\right)(x)
$$

with $\tilde{x}=2 \Theta^{-1} \cdot x, \phi-r e a l$, Euclidean metric is perturbatively renormalisable to all orders in λ.

The additional oscillator potential $\Omega^{2} \tilde{x}^{2}$

- implements mixing between large and small distance scales
- results from the renormalisation proof

Intuitive remarks

Langmann-Szabo duality

$\left.\begin{array}{rl}\tilde{x} & \longmapsto p \\ \phi(x) & \longmapsto \hat{\phi}(p)\end{array}\right\}+$ Fourier transformation

- leaves $\int d^{4} x(\phi \star \phi \star \phi \star \phi)(x)$ and $\int d^{4} x(\phi \star \phi)(x)$ invariant
- transforms $\int d^{4} x(\phi \star \Delta \phi)(x)$ into $\int d^{4} x\left(\phi \star \tilde{x}^{2} \phi\right)(x)$
- with

- also the LS-dual of also its LS-dual is divergent

renormalisation requires $\int d^{4} x\left(\phi \star \tilde{x}^{2} \phi\right)(x)$ in initial action

History of the renormalisation proof

- exact renormalisation group equation in matrix base H. G., R.Wulkenhaar
- simple interaction, complicated propagator
- power-counting from decay rate and ribbon graph topology
- multi-scale analysis in matrix base
V. Rivasseau, F. Vignes-Tourneret, R.Wulkenhaar
- rigorous bounds for the propagator (requires large Ω)
- multi-scale analysis in position space
R. Gurau, J. Magnen, V. Rivasseau, F. Vignes-Tourneret
- simple propagator (Mehler kernel), oscillating vertex
- distinction between sum and difference of propagator ends
- Schwinger parametric representation
R. Gurau, V. Rivasseau, T. Krajewski,...
- reduction to Symanzik type hyperbolic polynomials

The matrix base of the Moyal plane

- central observation (in 2D):

$$
f_{00}:=2 \mathrm{e}^{-\frac{1}{\theta}\left(x_{1}^{2}+x_{2}^{2}\right)} \quad \Rightarrow \quad f_{00} \star f_{00}=f_{00}
$$

- left and right creation operators:

$$
\begin{aligned}
f_{m n}\left(x_{1}, x_{2}\right) & =\frac{\left(x_{1}+\mathrm{i} x_{2}\right)^{\star m}}{\sqrt{m!(2 \theta)^{m}}} \star\left(2 \mathrm{e}^{-\frac{1}{\theta}\left(x_{1}^{2}+x_{2}^{2}\right)}\right) \star \frac{\left(x_{1}-\mathrm{i} x_{2}\right)^{\star n}}{\sqrt{n!(2 \theta)^{n}}} \\
f_{m n}(\rho, \varphi) & =2(-1)^{m} \sqrt{\frac{m!}{n!}} \mathrm{e}^{\mathrm{i} \varphi(n-m)}\left(\sqrt{\frac{2}{\theta}} \rho\right)^{n-m} \mathrm{e}^{-\frac{\rho^{2}}{\theta}} L_{m}^{n-m}\left(\frac{2}{\theta} \rho^{2}\right)
\end{aligned}
$$

- satisfies: $\left(f_{m n} \star f_{k l}\right)(x)=\delta_{n k} f_{m /}(x)$

$$
\int d^{2} x f_{m n}(x)=\delta_{m n}
$$

- Fourier transformation has the same structure

Extension to four dimensions

non-vanishing components: $\theta=\Theta_{12}=-\Theta_{21}=\Theta_{34}=-\Theta_{43}$ double indices
non-local \star-product becomes simple matrix product

$$
S[\phi]=\sum_{m, n, k, l \in \mathbb{N}^{2}}\left(\frac{1}{2} \phi_{m n} \Delta_{m n ; k l} \phi_{k l}+\frac{\lambda}{4!} \phi_{m n} \phi_{n k} \phi_{k l} \phi_{l m}\right)
$$

important: $\Delta_{m n ; k l}=0$ unless $m-I=n-k$ $S O(2) \times S O(2)$ angular momentum conservation

- diagonalisation of Δ yields recursion relation for Meixner polynomials
- closed formula for propagator $G=(\Delta)^{-1}$

- $G_{m_{1} m_{1} ; m_{2} ; 00}=\frac{\theta}{2(1+\Omega)^{2}\left(m_{1}+m_{2}+1\right)}\left(\frac{1-\Omega}{1+\Omega}\right)^{m_{1}+m_{2}}$

RG FLOW

Wilson RG-Flow

divide covariance for free Euclidean scalar field into slices

$$
\Phi_{m}=\sum_{j=0}^{m} \phi_{j}, \quad C_{j}=\int_{M^{-2 j}}^{M^{-2(j-1)}} d \alpha \frac{e^{-m^{2} \alpha-x^{2} / 4 \alpha}}{\alpha^{D / 2}}
$$

integrate out degrees of freedom

$$
\begin{gathered}
Z_{m-1}\left(\Phi_{m-1}\right)=\int d \mu_{m}\left(\phi_{m}\right) e^{-S_{m}\left(\phi_{m}+\Phi_{m-1}\right)} \\
Z_{m-1}\left(\Phi_{m-1}\right)=e^{-S_{m-1}\left(\Phi_{m-1}\right)}
\end{gathered}
$$

Landau Ghost

- superficial degree of divergence for Feynman graph G

$$
D=4 \quad \omega(G)=4-N(G)
$$

- BPHZ Theorem: renormalizability
- but: certain chain of finite subgraphs with m bubbles grows like

$$
\begin{aligned}
& \int \frac{d^{4} q}{\left(q^{2}+m^{2}\right)^{3}}(\log |q|)^{m} \simeq C^{m} m!
\end{aligned}
$$

- not Borel summable

$$
\lambda_{j} \simeq \frac{\lambda_{0}}{1-\beta \lambda_{0} j}
$$

- sign of β positive: Landau ghost, triviality

Ribbon graphs

Feynman graphs are ribbon graphs with V vertices edges $\stackrel{n k}{\stackrel{n}{m}}=G_{m n ; k l}$ and N external legs

- leads to F faces, B of them with external legs
- ribbon graph can be drawn on Riemann surface of genus $g=1-\frac{1}{2}(F-I+V)$ with B holes

$$
\begin{array}{rl}
F=1 & g=1 \\
I=3 & B=1 \\
V=2 & N=2
\end{array}
$$

$$
\begin{array}{rl}
L=2 & g=0 \\
I=3 & B=2 \\
V=3 & N=6
\end{array}
$$

First proof: exact renormalisation group equations

QFT defined via partition function $Z[J]=\int \mathcal{D}[\phi] \mathrm{e}^{-S[\phi]-\operatorname{tr}(\phi \mathcal{J})}$

- Wilson's strategy: integration of field modes $\phi_{m n}$ with indices $\geq \theta \Lambda^{2}$ yields effective action $L[\phi, \Lambda]$
- variation of cut-off function $\chi(\Lambda)$ with Λ modifies effective action:

exact renormalisation group equation [Polchinski equation]

$$
\left.\Lambda \frac{\partial L[\phi, \Lambda]}{\partial \Lambda}=\sum_{m, n, k, l} \frac{1}{2} Q_{m n ; k l} \Lambda\right)\left(\frac{\partial L[\phi, \Lambda]}{\partial \phi_{m n}} \frac{\partial L[\phi, \Lambda]}{\partial \phi_{k l}}-\frac{\partial^{2} L[\phi, \Lambda]}{\partial \phi_{m n} \partial \phi_{k l}}\right)
$$

with $Q_{m n ; k l}(\Lambda)=\Lambda \frac{\partial\left(G_{m n k l} \chi_{m n k l}(\Lambda)\right)}{\partial \Lambda}$

- renormalisation = proof that there exists a regular solution which depends on only a finite number of initial data

Second proof: multi-scale analysis

propagator cut into slices: $G_{m n ; k l}=\sum_{i=1}^{\infty} G_{m n ; k l}^{i}$
estimations:

$$
\begin{aligned}
& 0 \leq G_{m n ; k l}^{i} \leq K_{1} M^{-i} \mathrm{e}^{-c_{1} M^{-i}}(\|m\|+\|n\|+\|k\|+\|I\|) \\
& \sum_{l}\left(\max _{n(l), k(l)} G_{m n ; k l}^{i}\right) \leq K_{2} M^{-i} \mathrm{e}^{-c_{2} M^{-i}\|m\|}
\end{aligned}
$$

- induces scale attribution $i_{\delta} \in \mathbb{N}^{+}$for each edge δ of the graph
- $S O(2) \times S O(2)$ symmetry implemented by dual graphs (vertices \Leftrightarrow faces)

O index-difference (= angular momentum) conserved at propagators and vertices

- power-counting degree of divergence of graphs $2 \#$ (inner vertices) - \#(edges) $=2(F-B)-I=4-4 g-2 V+I-2 B=\left(2-\frac{N}{2}\right)-2(2 g+B-1)$

Conclusion

All non-planar graphs and all planar graphs with ≥ 6 external legs are convergent

Renormalisation

Problem: infinitely many planar 2- and 4-leg graphs diverge Solution: discrete Taylor expansion about reference graphs:

difference expressed in terms of $\left|G_{n p ; p n}-G_{0 p ; p 0}\right| \leq K_{3} M^{-i \frac{\|n\|}{M^{i}}} \mathrm{e}^{-c_{3}\|p\|}$

malised value

Renormalisation of noncommutative ϕ_{4}^{4}-model to all orders

by normalisation conditions for mass, field amplitude, coupling constant and oscillator frequency

The β-function

one-loop calculation

$$
\frac{\lambda[\Lambda]}{\Omega^{2}[\Lambda]}=\text { const }
$$

$\frac{d \lambda}{d \Lambda}=\beta_{\lambda}=\lambda^{2} \frac{\left(1-\Omega^{2}\right)}{\left(1+\Omega^{2}\right)^{3}}+\mathcal{O}\left(\lambda^{3}\right)$
$\lambda[\Lambda]$ diverges in commutative case

- perturbation theory remains valid at all scales!
- non-perturbative construction of the model seems possible!

How does this work?

- four-point function renormalisation with usual sign
- \exists one-loop wavefunction renormalisation which compensates four-point function renormalisation for $\Omega \rightarrow 1$

The self-dual model

- $\Omega=1$ leads to constant matrix indices for each face
- angular momentum ℓ is zero exponential decay in $|\ell|$ for general case \Rightarrow self-dual model also captures general behaviour
- powerful techniques from matrix models available
- solvable (trivial) scalar model e. Langmann, r. Szabo, k. Zarembo
- renormalisation of ϕ_{6}^{3} by relation to Kontsevich model
H. Grosse, H. Steinacker

idea m. Disertori. . . Rivasseau

compute β-function for $\Omega=1$
\rightarrow model is asymptotically safe up to three loops
(cancellations established by formidable graph calculation)
$\beta=0$ to all orders,...

Asymptotic safety to all orders

Theorem

$\Gamma^{4}(0,0,0,0)=\lambda(1-(\partial \Sigma)(0,0))^{2}$ to all orders in λ (up to irr.) where $(\partial \Sigma)(0,0):=\Sigma(1,0)-\Sigma(0,0)$ Taylor subtraction

Ward identity: $(a-b)$

Dyson equation

Supersymmetric quantum mechanics

Let X be a d-dimensional smooth manifold, $T^{*} X$ trivial

- $a_{\mu}=e^{-\omega h} \partial_{\mu} e^{\omega h}=\partial_{\mu}+W_{\mu}, \quad a_{\mu}^{\dagger}=-e^{\omega h} \partial_{\mu} e^{-\omega h}=-\partial_{\mu}+W_{\mu}$ $h \in C^{\infty}(X)$ Morse function, $W_{\mu}=\omega \partial_{\mu} h$
- commutation relations:

$$
\left[a_{\mu}, a_{\nu}\right]=\left[a_{\mu}^{\dagger}, a_{\nu}^{\dagger}\right]=0, \quad\left[a_{\mu}, a_{\nu}^{\dagger}\right]=2 \omega \partial_{\mu} \partial_{\nu} h
$$

- d fermionic ladder operators:
$\left\{b_{\mu}, b_{\nu}\right\}=0$,
$\left\{b_{\mu}^{\dagger}, b_{\nu}^{\dagger}\right\}=0$,

$$
\left\{b_{\mu}, b_{\nu}^{\dagger}\right\}=\delta_{\mu \nu}
$$

- supercharges:

$$
\mathfrak{Q}:=\sum_{\mu=1}^{d} a_{\mu} \otimes b_{\mu}^{\dagger}, \quad \mathfrak{Q}^{\dagger}:=\sum_{\mu=1}^{d} \mathrm{a}_{\mu}^{\dagger} \otimes b_{\mu}
$$

- supersymmetry algebra:

$$
\begin{aligned}
& \left\{\mathfrak{Q}, \mathfrak{Q}^{\dagger}\right\}=\mathfrak{H}=\left(-\partial_{\mu} \partial^{\mu}+\omega^{2}\left(\partial_{\mu} h\right)\left(\partial^{\mu} h\right)\right) \otimes 1+\omega\left(\partial^{\mu} \partial^{\nu} h\right) \otimes\left[b_{\mu}^{\dagger}, b_{\nu}\right] \\
& \{\mathfrak{Q}, \mathfrak{Q}\}=\left\{\mathfrak{Q}^{\dagger}, \mathfrak{Q}^{\dagger}\right\}=0, \quad[\mathfrak{Q}, \mathfrak{H}]=\left[\mathfrak{Q}^{\dagger}, \mathfrak{H}\right]=0
\end{aligned}
$$

cohomology of \mathfrak{Q} related to Morse theory for h

Harmonic oscillator spectral triple $\left(\mathcal{A}, \mathcal{H}, \mathcal{D}_{i}\right)$

Morse function $h=\frac{1}{2}\|x\|^{2}$
implies constant $\left[a_{\mu}, a_{\nu}^{\dagger}\right]=2 \omega \delta_{\mu \nu}$

Hilbert space $\mathcal{H}=\ell^{2}\left(\mathbb{N}^{d}\right) \otimes \bigwedge\left(\mathbb{C}^{d}\right)$: declare ONB

$$
\left\{\left(a_{1}^{\dagger}\right)^{n_{1}} \ldots\left(a_{d}^{\dagger}\right)^{n_{d}} \otimes\left(b_{1}^{\dagger}\right)^{s_{1}} \ldots\left(b_{d}^{\dagger}\right)^{s_{d}}|0\rangle: n_{\mu} \in \mathbb{N}, s_{\mu} \in\{0,1\}\right\}
$$

TWO Dirac operators $\quad \mathcal{D}_{1}=\mathfrak{Q}+\mathfrak{Q}^{\dagger}, \quad \mathcal{D}_{2}=\mathrm{i} \mathfrak{Q}-\mathrm{i} \mathfrak{Q}^{\dagger}$

$$
\begin{aligned}
\mathcal{D}_{1}^{2}=\mathcal{D}_{2}^{2} & =\mathfrak{H}=\sum_{\mu=1}^{d}\left(a_{\mu}^{\dagger} a_{\mu} \otimes 1+2 \omega \otimes b_{\mu}^{\dagger} b_{\mu}\right) \\
& =2 \omega\left(N_{b}+N_{f}\right)=H \otimes 1+\omega \otimes \Sigma
\end{aligned}
$$

where
$H=-\frac{\partial^{2}}{\partial x_{\mu} \partial x^{\mu}}+\omega^{2} x_{\mu} x^{\mu} \quad$ - harmonic oscillator hamiltonian
$\Sigma=\sum_{\mu=1}^{d}\left[b_{\mu}^{\dagger}, b_{\mu}\right] \quad$ - spin matrix
algebra $\mathcal{A}=\mathcal{S}\left(\mathbb{R}^{d}\right)$ uniquely determined by smoothness
All axioms of spectral triples satisfied, with minor adaptation

Summary

- Renormalisation is compatible with noncommutative geometry
- We can renormalise models with new types of degrees of freedom, such as dynamical matrix models
- Equivalence of renormalisation schemes is confirmed
- Important tools (multi-scale analysis) are worked out
- Construction of NCQF theories is promising
- Other models
- Gross-Neveu model $D=2$ f. Vignes-Tourneret
- Degenerate Θ matrix model н. g. f. Vignes-Tourneret needs five relevant/marginal operators !
- Fermions
- induced Yang-Mills theory ? A. de Goursac, J.-C. Wallet, R.Wulkenhaar; H. G, M. Wohigenannt

