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Introduction

Motivation: Improve QFT in 4 dimensions
Renormalizable QFT (not summmable)

add "gravity” effects or

Quantize Space-Time

Renormalizable Noncommutative QFT IR/UV mixing

© 6 6 ¢ ¢

Main Result +c + r wulkenhaar ..

use renormalized pertubation theory

needs regularization - renormalization

use Renormalization group methods

@ Taming the Landau Ghost (Borel) summable ?

o
o
o
o

almost Solvable, nontrivial !
Fermions - Spectral triple
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Introduction

@ Classical field theories for fundamental interactions (electroweak,
strong, gravitational) are of geometrical origin

@ Quantum field theory for standard model (electroweak+strong) is
renormalisable

@ Gravity is not renormalisable

Renormalisation group interpretation

@ space-time being smooth manifold = gravity scaled away

@ weakness of gravity determines Planck scale where geometry is
something different

promising approach: noncommutative geometry
unifies standard model with gravity as classical field theories
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Can we make sense of renormalisation in NCG?

First step: construct quantum field theories on simple
noncommutative geometries, e.g. the Moyal space

Moyal space

algebra of rapidly decaying functions over D-dimensional Euclidean
space with x-product

(a*b)(x):/dDydea(x+%@-k)b(x+y)e“‘y
where ©=-0T eMp(R)

@ x-product is associative, noncommutative, and most importantly:
non-local

@ construction of field theories with non-local interaction

@ This non-locality has serious consequences for the
renormalisation of the resulting quantum field theory
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nc Scalar field model

Operator formulation eg:D=2 [cT,X]=i©

¢* onnc R, [R*, %] =" antisymmetric, Up = €PX o cquatenty sir pocuc

duUp = ip,Up = i[X,,, Up] Xy = (07" X¥
o= / dpe’* oy,

¢* action

S = %Tr(—[)"(u,¢][)~(“,¢] +m?odd + %cb“)
yields Schrodinger equation:

[X,0, [X*, ®]] + Mm*® + A = ED
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UV/IR-mixing

@ naive ¢4-action (¢-real, Euclidean space) on Moyal plane

s= [ax(3ou0worot Torot Goroxox)0)

@ Feynman rules:
I 1

p2 + m2
>/< —eXp 5 Z p| pJ/e;w)
i<j

@ cyclic order of vertex momenta is essential
= ribbon graphs
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@ one-loop two-point function, planar contribution:

@

o planar nonregular contribution:

to be treated by usual reg-

k d*k 1 o
= @) ik me ularisation methods, can
) be put to 0

P

A [d%k gkep .
T12 /(271')4 kzmz ~ (OP)

@ non-planar graphs finite (honcommutativity as a regulator) but
~ p~2 for small momenta (renormalisation not possible)

= leads to non-integrable integrals when inserted as subgraph into
bigger graphs: UV/IR-mixing
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Circumventing UV/IR
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The UV/IR-mixing problem and its solution

@ observation: euclidean quantum field theories on Moyal space
suffer from UV/IR mixing problem which destroys
renormalisability if quadratic divergences are present

Theorem

The quantum field theory defined by the action

S:/d4x<%¢*(A+Qz)~(2+u2)¢+%gb*gb*gb*gb)(x)

with X = 2071 . x, ¢ — real, Euclidean metric
is perturbatively renormalisable to all orders in A.

The additional oscillator potential 22%?

@ implements mixing between large and small distance scales
@ results from the renormalisation proof
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Intuitive remarks

Langmann-Szabo duality

} + Fourier transformation

$(x) — &(p)
@ leaves /d4x (¢ * ¢ * p*p)(x) and /d“x (¢ % ¢)(x) invariant

@ transforms /d4x (¢ Ag)(x) into /d4x (6% X2¢)(x)

v 5
@ with f::_-f@j?::j: also its LS-dual is divergent

i .

@ also the LS-dual of =< =———— oy is divergent

renormalisation requires /d“x (6 x %2$)(x) in initial action
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History of the renormalisation proof

@ exact renormalisation group equation in matrix base
H. G., R.Wulkenhaar
@ simple interaction, complicated propagator
@ power-counting from decay rate and ribbon graph topology

@ multi-scale analysis in matrix base

V. Rivasseau, F. Vignes-Tourneret, R.Wulkenhaar

@ rigorous bounds for the propagator (requires large Q)

@ multi-scale analysis in position space
R. Gurau, J. Magnen, V. Rivasseau, F. Vignes-Tourneret
@ simple propagator (Mehler kernel), oscillating vertex
o distinction between sum and difference of propagator ends
@ Schwinger parametric representation

R. Gurau, V. Rivasseau, T. Krajewski,...

@ reduction to Symanzik type hyperbolic polynomials
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The matrix base of Moyal space
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The matrix base of the Moyal plane

@ central observation (in 2D):
foo := 287%(X12+X22) = foo * foo = foo

@ left and right creation operators:

(X0, xo)= 2] (2875(@“5)) | fa—ixe)”
mi(20)m AT20)

fonp. )= 21" /B0 (f3)" e 7 L (302)

@ satisfies:  (fmn * fu ) (X) = Ik fmi (X)
/dzx fon (X) = Omn

@ Fourier transformation has the same structure
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The matrix base of Moyal space
oce

Extension to four dimensions

non-vanishing components: =01,=—0,;=03,=—043
double indices

non-local x-product becomes simple matrix product

S[Qs]: Z (%fbmnAmn;kl on + %¢mn¢nk¢kl ¢Im)

m,n,k,leN2

important: Apn.k = 0 unless m—I = n—k
SO(2) x SO(2) angular momentum conservation

@ diagonalisation of A yields recursion relation for Meixner
polynomials

@ closed formula for propagator G = (A)~!
9/8

o Gm m.mm ~v
00700 \/%(m+l)+92(m+1)2

1-Q

[
G my my .0 _2(1+Q)2(m1+m2+1) (1+Q

0
my my’00

Renormalizable noncommutative QFT 11,Kyoto, 22 nd February 2011

)m1+m2



RG Flow
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RG FLOW

Wilson RG-Flow
divide covariance for free Euclidean scalar field into slices

m M—260-1) e—mza—xz/zlu

on=Y 0. G= [ = daS

=0 M

integrate out degrees of freedom
Zm-1(Pm-1) = /d/tm((ﬁm)e*Sm(@m*q’m*l)

Zy-1(Pm-1) = e~ Smoi(®n)
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Landau Ghost

@ superficial degree of divergence for Feynman graph G

D=4 w(G)=4-N(G)
@ BPHZ Theorem: renormalizability
@ but: certain chain of finite subgraphs with m bubbles grows like

OO0 - OOOK

d4 .
/(qT?nzf (log |Q|)m ~ C"m!

@ not Borel summable

~ L
11— BXoj
@ sign of 3 positive: Landau ghost, triviality

A
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Ribbon graphs

A
Feynman graphs are ribbon graphs with V vertices

£
edges <m:; = Gmn and N external legs 7

@ leads to F faces, B of them with external legs

@ ribbon graph can be drawn on Riemann surface of genus
g=1-%(F —1+ V) with B holes

F=1 g=1
=3 B=1
V=2 N=2
L=2 g=0
=3 B=2
V=3 N=6
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First proof: exact renormalisation group equations

QFT defined via partition function Z[J] = /D[qﬁ] g~ Slel-t(43)

@ Wilson'’s strategy: integration of field xm(A)
modes ¢mn With indices > OA? yields 1
effective action L[¢, A]

@ variation of cut-off function x(A) with
A modifies effective action: 0

exact renormalisation group equation [Polchinski equation]

6L[<z>, A OL[p, N OL[,A]  &°L[¢,N]
Z an (A < a¢mn 8¢kl a¢mn 8¢kl>

mnkl

with Qumnikd (/\) _ Aa(Gmn;kla);\mn;kl(A))

@ renormalisation = proof that there exists a regular solution which
depends on only a finite number of initial data
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Second proof: multi-scale analysis

o propagator cut into slices: G = 32,20 Srn:kl
estimations:

i —i g=eaM T (Im (KD
0= Gy S KgM—Te™ "L

S2(, max G ) < tgm e M iml
[

‘5m—l,—(k—n)

n();k(1)

*] induces scale attributionis € N foreach edge § of the graph

@ s0(2) x SO(2)
symmetry
implemented by
dual graphs
(vertices <> faces)

[} index-difference (= angular momentum) conserved at propagators and vertices

[} power-counting degree of divergence of graphs 2 # (inner vertices) — # (edges)
= 2(F—B) — | = 4—4g—2V+l — 2B = (27%) — 2(29+B—1)

All non-planar graphs and all planar graphs with > 6 external legs are convergent

Renormalizable noncommutative QFT
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Renormalisation

Problem: infinitely many planar 2- and 4-leg graphs diverge
Solution: d|screte Taylor expansion about reference graphs:

0/
i
" g
s A
difference expressed in terms of =1 put to renor-
IGnp:pn — Gop:po| < KgM 1 L2l g=callpl malised value
pip pip M

P planar planar planar
@ similar for all Al i.m Amn;nm and Am12+1 gt ot
m n n

Renormalisation of noncommutative ¢3-model to all orders

by normalisation conditions for mass, field amplitude, coupling
constant and oscillator frequency
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The B-function
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The g-function

[N

one-loop calculation 0.8 %
|
)\[/\] 0.6 + 1
= const | 9
Q2[A] 04 | b
1-9? ' 1
g—ﬁ = ﬂA = )\2 —((l+92))3 + O()\B) 0.2 Jl» 10
A[A] diverges in commutative case o | 103 nA20

@ perturbation theory remains valid at all scales!
@ non-perturbative construction of the model seems possible!

How does this work?
@ four-point function renormalisation with usual sign
@ J one-loop wavefunction renormalisation which compensates

four-point function renormalisation for Q — 1

=3
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The self-dual model

@ Q = 1 leads to constant matrix indices for each face

@ angular momentum / is zero

exponential decay in |¢| for general case

= self-dual model also captures general behaviour
@ powerful techniques from matrix models available

9 solvable (trivial) scalar model . Langmann, r. szabo, k. zarembo
@ renormalisation of ¢3 by relation to Kontsevich model

H. Grosse, H. Steinacker

|dea M. Disertori, V. Rivasseau

compute S-function for Q = 1

— model is asymptotically safe up to three loops
(cancellations established by formidable graph calculation)
5 = 0 to all orders,...
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The B-function
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Asymptotic safety to all orders

M. Disertorti, R. Gurau, J. Magnen, V. Rivasseau

r4(0,0,0,0) = A\(1 — (9X)(0,0))? to all orders in X (up to irr.)
where (0X)(0,0) := ¥£(1,0) — X(0,0) Taylor subtraction

Ward identity: (a —b)

Dyson
equation
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Supersymmetric quantum mechanics

Let X be a d-dimensional smooth manifold, T *X trivial
® a,=e “"9,e"=9, +W,, aj=—e"9e""=-09,+W,
h € C>(X) Morse function, W, = wd,h
@ commutation relations:
[a..a,] =[al,af] =0, [a,.al] = 2wd,0,h
@ d fermionic ladder operators:
{b,,b,} =0, {bf,,bf} =0, {b,,bl} =6,
@ supercharges:
Q=0 1a,@b}, Q=Y aleb,
@ supersymmetry algebra:
{Q, QM =H=(-0,0"+w?(9,h)(9"h)) @1+w(0*8”h)z[bf,, b, ]
{9,9}={9",af} =0, [Q,9]=[QF,H=0
cohomology of Q related to Morse theory for h
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Harmonic oscillator spectral triple (A, H, D)

Morse function h = £ ||x||2

implies constant [a,,,af] = 2wé,,,,

Hilbert space H = ?(N%) @ A(CY): declare ONB
{(@h)™ ... (@) @ (bl)*...(b])*[0) : n, eN,s, € {0,1}}

TWO Dirac operators Dy = Q + QF | D, =i —iQf

D?=Di=H=3"_, (ala, ®1+2w®bjb,)
=2w(Np+Nf) =H®1+w®X
where

H= 520 + w?x,x* — harmonic oscillator hamiltonian
T OXxOxH H
L= Zi:l[bl, b,] - spin matrix

algebra A = S(RY) uniquely determined by smoothness
All axioms of spectral triples satisfied, with minor adaptation
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Summary

Renormalisation is compatible with noncommutative geometry

We can renormalise models with new types of degrees of
freedom, such as dynamical matrix models

Equivalence of renormalisation schemes is confirmed
Important tools (multi-scale analysis) are worked out
Construction of NCQF theories is promising

Other models

@ Gross-Neveu model D =2« Vignes-Tourneret
@ Degenerate © matrix model w. c. . vignes-Tourneret
needs five relevant/marginal operators !
@ Fermions
induced Yang-Mi”S theOI‘y 7 A. de Goursac, J.-C. Wallet, R.Wulkenhaar; H. G, M. Wohlgenannt

©
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