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1. Introduction

Consider a class of Poisson brackets defined

on the space of local functionals of the formal

loop space of M ⊂ Rn. They have the form

{wi(x), wj(y)}
= gij(w(x))δ′(x− y) + Γij

k (w(x))wk
x δ(x− y)

det(gij(w)) 6= 0

Poisson bracket (Hamiltonian structure) of hy-

drodynamic type (B. Dubrovin, S.P. Novikov,

1983)
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Theorem. (Dubrovin & Novikov, 1983)

The above formula defines a Poisson bracket

if and only if

(gij) = (gij)−1

defines a flat metric on M and

Γij
k = −gil Γj

lk.
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Hamiltonian systems of hydrodynamic type

∂wi

∂t
= V i

j (w)wj
x = {wi(x), H}, i = 1, . . . , n

with a Hamiltonian of the form

H =
∫

h(w(x))dx.

The system is called diagonalizable if there ex-

ist coordinates w1, . . . , wn such that

∂wi

∂t
= λi(w)wi

x

w1, . . . , wn are the Riemann invariants.
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Theorem. (Novikov, Tsarëv) A Diagonaliz-

able Hamiltonian system of hydrodynamic type

is integrable

Integrability =⇒ existence of symmetry

∂wi

∂s
= µi(w)wi

x,
∂µi

∂wk
=

µk − µi

λk − λi

∂λi

∂wk

Tsarëv’s algorithm of integration

x + tλi(w)− µi(w) = 0.

Generalized hodograph transform
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Bihamiltonian structure of hydrodynamic type

A pair of compatible Poisson brackets of hy-

drodynamic type ({ , }1, { , }2)

{wi(x), wj(y)}a
= gij

a (w(x))δ′(x− y) + Γij
a,k(w(x))wk

x δ(x− y)

a = 1,2

It is called semisimple if

det(gij
1 − λg

ij
2 )

has n pairwise distinct real roots.
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For a semisimple bihamiltonian structure, there

exist canonical coordinates u1, . . . , un satisfying

g
ij
1 = f i(u)δij, g

ij
2 = uif i(u)δij

A system of hydrodynamic type is called Bi-

hamiltonian if there exist a bihamiltonian struc-

ture of hydrodynamic type such that

wi
t = V i

j (w)wj
x = {wi(x), H1}1 = {wi(x), H2}2.

A system of hydrodynamic type with semisim-

ple bihamiltonian is diagonalizable.
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The class of semisimple bihamiltonian structures of hy-
drodynamic type is characterized by the Lamé equation

∂kγij = γikγkj, i, j, k distinct

∂iγij + ∂jγji +
∑

k 6=i, j

γkiγkj = 0, i 6= j

plus the equations

ui∂iγij + uj∂jγji +
∑

k 6=i, j

ukγkiγkj +
1

2
(γij + γji) = 0, i 6= j

Here γij are the rotation coefficients

γij(u) := H−1
i ∂iHj, i 6= j.

with the Lamé coefficients

Hi(u) := f
−1/2
i (u), i = 1, . . . , n
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The “Lax pair” (Ferapontov)

∂iψj = γjiψi, i 6= j

∂iψi +
∑

k 6=i

γki
uk − λ

ui − λ
ψk +

1

2(ui − λ)
ψi = 0.

Reconstruction of the bihamiltonian structure from so-
lutions γij:

To solve ∂kφi = γkiφk, i 6= k

To get a solution near a point u0 such that

φi(u0) 6= 0, i = 1, . . . , n

then

gij
1 = φ−2

i δij, gij
2 = uiφ−2

i δij

Depends on n2 functions of one variable.
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Examples of bihamiltonian structures of hydro-

dynamic type come from:

• dispersionless limits of some bihamiltonian

structures that are familiar in soliton theory

• 2d topological field theory

• Frobenius manifolds
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2d topological field theory

Genus expansion of the free energy

F = F0 + ε2F1 + ε4F2 + . . .

Here Fg = Fg(ti,p), i = 1, . . . , n, p ≥ 0. The

genus zero two point correlation functions

vi =
∂2F0

∂t1,0∂ti,0

give a solution of a hierarchy of bihamiltonian

systems of hydrodynamic type

∂vi

∂tj,p
= {vi(x), Hj,p}1 = {vi(x), Hj,p−1}2

F (v) = F0|t1,0=vi, ti,p≥1=0
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Conjecturally, the full genera two point corre-

lation functions

wi =
∂2F

∂t1,0∂ti,0

satisfy certain hierarchy of bihamiltonian sys-

tem of the KdV type. The related bihamil-

tonian structures should be certain deforma-

tions of bihamiltonian structures of hydrody-

namic type.
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Known examples:

2d topological gravity and the KdV hierarchy

(Kontsevich-Witten)

CP1 topological sigma model and the extended

Toda hierarchy (Getzler, Okounkov-Pandharipande,

Dubrovin-Z.)
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2. Deformations of Hamiltonian structures

of hydrodynamic type

For a given Poisson bracket of hydrodynamic

type with the flat metric (gij), we consider

{wi(x), wj(y)} = gij(w) δ′(x−y)+Γij
k wk

x δ(x−y)

+
∑

k≥1

εk
k+1∑

j=0

A
ij
k,l(w;wx, . . . , w(l)) δ(k+1−l)(x− y)

Here A
ij
k,l ∈ A with A = C∞(w)[wi,p]p≥1 and

degwi,p = p, degA
ij
k,l = l, wi,p = ∂p

xwi
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Miura type transformations

wi 7→ Qi(w) +
∑

k≥1

εkP i
k(w, wx, . . . , w(k)).

Here P i
k ∈ A, degP i

k = k, and det
(

∂Qi

∂wj

)
6= 0.

Problem:

Classify the equivalence classes of deforma-

tions of a given Poisson bracket of hydrody-

namic type under the Miura type transforma-

tions.
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Poisson cohomologies: infinite dimensional case

Local translation invariant k-vector field

α =
∑ 1

k!
∂s1

x1
. . . ∂sk

xk
Ai1...ik

∂

∂wi1,s1(x1)
∧ · · · ∧ ∂

∂wik,sk(xk)

The components of α have the form

Ai1...ik =
∑

p2,...,pk≥0

Bi1...ik

p2...pk
(w(x1);wx(x1), . . . )

×δ(p2)(x1 − x2) . . . δ(pk)(x1 − xk)

Here

Bi1...ik

p2...pk
∈ A

and the distribution Ai1...ik are antisymmetric

with respect to the simultaneous permutations

ip, xp ↔ iq, xq.
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The operator of total derivative ∂x is defined by

∂xf(w;wx, wxx, . . . ) =
∑

s≥0

wi,s+1 ∂f

∂wi,s
.

The delta-function and its derivatives are defined for-
mally by

∫
f(w(y);wy(y), wyy(y), . . . ) δ(k)(x− y) dy

= ∂k
xf(w(x);wx(x), wxx(x), . . . ).

Note the useful identity

f(w(y);wy(y), wyy(y), . . . ) δ(k)(x− y)

=
k∑

m=0

(
k
m

)
∂m

x f(w(x);wx(x), wxx(x), . . . )

×δ(k−m)(x− y).
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Denote

Λk : Space of local k-vectors

Λ0 : I =
∫

f(w, wx, . . . ) dx, f ∈ A

The Schouten-Nijenhuis bracket is defined on

the space of local multi-vectors

[ , ] : Λk × Λl → Λk+l−1, k, l ≥ 0.

It satisfies
[α, β] = (−1)kl[β, α]

(−1)km[[α, β], γ] + (−1)kl[[β, γ], α]

+(−1)lm[[γ, α], β] = 0

for α ∈ Λk, β ∈ Λl, γ ∈ Λm.
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In particular, for two vector fields

ξ =
∑

s≥0

∂s
xξi ∂

∂wi,s(x)
, η =

∑

s≥0

∂s
xηi ∂

∂wi,s(x)

the Schouten-Nijenhuis bracket is given by the

usual commutator

[ξ, η] =
∑

s≥0

∂s
xζi ∂

∂wi,s(x)

with

ζ =
∑

s≥0

(
∂s

xξk ∂ηi

∂wk,s
− ∂s

xηk ∂ξi

∂wk,s

)

Poisson bivector α ∈ Λ2: [α, α] = 0
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The natural gradation on the ring A
degwi,m = m, m ≥ 1, deg f(u) = 0

can be extended to a gradation on the space of local
multi-vectors by defining

deg
∂

∂wi,s
= −s, deg δ(s) = s + 1

Denote

Λk
m = {ξ ∈ Λk

∣∣deg ξ = m}

Λ̂k = {α ∈ Λk ⊗ C[[ε], ε−1]|degα = k}
Λ̂ = ⊕k≥0Λ̂

k

Here deg ε = −1.
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A Poisson bracket of hydrodynamic type cor-

responds to a Poisson bivector

$ ∈ Λ2
2

Its deformations are Poisson bivectors of the

form

$ +
∑

k≥1

εkPk ∈ Λ̂2

Consider the Poisson cohomologies of (Λ̂, $)

Hk = Ker ∂|Λ̂k / Im ∂|Λ̂k−1 , k ≥ 0

Hk = ⊕m≥−1 εmHk
m

21



Theorem. Let M be a ball of Rn,

Hk
m = 0, m ≥ 1.

(E. Getzler; for k = 1,2 also by L. Degiovanni,

F. Magri, V. Sciacca)

22



Corollary. For any Poisson bivector

$ +
∑

k≥1

εkPk

there exists a vector field

X =
∑

k≥1

εkXk ∈ Λ̂1

such that

$ +
∑

k≥1

εkPk = e−adX$.

I.e., any deformation of a Hamiltonian structure of hy-
drodynamic type $ can be obtained by a Miura type
transformation

wi 7→ eXwi = wi +
∑

k≥1

P i
k(w, wx, . . . , w

(k))
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Example. The Magri bracket

{w(x), w(y)} = w(x)δ′ + 1

2
wxδ − ε2δ′′′

for the KdV equation

wt = wwx − 2

3
ε2 wxxx.

The Miura transformation

w = v − ε
vx√

v

reduces it to

{v(x), v(y)} = v(x)δ′ + 1

2
vxδ
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3. Deformations of bihamiltonian struc-

tures of hydrodynamic type

A bihamiltonian structure of hydrodynamic type

is given by a pair of bivectors $1, $2 ∈ Λ2
2 with

[a$2 + b$1, a$2 + b$1] = 0

for arbitrary parameters a, b.

Two differentials

ε∂a : Λ̂k → Λ̂k+1, ε∂aξ = ε[$a, ξ], a = 1,2.

∂2
1 = ∂2

2 = ∂1∂2 + ∂2∂1 = 0.
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Define

Ωk = Ker(∂1|Λ̂k)

Then ε∂2 defines a differential

ε∂2 : Ωk → Ωk+1

The cohomologies of the complex (Ω, ε∂2) give

the bihamiltonian cohomologies

H0
m = Ker(∂1|Λ0

m
) ∩Ker(∂2|Λ0

m
)

H1
m = Ker(∂1∂2|Λ0

m
)

Hk
m = Ker(∂1∂2|Λk−1

m
)/Im(∂1|Λk−2

m−2
)⊕ Im(∂2|Λk−2

m−2
)
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For I ∈ Ker(∂1∂2|Λ0
m
), the triviality of the first

Poisson cohomology of $1 ensures the exis-

tence of J ∈ Λ0
m such that ∂2I = ∂1J.

So H1
m corresponds to the space of bihamil-

tonian vector fields

For X ∈ Ker(∂1∂2|Λ1
m
) we have an infinitesi-

mal deformation

($1, $2) 7→ ($1, $2 + ε∂1X)

So H2
m corresponds to the space of infinites-

imal deformations of the bihamiltonian struc-

ture modulo the trivial deformations caused by

Miura type transformations.
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Theorem. For a semisimple bihamiltonian struc-

ture of hydrodynamic type, we have H2
m = 0

for m = 1,3,4, . . . and

H2
2 = {

n∑

i=1

(
∂1

∫
(uici(u

i)ui
x logui

x)dx

−∂2

∫
(ci(u

i)ui
x logui

x)dx

)
}

Here u1, . . . , un are canonical coordinates of the

semisimple bihamiltonian structure, under these

coordinates, the related compatible flat met-

rics take the form

g
ij
1 = f i(u)δij, g

ij
2 = ui f i(u)δij.

(B. Dubrovin, S.Q. Liu, Z. )
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Any equivalence class of infinitesimal deforma-

tion of a semisimple bihamiltonian structure of

hydrodynamic type ($1, $2) has a unique rep-

resentative of the form

($1, $2) 7→ ($1, $2 + ε∂1X), X ∈ H2
2
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Corollary. For a given semisimple bihamiltonian

structure of hydrodynamic type, any equiva-

lence class of deformations is uniquely deter-

mined by a set of n functions of one variable

c1(u
1), . . . , cn(u

n)

Here u1, . . . , un are the canonical coordinates

of the semisimple bihamiltonian structure of

hydrodynamic type.

The functions c1(u
1), . . . , cn(un) are called the

central invariants of the deformed bihamil-

tonian structure.

30



Computation of the central invariants:

{ui(x), uj(y)}a = gij
a (u)δ′ + Γij

k;au
k
x δ

+ε

2∑

k=0

Aij
k,a δ(2−k)(x− y) + ε2

3∑

k=0

Bij
k,a δ(3−k)(x− y)

+O(ε3), a = 1,2

the central invariants are given by

ci(u) =
1

3(f i(u))2


Qii

2 − uiQii
1 +

∑

k 6=i

(P ki
2 − uiP ki

1 )2

fk(u)(uk − ui)




i = 1, . . . , n.

gij
1 = δijf

i(u), gij
2 = δiju

if i(u)

P ij
a (w) = Aij

0;a(u), Qij
a (w) = Bij

0;a(u)
i, j = 1, . . . , n, a = 1,2.
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If we choose another representative

{ , }˜1 = c{ , }2 + d{ , }1, { , }˜2 = a{ , }2 + b{ , }1
ad− bc 6= 0

of the above bihamiltonian structure, then the functions
ci(u) are changed to

c̃i(ũ
i) =

cui + d

ad− bc
ci(u

i), i = 1, . . . , n.

where

ũi =
aui + b

cui + d
, i = 1, . . . , n

are the canonical coordinates of the bihamiltonian struc-

ture with respect to the new representative.
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4. Examples and problems

Example 1.

{w(x), w(y)}1 = δ′(x− y)

{w(x), w(y)}2 = w(x)δ′(x− y) +
1

2
wx δ(x− y)

The second one is the Lie-Poisson bracket on

the dual of the Lie algebra of smooth vector

fileds on S1.

Bihamiltonian structure for the Riemann hier-

archy

∂w

∂tp
=

1

p!
wp wx, p ≥ 0
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One deformation of the above bihamiltonian

structure

{w(x), w(y)}1 = δ′(x− y)

{w(x), w(y)}2 = w(x)δ′(x− y) +
1

2
wx δ(x− y)

+
ε2

8
δ′′′(x− y)

It is the Gardner, Zakharov & Faddeev; Magri

bihamiltonian structure for the KdV hierarchy,

in particular, the KdV equation.

The central invariant c1 = 1
24.
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A second deformation of the above bihamil-

tonian structure of hydrodynamic type

{w(x), w(y)}1 = δ′(x− y)− ε2

8
δ′′′(x− y)

{w(x), w(y)}2 = w(x)δ′(x− y) +
1

2
wx δ(x− y)

It gives the bihamiltonian structure of the Camassa-
Holm equation

wt = mmx − ε2

12
mxmxx − ε2

24
mmxxx

w = m− ε2

8
mxx.

The central invariant c1 = u
24, u = w.
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More examples of bihamiltonian structures

We consider the semisimple bihamiltonian struc-

tures of hydrodynamic type, that are defined

on the formal loop space of the orbit spaces

of Coxeter groups of type An, B,Cn. These bi-

hamiltonian structures are induced by the flat

pencil of metrics discovered by Saito - Yano -

Sekiguchi in 1980. These flat pencil of met-

rics also induce polynomial Frobenius manifold

structures on these orbit spaces. We show that

the bihamiltonian structure obtained from the

Drinfeld-Sokolov construction are certain de-

formations of these semisimple bihamiltonian

structures of hydrodynamic type with constant

central invariants.
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i) The An case, the first Poisson bracket of hydrody-
namic type is given by

n∑

i, j=1

{wi(x), wj(y)}1 pi−1qj−1

=
1

n + 1

[
λ′(p)− λ′(q)

p− q
δ′(x− y)

+

(
λx(p)− λx(q)

(p− q)2
− λ′x(q)

p− q

)
δ(x− y)

]

where

λ(p, x) := pn+1 +
n∑

i=1

wi(x) pi−1

λ(p) = λ(p, x), λ(q) = λ(q, x)
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The second one have the expression

n∑

i, j=1

{wi(x), wj(y)}2 pi−1qj−1

=
1

n + 1

[(
λ′(p)λ(q)− λ′(q)λ(p)

p− q
+

1

n + 1
λ′(p)λ′(q)

)
δ′

+

(
λx(p)λ(q)− λx(q)λ(p)

(p− q)2
+

λx(q)λ′(p)− λ′x(q)λ(p)

p− q

+
1

n + 1
λ′(p)λ′x(q)

)
δ(x− y)

]
.
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A representative of the class of deformation of

the above bihamiltonian structure with central

invariants

c1 = · · · = cn =
n + 1

24
can be described in terms of the differential

operator

L = (ε∂x)
n+1 + wn(x)(ε∂x)

n−1 + · · ·+ w1(x).

For a local functional F define the pseudo-

differential operator

δF

δL
=

n∑

i=1

(ε ∂x)
−i δF

δwi(x)
.
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Then we have the bihamiltonian structure

{F, G}i =
1

n + 1

∫
res

(
δF

δL
Hi

δG

δL

)
dx, i = 1,2.

The Hamiltonian mappings are defined by

H1 : A 7→ [L, A]+

H2 : A 7→ (LA)+L− L(AL)+

+
1

n + 1

[
L,

∫ x

res[L, A] dx

]
.

(Adler, Gelfand-Dickey)
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ii) For the semisimple bihamiltonian structures

that correspond to the Coxeter groups of type

Bn, Cn, Dn, the Drinfeld-Sokolov construction

from the affine Kac-Moody algebras B
(1)
n , C

(1)
n , D

(1)
n

gives the deformations that belong to the class

with central invariants

For Bn type: c1 = 1
6, c2 = · · · = cn = 1

12

For Cn type: c1 = 1
24, c2 = · · · = cn = 1

12

For Dn type: c1 = · · · = cn = 1
12
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iii) For any semisimple Frobenius manifold, there

is associated to it a semisimple bihamiltonian

structure of hydrodynamic type. A construc-

tion of the so called topological deformation of

this bihamiltonian structure of hydrodynamic

type was proposed by Boris Dubrovin and Z.,

using properties of the Viasoro symmetries of

the associated hierarchy of integrable systems.

Such deformations have central invariants

c1 = c2 = · · · = cn =
1

24
.
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To calculate H2
m, we need to use the following

Theorem. (B. Dubrovin, S.Q. Liu, Z.) Any deforma-
tion of a semisimple bihamiltonian structure of hydrody-
namic type is quasitrivial, i.e., it can be obtained from
its leading terms by a quasi-Miura transformation

wi 7→ wi +
∑

k≥1

εkAi
k(w, wx, . . . , w

(mk))

Ai
k ∈ C∞(B)

[
wx, . . . , w

(mk)
] [(

u1
xu2

x . . . un
x

)−1
]

mk ≤
[
3 k

2

]
, degAi

k = k

Corollary. Any two bihamiltonian systems w.r.t. a
same semisimple bihamiltonian structure mutually com-
mute.
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Examples of quasitriviality

The bihamiltonian structure for KdV

{w(x), w(y)}1 = δ′

{w(x), w(y)}2 = w(x)δ′ +
1

2
wxδ +

ε2

8
δ′′′

is reduced to the leading terms

{v(x), v(y)}1 = δ′

{v(x), v(y)}2 = v(x)δ′ +
1

2
vxδ

by a quasi-Miura transformation

w = v +
ε2

24
∂2

x log vx

+ε4∂2
x

(
v(4)

1152v2
x

− 7vxxvxxx

1920v3
x

+
v3

xx

360v4
x

)
+ . . .

This transformation coincides with the genus expansion
in 2d topological gravity, v = ∂2F0

∂x∂x
, w = ∂2F

∂x∂x
.
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The bihamiltonian structure for the camassa-Holm equa-
tion

{w(x), w(y)}1 = δ′ − ε2

8
δ′′′

{w(x), w(y)}2 = w(x)δ′ +
1

2
w′(x)δ

is reduced to the leading terms

{v(x), v(y)}1 = δ′

{v(x), v(y)}2 = v(x)δ′ +
1

2
vxδ
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by a quasi-Miura transformation

w = v + ε2 ∂x

(
v vxx

24 vx
− vx

48

)

+ε4∂x

(
7 v2

xx

2880 vx
+

v v3
xx

180 v3
x

− v2 v4
xx

90 v5
x

− vxxx

512

−59 v vxx vxxx

5760 v2
x

+
37 v2 v2

xx vxxx

1920 v4
x

− 7 v2 v2
xxx

1920 v3
x

+
5 v v(4)

1152 vx

−31 v2 vxx v(4)

5760 v3
x

+
v2 v(5)

1152 v2
x

)
+ . . . .
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Question: Given a semisimple bihamiltonian

structure of hydrodynamic type, and a set of

functions c1(u
1), . . . , cn(un), whether there ex-

ists a deformation with c1, . . . , cn as the central

invariants?

(sufficient condition: H3
m = 0, m ≥ 3)

47


