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Background

�An almost Dirac structure DP on P (Courant
and Weinstein [1988]) is a subbundle

DP ⊂ TP ⊕ T ∗P

such that DP = D⊥
P , where, for each x ∈ P ,

D⊥
P (x) = {(ux, βx) ∈ TxP × T ∗

xP |
〈〈 (vx, αx), (ux, βx) 〉〉 = αx(ux) + βx(vx) = 0,

for all (vx, αx) ∈ DP (x)}.
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Background

�An almost Dirac structure DP on P (Courant
and Weinstein [1988]) is a subbundle

DP ⊂ TP ⊕ T ∗P

such that DP = D⊥
P , where, for each x ∈ P ,

D⊥
P (x) = {(ux, βx) ∈ TxP × T ∗

xP |
〈〈 (vx, αx), (ux, βx) 〉〉 = αx(ux) + βx(vx) = 0,

for all (vx, αx) ∈ DP (x)}.
�A Dirac structure is one that satisfies

〈£X1
α2, X3〉 + 〈£X2

α3, X1〉 + 〈£X3
α1, X2〉 = 0,

for all pairs of vector fields and one-forms (X1, α1),
(X2, α2), (X3, α3) that take values in DP .
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Background
�Needless to say, “Dirac structures” were named after

Dirac and his theory of constraints.
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�Needless to say, “Dirac structures” were named after

Dirac and his theory of constraints.

�Dirac started off with Hamilton’s principle:

δ

∫ b

a

L(q, q̇) dt = 0.

Especially, for the case of degenerate Lagrangians
(Dirac, Lectures on quantum mechanics [1964]).
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Background
�Needless to say, “Dirac structures” were named after

Dirac and his theory of constraints.

�Dirac started off with Hamilton’s principle:

δ

∫ b

a

L(q, q̇) dt = 0.

Especially, for the case of degenerate Lagrangians
(Dirac, Lectures on quantum mechanics [1964]).

�But, Dirac went to work on the Hamiltonian side by
introducing the associated Poisson brackets:

{f, g}S = {f, g}P − {f, ϕα}P cα β {ϕβ, g}P ,

where a symplectic submanifold S ⊂ P is defined as

S = {x ∈ P | ϕα(x) = 0}.
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Background

�A notion of implicit Hamiltonian systems was
developed by van der Schaft and Maschke [1995]:

(X,dH) ∈ DP .
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Background

�A notion of implicit Hamiltonian systems was
developed by van der Schaft and Maschke [1995]:

(X,dH) ∈ DP .

�Researches on the Lagrangian side has been left out
and there has been a gap between Dirac structures and
Lagrangian systems.

�Recently, a notion of implicit Lagrangian sys-
tems has been developed by Yoshimura and Mars-
den (Journal of Geometry and Physics [published
online, April, 2006]):

(X, DL) ∈ D∆Q
.
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Induced Dirac Structures

�Let Q be a configuration manifold. Given a distri-
bution ∆Q ⊂ TQ and a distribution on T ∗Q can be
defined by

∆T ∗Q = (TπQ)−1 (∆Q) ⊂ TT ∗Q,

where πQ : T ∗Q → Q is the canonical projection.
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Induced Dirac Structures
�Let Q be a configuration manifold. Given a distri-

bution ∆Q ⊂ TQ and a distribution on T ∗Q can be
defined by

∆T ∗Q = (TπQ)−1 (∆Q) ⊂ TT ∗Q,

where πQ : T ∗Q → Q is the canonical projection.

�Then, an induced Dirac structure can be defined
by, for each z ∈ T ∗Q,

D∆Q(z)={(vz, αz)∈Tz(T
∗Q)×T ∗

z (T ∗Q) |vz∈∆T ∗Q(z),

αz(wz) = Ω∆Q
(vz, wz) for all wz ∈ ∆T ∗Q(z)},

where Ω is the canonical two–form on T ∗Q and Ω∆Q
is

the restriction of Ω to ∆T ∗Q.
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Dirac Differential Operator

�Let L : TQ → R be a Lagrangian (possibly, degener-
ate) and dL : TQ → T ∗TQ be locally given by

dL =

(
q, v,

∂L

∂q
,
∂L

∂v

)
.
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Dirac Differential Operator

�Let L : TQ → R be a Lagrangian (possibly, degener-
ate) and dL : TQ → T ∗TQ be locally given by

dL =

(
q, v,

∂L

∂q
,
∂L

∂v

)
.

�Define a Dirac differential of L by

DL = γQ ◦ dL : TQ → T ∗(T ∗Q),

where γQ : T ∗TQ → T ∗T ∗Q is a natural diffeomorphsim.

� In local, it reads

DL =

(
q,

∂L

∂v
,−∂L

∂q
, v

)
,

where p = ∂L/∂v.
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Implicit Lagrangian Systems

�An implicit Lagrangian system can be defined as
a triple (L, ∆Q, X) that satisfies, for each (q, v)∈∆Q,

(X(q, p), DL(q, v)) ∈ D∆Q
(q, p)

where (q, p) = FL(q, v).
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Implicit Lagrangian Systems

�An implicit Lagrangian system can be defined as
a triple (L, ∆Q, X) that satisfies, for each (q, v)∈∆Q,

(X(q, p), DL(q, v)) ∈ D∆Q
(q, p)

where (q, p) = FL(q, v).

�The local expression of implicit Lagrangian systems can
be given by

ṗ− ∂L

∂q
∈ ∆◦(q), q̇ = v ∈ ∆(q), p =

∂L

∂v
.
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Examples: Nonholonomic Systems

�Nonholonomic mechanical systems.

Constraint distribution : ∆Q ⊂ TQ
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Examples: Electric Circuits

�Holonomic systems with degenerate Lagrangians.

L

C1C2 C3

eC3

fC3fC2

eC2
eC1

fC1

fL

eL

L =
1

2
L (fL)2 − 1

2
C1 (qC1

)2 − 1

2
C2 (qC2

)2 − 1

2
C3 (qC3

)2
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Examples: The Case ∆Q = TQ

�The canonical Dirac Structure D on T ∗Q may
be defined as

D = graph(Ω[) ⊂ TT ∗Q⊕ T ∗T ∗Q,
or

D = graph(B]) ⊂ TT ∗Q⊕ T ∗T ∗Q,

where Ω[ : TT ∗Q→T ∗T ∗Q and B] : T ∗T ∗Q→TT ∗Q.
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Examples: The Case ∆Q = TQ
�The canonical Dirac Structure D on T ∗Q may

be defined as

D = graph(Ω[) ⊂ TT ∗Q⊕ T ∗T ∗Q,
or

D = graph(B]) ⊂ TT ∗Q⊕ T ∗T ∗Q,

where Ω[ : TT ∗Q→T ∗T ∗Q and B] : T ∗T ∗Q→TT ∗Q.

�The standard implicit Lagrangian system

(X, DL) ∈ D

reads

p =
∂L

∂v
, v = q̇, ṗ =

∂L

∂q
,

which are implicit Euler–Lagrange equations.
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Hamilton–Pontryagin Principle

�The Hamilton–Pontryagin principle (originally
developed by Livens [1919]) is given by

δ

∫ t2

t1

{L(q(t), v(t)) + p(t) · (q̇(t)− v(t))} dt = 0.
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Hamilton–Pontryagin Principle

�The Hamilton–Pontryagin principle (originally
developed by Livens [1919]) is given by

δ

∫ t2

t1

{L(q(t), v(t)) + p(t) · (q̇(t)− v(t))} dt = 0.

Keeping the endpoints of q(t) fixed,∫ t2

t1

{
(q̇ − v) δp +

(
−ṗ +

∂L

∂q

)
δq +

(
−p +

∂L

∂v

)
δv

}
dt=0

is satisfied for all δq, δv and δp, one can directly obtain
the implicit Euler–Lagrange equations:
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Hamilton–Pontryagin Principle

�The Hamilton–Pontryagin principle (originally
developed by Livens [1919]) is given by

δ

∫ t2

t1

{L(q(t), v(t)) + p(t) · (q̇(t)− v(t))} dt = 0.

Keeping the endpoints of q(t) fixed,∫ t2

t1

{
(q̇ − v) δp +

(
−ṗ +

∂L

∂q

)
δq +

(
−p +

∂L

∂v

)
δv

}
dt=0

is satisfied for all δq, δv and δp, one can directly obtain
the implicit Euler–Lagrange equations:

p =
∂L

∂v
, q̇ = v, ṗ =

∂L

∂q
.
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What are Questions ?
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What are Questions ?

�Consider implicit Lagrangian systems with
symmetry, especially for the simplest case Q=G.

•How can we reduce the canonical Dirac structure and
an induced Dirac structure on T ∗G ?

•How can we develop reduction of the Hamilton–Pontryagin
principle?

•Can we develop an implicit analogue of Euler–Poincaré
and Lie–Poisson reductions ?

Our goals are to answer these questions!
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Developments in Reduction

�There is a rich history on reduction; refer to Mars-
den and Weinstein [2001], Comments on the history,
theory, and applications of symplectic reduction.
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Developments in Reduction

�There is a rich history on reduction; refer to Mars-
den and Weinstein [2001], Comments on the history,
theory, and applications of symplectic reduction.

�Dirac reduction in the Poisson case was developed by
Courant [1991], consistent with the Poisson reduction
developed by Marsden and Ratiu [1986].

�Reduction of Dirac structures and Hamiltonian sys-
tems with symmetry was also shown by Dorfman [1993].

�Reduction of implicit Hamiltonian systems was devel-
oped by van der Schaft and Blankenstein [2000].

Singular reduction of implicit Hamiltonian systems was
developed by Blankenstein and Ratiu [2002].
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Lie –Poisson Reduction

15



Lie –Poisson Reduction

�The group action of a Lie group G on T ∗G is by cotan-
gent lift of the left (or right) translation of G on itself
and the quotient space is naturally diffeomorphic to the
dual of the Lie algebra, namely,

(T ∗G)/G ∼= g∗

with the ± Lie–Poisson bracket

{f, h}± = ±
〈

µ,

[
δf

δµ
,
δh

δµ

]〉
,

where f, h ∈ F(g∗) (Marsden and Weinstein [1983]).

15



Lie –Poisson Reduction

�The group action of a Lie group G on T ∗G is by cotan-
gent lift of the left (or right) translation of G on itself
and the quotient space is naturally diffeomorphic to the
dual of the Lie algebra, namely,

(T ∗G)/G ∼= g∗

with the ± Lie–Poisson bracket

{f, h}± = ±
〈

µ,

[
δf

δµ
,
δh

δµ

]〉
,

where f, h ∈ F(g∗) (Marsden and Weinstein [1983]).

�The Lie–Poisson equation can be obtained as

µ̇ = ∓ ad∗δh
δµ

µ.
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Euler–Poincaré Reduction
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Euler–Poincaré Reduction

�The Lagrangian analogue of the Lie–Poisson reduction
is given by a reduced constrained variational
principle for l :g→R (Marsden and Ratiu [1999]):

δ

∫ t2

t1

l(ξ(t)) dt = 0

with variations of the form

δξ = η̇ + [v, η],

where η(t) is a curve in g such that η(t1) = η(t2) = 0.
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Euler–Poincaré Reduction

�The Lagrangian analogue of the Lie–Poisson reduction
is given by a reduced constrained variational
principle for l :g→R (Marsden and Ratiu [1999]):

δ

∫ t2

t1

l(ξ(t)) dt = 0

with variations of the form

δξ = η̇ + [v, η],

where η(t) is a curve in g such that η(t1) = η(t2) = 0.

�The Euler–Poincaré equations are obtained as
d

dt

δl

δξ
= ad∗ξ

δl

δξ
.
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Lie -Poisson Variational Principle

� See, Cendra, Marsden, Pekarsky and Ratiu [2003], Vari-
ational principles for Lie-Poisson and Hamilton-Poincaré
equations, Moscow Mathematical Journal 3, 833-867.
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Lie -Poisson Variational Principle

� See, Cendra, Marsden, Pekarsky and Ratiu [2003], Vari-
ational principles for Lie-Poisson and Hamilton-Poincaré
equations, Moscow Mathematical Journal 3, 833-867.

�Let H : T ∗G → R be a left–invariant Hamiltonian.
Hamilton’s phase space principle is given by

δ

∫ t2

t1

(p(t) · ġ(t)−H(g(t), p(t))) dt = 0,

where the function B(g, ġ, p) = p·ġ−H(g, p) is defined
on TG⊕ T ∗G.
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Lie -Poisson Variational Principle
� See, Cendra, Marsden, Pekarsky and Ratiu [2003], Vari-

ational principles for Lie-Poisson and Hamilton-Poincaré
equations, Moscow Mathematical Journal 3, 833-867.

�Let H : T ∗G → R be a left–invariant Hamiltonian.
Hamilton’s phase space principle is given by

δ

∫ t2

t1

(p(t) · ġ(t)−H(g(t), p(t))) dt = 0,

where the function B(g, ġ, p) = p·ġ−H(g, p) is defined
on TG⊕ T ∗G.

�The group G acts on B by simultaneously left trans-
lating on each factor by the left-action and the tangent
and contangent lifts. Then, B is to be G–invariant.
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Lie -Poisson Variational Principle

�Using λ̄ : T ∗G → G× g∗ and λ : TG → G× g,
one can identify

TG⊕ T ∗G ∼= G× (g⊕ g∗).
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Lie -Poisson Variational Principle

�Using λ̄ : T ∗G → G× g∗ and λ : TG → G× g,
one can identify

TG⊕ T ∗G ∼= G× (g⊕ g∗).

�Define the trivialized Hamiltonian on G× g∗ by

H̄ := H ◦ λ̄−1

and define h : g∗ → R by the restriction of H̄ to g∗.

�The functionB on TG⊕T ∗G drops to quotients,
namely, the function b : g ⊕ g∗ → R given by

b(ξ, µ) = µ · ξ − h(µ),

where ξ = TgLg−1 · ġ ∈ g and µ = T ∗
e Lg · pg ∈ g∗.
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Lie -Poisson Variational Principle

�Then, the Lie–Poisson variational principle is
given by

δ

∫ t2

t1

{µ(t) · ξ(t)− h(µ(t))} dt = 0

with variations of the form

δξ = η̇ + [v, η],

where
η(t) = TgLg−1δg(t)

is a curve in g such that

η(t1) = η(t2) = 0.
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Lie -Poisson Variational Principle

�Taking variations of (ξ(t), µ(t))∈g⊕ g∗, it reads∫ t2

t1

{(
ξ − δh

δµ

)
δµ + (−µ̇ + ad∗ξµ) · η

}
dt = 0.

Then, we can obtain

µ̇ = ad∗ξ µ, ξ =
δh

δµ
.
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t1

{(
ξ − δh

δµ

)
δµ + (−µ̇ + ad∗ξµ) · η

}
dt = 0.

Then, we can obtain

µ̇ = ad∗ξ µ, ξ =
δh

δµ
.

�Thus, it reads the Lie–Poisson equations on g∗:

µ̇ = ad∗δh
δµ

µ.

�But, the variational principle suggests one should re-
gard the proper space for the Lie–Poisson equations
not as simply g∗ but as the larger space g⊕ g∗.
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Lie -Poisson Variational Principle

�Taking variations of (ξ(t), µ(t))∈g⊕ g∗, it reads∫ t2

t1

{(
ξ − δh

δµ

)
δµ + (−µ̇ + ad∗ξµ) · η

}
dt = 0.

Then, we can obtain

µ̇ = ad∗ξ µ, ξ =
δh

δµ
.

�Thus, it reads the Lie–Poisson equations on g∗:

µ̇ = ad∗δh
δµ

µ.

�But, the variational principle suggests one should re-
gard the proper space for the Lie–Poisson equations
not as simply g∗ but as the larger space g⊕ g∗.

This is the key to our questions!
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Reduction of Variational Principle

�Let L : TG → R be a left invariant Lagrangian and
recall the Hamilton–Pontryagin principle is given by

δ

∫ t2

t1

{L(g(t), v(t)) + p(t) · (ġ(t)− v(t))} dt = 0.
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Reduction of Variational Principle

�Let L : TG → R be a left invariant Lagrangian and
recall the Hamilton–Pontryagin principle is given by

δ

∫ t2

t1

{L(g(t), v(t)) + p(t) · (ġ(t)− v(t))} dt = 0.

�The group G acts on the function

F (g, v, p) = L(g, v) + p · (ġ − v)

on TG ⊕ T ∗G by simultaneously left translating such
that, for an element h ∈ G,

h · (g, v, p) = (hg, TgLh · v, T ∗
hgLh−1 · p).

Then, the function F is to be invariant under the action
of G, since we assume that L is G–invariant.
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Reduction of Variational Principle

�Using the diffeomorphism λ : TG → G× g, define the
trivialized Lagrangian on G× g by

L̄ := L ◦ λ−1

and define the reduced Lagrangian l : g → R by
restriction of L̄ to g.
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Reduction of Variational Principle

�Using the diffeomorphism λ : TG → G× g, define the
trivialized Lagrangian on G× g by

L̄ := L ◦ λ−1

and define the reduced Lagrangian l : g → R by
restriction of L̄ to g.

�The function F on TG⊕ T ∗G given by

F (g, v, p) = L(g, v) + p · (ġ − v)

drops to the quotient, which is to be f : g ⊕ g∗ →
R given by

f (η, µ) = l(η) + µ · (ξ − η),
where

ξ =TgLg−1 · ġ, η=TgLg−1 ·v∈g, and µ=T ∗
e Lg ·p∈g∗.

22



Reduction of Variational Principle

�Reduction of the Hamilton-Pontryagin prin-
ciple is given by

δ

∫ t2

t1

{l(η(t)) + µ(t) · (ξ(t)− η(t))} dt = 0
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Reduction of Variational Principle

�Reduction of the Hamilton-Pontryagin prin-
ciple is given by

δ

∫ t2

t1

{l(η(t)) + µ(t) · (ξ(t)− η(t))} dt = 0

with variations of the form

δξ(t) = ζ̇(t) + [ξ(t), ζ(t)],

where
ζ = TgLg−1δg

is a curve in g such that

ζ(t1) = ζ(t2) = 0.
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Reduction of Variational Principle

�Taking variations yields∫ t2

t1

{(
δl

δη
− µ

)
δη + δµ · (ξ − η)

+(−µ̇ + ad∗ξµ) · ζ
}

dt = 0,

which is satisfied for any δη ∈ g, ζ ∈ g and δµ ∈ g∗.
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�Taking variations yields∫ t2

t1

{(
δl

δη
− µ

)
δη + δµ · (ξ − η)

+(−µ̇ + ad∗ξµ) · ζ
}

dt = 0,

which is satisfied for any δη ∈ g, ζ ∈ g and δµ ∈ g∗.

�Then, reduction of implicit Euler-Lagrange
equations can be given by

µ =
δl

δη
, ξ = η, µ̇ = ad∗ξµ,
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Reduction of Variational Principle

�Taking variations yields∫ t2

t1

{(
δl

δη
− µ

)
δη + δµ · (ξ − η)

+(−µ̇ + ad∗ξµ) · ζ
}

dt = 0,

which is satisfied for any δη ∈ g, ζ ∈ g and δµ ∈ g∗.

�Then, reduction of implicit Euler-Lagrange
equations can be given by

µ =
δl

δη
, ξ = η, µ̇ = ad∗ξµ,

which we call implicit Euler–Poincaré equations
on g⊕ g∗.
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The Canonical Forms on G×g∗

�Using λ̄ : T ∗G → G× g∗, the canonical one-form θ is
locally represented by, for each (g, µ) ∈ G× g∗,

θ(g, µ) · (v, ρ) = µ(TgLg−1 v),

where (v, ρ) ∈ T(g,µ)(G× g∗) ∼= TgG× g∗.
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The Canonical Forms on G×g∗

�Using λ̄ : T ∗G → G× g∗, the canonical one-form θ is
locally represented by, for each (g, µ) ∈ G× g∗,

θ(g, µ) · (v, ρ) = µ(TgLg−1 v),

where (v, ρ) ∈ T(g,µ)(G× g∗) ∼= TgG× g∗.

�The canonical two-form ω = −dθ on G × g∗ can be
locally denoted by, for each (g, µ) ∈ G× g∗,

ω(g, µ)((v, ρ), (w, σ))

=−ρ(TgLg−1w)+σ(TgLg−1v)+µ([TgLg−1v, TgLg−1w]),

where (w, σ) ∈ T(g,µ)(G× g∗) ∼= TgG× g∗ (see, Abra-
ham and Marsden [1978], pp.315).
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The Canonical Dirac Structure

�The canonical Dirac structure D on G× g∗ is
a subbundle whose fibers, for each (g, µ) ∈ G× g∗,

D(g, µ) ⊂ T(g,µ)(G× g∗)× T ∗
(g,µ)(G× g∗)

∼= (TgG× g∗)× (T ∗
g G× g)

are given such that D(g, µ) = D⊥(g, µ).
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The Canonical Dirac Structure

�The canonical Dirac structure D on G× g∗ is
a subbundle whose fibers, for each (g, µ) ∈ G× g∗,

D(g, µ) ⊂ T(g,µ)(G× g∗)× T ∗
(g,µ)(G× g∗)

∼= (TgG× g∗)× (T ∗
g G× g)

are given such that D(g, µ) = D⊥(g, µ).

�Using the canonical two-form ω, the canonical Dirac
structure D is locally given by, for each (g, µ) ∈ G×g∗,

D(g, µ)={((v, ρ), (β, η)) ∈ (TgG× g∗)× (T ∗
g G× g) |

β(w) + σ(η) = ω(g, µ)((v, ρ), (w, σ))

for all (w, σ) ∈ TgG× g∗}.
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Canonical Dirac Reduction

�Using λ̄ : T ∗G → G × g∗ and λ : TG → G × g, we
employ the identification

D ⊂ T (T ∗G)⊕ T ∗(T ∗G)
∼= T (G× g∗)⊕ T ∗(G× g∗)
∼= (G× g∗)× [(g× g∗)⊕ (g∗ × g)]
∼= (G× g∗)× (V ⊕ V ∗),

where V = g× g∗ and V ∗ = g∗ × g.
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Canonical Dirac Reduction

�Using λ̄ : T ∗G → G × g∗ and λ : TG → G × g, we
employ the identification

D ⊂ T (T ∗G)⊕ T ∗(T ∗G)
∼= T (G× g∗)⊕ T ∗(G× g∗)
∼= (G× g∗)× [(g× g∗)⊕ (g∗ × g)]
∼= (G× g∗)× (V ⊕ V ∗),

where V = g× g∗ and V ∗ = g∗ × g.

�By simply taking quotients by G, it reads

D/G ⊂ T (T ∗G)⊕ T ∗(T ∗G)

G∼= g∗ × (V ⊕ V ∗).
27



Canonical Dirac Reduction

�Then, we can define a reduced Dirac structure

D/G
µ on Vµ=g⊕ g∗, depending on µ ∈ g∗, by
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Canonical Dirac Reduction

�Then, we can define a reduced Dirac structure

D/G
µ on Vµ=g⊕ g∗, depending on µ ∈ g∗, by

D/G
µ = {((ξ, ρ), (ν, η)) ∈ Vµ × V ∗

µ |
ν(ζ) + σ(η) = ω/G

µ ((ξ, ρ), (ζ, σ)) for all (ζ, σ) ∈ Vµ},
where ξ =TgLg−1v, ζ =TgLg−1w ∈ g, ν =T ∗

e Lgβ ∈ g∗,
and the reduced symplectic structure on Vµ is

ω/G
µ ((ξ, ρ), (ζ, σ)) = −ρ(ζ) + σ(ξ) + µ([ξ, ζ]).
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Canonical Dirac Reduction

�Then, we can define a reduced Dirac structure

D/G
µ on Vµ=g⊕ g∗, depending on µ ∈ g∗, by

D/G
µ = {((ξ, ρ), (ν, η)) ∈ Vµ × V ∗

µ |
ν(ζ) + σ(η) = ω/G

µ ((ξ, ρ), (ζ, σ)) for all (ζ, σ) ∈ Vµ},
where ξ =TgLg−1v, ζ =TgLg−1w ∈ g, ν =T ∗

e Lgβ ∈ g∗,
and the reduced symplectic structure on Vµ is

ω/G
µ ((ξ, ρ), (ζ, σ)) = −ρ(ζ) + σ(ξ) + µ([ξ, ζ]).

�Notice that the reduced Dirac structure D/G
µ includes

the Lie-Poisson structure or the coadjoint orbit sym-
plectic structure (through µ∈g∗).
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Dirac Differential Operator

�The differential of the Lagrangian L̄ on G×g is

dL̄ : G× g → (G× g)× (g∗ × g∗),

which is represented, in coordinates, by

dL̄ =

(
g, TgLg−1 v, T ∗

e Lg
∂L

∂g
, T ∗

e Lg
∂L

∂v

)
.
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Dirac Differential Operator

�The differential of the Lagrangian L̄ on G×g is

dL̄ : G× g → (G× g)× (g∗ × g∗),

which is represented, in coordinates, by

dL̄ =

(
g, TgLg−1 v, T ∗

e Lg
∂L

∂g
, T ∗

e Lg
∂L

∂v

)
.

�Then, the Dirac differential

DL̄ = γ̄Q ◦ dL̄ : G× g → (G× g∗)× (g∗ × g)

is locally denoted by

DL̄ =

(
g, T ∗

e Lg
∂L̄

∂v
,−T ∗

e Lg
∂L̄

∂g
, TgLg−1 v

)
.
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Reduction of Dirac Differential

�The naive quotient d/GL̄ : g → g× (g∗×g∗) is locally
given by, for η (= TgLg−1 v) ∈ g,

d/GL̄ =

(
η, 0,

δl

δη

)
.
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Reduction of Dirac Differential

�The naive quotient d/GL̄ : g → g× (g∗×g∗) is locally
given by, for η (= TgLg−1 v) ∈ g,

d/GL̄ =

(
η, 0,

δl

δη

)
.

�The quotient D/GL̄ : g → g∗× (g∗× g) is denoted by,
for each η (= TgLg−1 v) ∈ g,

D/GL̄ =

(
δl

δη
, 0, η

)
,

where Fl : g → g∗ is given by, for each η ∈ g,

µ =
δl

δη
∈ g∗.
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Reduction of Dirac Differential

�Define the reduction of dL̄ : G×g → (G×g)×(g∗×g∗)
by the operator d/Gl : g → g∗ ⊕ g∗ such that it takes
the value at each η (= TgLg−1 v) ∈ g

d/Glη =

(
0,

δl

δη

)
∈ g∗ ⊕ g∗.
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Reduction of Dirac Differential

�Define the reduction of dL̄ : G×g → (G×g)×(g∗×g∗)
by the operator d/Gl : g → g∗ ⊕ g∗ such that it takes
the value at each η (= TgLg−1 v) ∈ g

d/Glη =

(
0,

δl

δη

)
∈ g∗ ⊕ g∗.

�Define the reduction of DL̄ : G × g → (G × g∗) ×
(g∗ × g) by the operator D/Gl : g → g∗ ⊕ g such
that for each η ∈ g, it takes the values at the new
base point µ = δl/δη ∈ g∗ via the partial Legendre
transformation

D/Glη =
(
0, η

)
∈ V ∗

µ = g∗ ⊕ g.
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The Partial Vector Field

�Recall λ̄ : T ∗G → G× g∗ is equivariant relative to the
cotangent lift of left translations on G and the G-action
Λ on G× g∗ given by, for g, h ∈ G and µ ∈ g∗,

g · (h, µ) := Λg(h, µ) = (gh, µ).
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The Partial Vector Field

�Recall λ̄ : T ∗G → G× g∗ is equivariant relative to the
cotangent lift of left translations on G and the G-action
Λ on G× g∗ given by, for g, h ∈ G and µ ∈ g∗,

g · (h, µ) := Λg(h, µ) = (gh, µ).

�Let X be a left invariant vector field on T ∗G and the
induced vector field X̄ = λ̄∗X on G×g∗ is denoted by,
for g ∈ G, µ ∈ g∗,

X̄(g, µ) =
(
Yµ(g), µ, µ̇

)
∈ TgG× Tµg

∗,

where Yµ ∈ X(G) which depends on µ ∈ g∗ is given by

Yµ(g) = ġ.
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The Partial Vector Field

�By equivariance of λ̄, X̄ is left invariant as

Λ∗
gX̄ = X̄,

and Yµ ∈ X(G) is left invariant, which reads

Yµ(g) = TeLgYµ(e),
where Yµ(g) = ġ.
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The Partial Vector Field

�By equivariance of λ̄, X̄ is left invariant as

Λ∗
gX̄ = X̄,

and Yµ ∈ X(G) is left invariant, which reads

Yµ(g) = TeLgYµ(e),
where Yµ(g) = ġ.

�The partial vector field X̄/G is defined by the quo-
tient of X̄ on G × g∗ such that it takes the value, at
the base point µ ∈ g∗,

X̄/G
µ =

(
ξ, µ̇

)
∈ Vµ := g⊕ g∗,

where
ξ = TgLg−1 · ġ.
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Euler-Poincaré -Dirac Reduction
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Euler-Poincaré -Dirac Reduction

�The reduction of (L̄, ∆G = TG, X̄) is given by
a triple (l, g, X̄/G) that satisfies, at each base point
η ∈ g,

(X̄/G
µ , D/Glη) ∈ D/G

µ

together with the partial Legendre transform µ = Fl(η).
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Euler-Poincaré -Dirac Reduction

�The reduction of (L̄, ∆G = TG, X̄) is given by
a triple (l, g, X̄/G) that satisfies, at each base point
η ∈ g,

(X̄/G
µ , D/Glη) ∈ D/G

µ

together with the partial Legendre transform µ = Fl(η).

�Locally, it reads

σ(ξ − η) +
〈
−µ̇ + ad∗ξµ, ζ

〉
= 0,

which satisfies for all (ζ, σ) ∈ Vµ = g⊕ g∗.
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Euler-Poincaré -Dirac Reduction

�The reduction of (L̄, ∆G = TG, X̄) is given by
a triple (l, g, X̄/G) that satisfies, at each base point
η ∈ g,

(X̄/G
µ , D/Glη) ∈ D/G

µ

together with the partial Legendre transform µ = Fl(η).

�Locally, it reads

σ(ξ − η) +
〈
−µ̇ + ad∗ξµ, ζ

〉
= 0,

which satisfies for all (ζ, σ) ∈ Vµ = g⊕ g∗.

�Thus, we obtain

ξ = η, µ̇ = ad∗ξµ, µ =
δl

δη
,

which are implicit Euler-Poincaré equations.
34



Implicit Lagrangian Systems on G

�How about the general case ∆G ⊂ TG ?
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�How about the general case ∆G ⊂ TG ?

�Recall that an implicit Lagrangian system on
G is given by a triple (L, ∆G, X) that satisfies

(X, DL) ∈ D∆G
.
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Implicit Lagrangian Systems on G

�How about the general case ∆G ⊂ TG ?

�Recall that an implicit Lagrangian system on
G is given by a triple (L, ∆G, X) that satisfies

(X, DL) ∈ D∆G
.

�From X =(g, p, ġ, ṗ) and DL=(g, ∂L/∂v,−∂L/∂g, v),
it locally reads〈

−∂L

∂g
, u

〉
+ 〈v, α〉 = 〈α, ġ〉 − 〈ṗ, u〉

for all u ∈ ∆(g) and α, with ġ ∈ ∆(g). Then, it follows
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Implicit Lagrangian Systems on G

�How about the general case ∆G ⊂ TG ?

�Recall that an implicit Lagrangian system on
G is given by a triple (L, ∆G, X) that satisfies

(X, DL) ∈ D∆G
.

�From X =(g, p, ġ, ṗ) and DL=(g, ∂L/∂v,−∂L/∂g, v),
it locally reads〈

−∂L

∂g
, u

〉
+ 〈v, α〉 = 〈α, ġ〉 − 〈ṗ, u〉

for all u ∈ ∆(g) and α, with ġ ∈ ∆(g). Then, it follows

p =
∂L

∂v
, ġ = v ∈ ∆(g), ṗ− ∂L

∂g
∈ ∆◦(g).
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Dirac Reduction

�Consider a constraint distribution ∆G ⊂ TG given by

∆G = {(g, v) ∈ TG | g ∈ U, v ∈ ∆(g)} .

Then, define the distribution ∆G×g∗ ⊂ T (G× g∗) by

∆G×g∗ = {(g, µ, v, ρ) | g ∈ U, v ∈ ∆(g)} .
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Dirac Reduction

�Consider a constraint distribution ∆G ⊂ TG given by

∆G = {(g, v) ∈ TG | g ∈ U, v ∈ ∆(g)} .

Then, define the distribution ∆G×g∗ ⊂ T (G× g∗) by

∆G×g∗ = {(g, µ, v, ρ) | g ∈ U, v ∈ ∆(g)} .

�The induced Dirac structure on G×g∗ is defined
by, for each (g, µ) ∈ G× g∗,

D∆G
(g, µ)={(v, ρ), (β, η)∈ (TgG× g∗)×(T ∗

g G× g∗) |
(v, ρ) ∈ ∆G×g∗(g, µ), and

β(w) + σ(η) = ω∆G
(g, µ)((v, ρ), (w, σ))

for all (w, σ)∈ ∆G×g∗(g, µ)}.
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Dirac Reduction
�Let g∆ be a constraint subspace of g ∼= TeG defined by

g∆ = {ξ ∈ g | ξ ∈ ∆(e)}.
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�The reduction of the induced Dirac structure
D∆G

on G×g∗ is given by taking quotients such that,
at each µ ∈ g∗,
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�Let g∆ be a constraint subspace of g ∼= TeG defined by

g∆ = {ξ ∈ g | ξ ∈ ∆(e)}.
�The reduction of the induced Dirac structure
D∆G

on G×g∗ is given by taking quotients such that,
at each µ ∈ g∗,

D/G
∆G

(µ)=
{
((ξ, ρ), (ν, η)) ∈ Vµ × V ∗

µ | (ξ, ρ)∈g∆⊕ g∗,

and ν(ζ) + σ(η) = ω
/G
∆G

(µ)((ξ, ρ), (ζ, σ))

for all (ζ, σ) ∈ g∆ ⊕ g∗
}

,
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Dirac Reduction
�Let g∆ be a constraint subspace of g ∼= TeG defined by

g∆ = {ξ ∈ g | ξ ∈ ∆(e)}.
�The reduction of the induced Dirac structure
D∆G

on G×g∗ is given by taking quotients such that,
at each µ ∈ g∗,

D/G
∆G

(µ)=
{
((ξ, ρ), (ν, η)) ∈ Vµ × V ∗

µ | (ξ, ρ)∈g∆⊕ g∗,

and ν(ζ) + σ(η) = ω
/G
∆G

(µ)((ξ, ρ), (ζ, σ))

for all (ζ, σ) ∈ g∆ ⊕ g∗
}

,

where ω
/G
∆G

(µ) is the restriction of the reduced sym-

plectic structure ω/G(µ) to g∆ ⊕ g∗ ⊂ Vµ.
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Euler-Poincaré-Suslov Reduction

�The reduction of (L̄, ∆G, X̄) is given by a triple
(l, g∆, X̄/G) that satisfies, at each η ∈ g∆,

(X̄/G
µ , D/Glη) ∈ D/G

∆G
(µ),
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�The reduction of (L̄, ∆G, X̄) is given by a triple
(l, g∆, X̄/G) that satisfies, at each η ∈ g∆,

(X̄/G
µ , D/Glη) ∈ D/G

∆G
(µ),

with the partial Legendre transform µ = Fl(η) ∈ g∗.

� In local coordinates,

σ(ξ − η) +
〈
−µ̇ + ad∗ξµ, ζ

〉
= 0

for all (ζ, η) ∈ g∆ ⊕ g∗. Then, it follows
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Euler-Poincaré-Suslov Reduction

�The reduction of (L̄, ∆G, X̄) is given by a triple
(l, g∆, X̄/G) that satisfies, at each η ∈ g∆,

(X̄/G
µ , D/Glη) ∈ D/G

∆G
(µ),

with the partial Legendre transform µ = Fl(η) ∈ g∗.

� In local coordinates,

σ(ξ − η) +
〈
−µ̇ + ad∗ξµ, ζ

〉
= 0

for all (ζ, η) ∈ g∆ ⊕ g∗. Then, it follows

µ =
δl

δη
, ξ = η ∈ g∆, µ̇− ad∗ξµ ∈ (g∆)◦,

where (g∆)◦ ⊂ g∗ is an annihilator of g∆ ⊂ g.
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Euler-Poincaré-Suslov Reduction

�The set of equations

µ =
δl

δη
, ξ = η ∈ g∆, µ̇− ad∗ξµ ∈ (g∆)◦,

is called as Euler-Poincaré-Suslov Equations.
(See, Bloch, Nonholonomic Mechanics and Control [2003].)
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Euler-Poincaré-Suslov Reduction

�The set of equations

µ =
δl

δη
, ξ = η ∈ g∆, µ̇− ad∗ξµ ∈ (g∆)◦,

is called as Euler-Poincaré-Suslov Equations.
(See, Bloch, Nonholonomic Mechanics and Control [2003].)

�Example (Euler-Poincaré-Suslov Problem on SO(3)).
The Euler-Poincaré-Suslov equations are to be given in
coordinates as

pa = Iab ω
b, Aa ωa = 0, ṗb − Cc

abI
ad pc ωd = λAb,

where ω = ωiei ∈ g and A = Aae
a ∈ g∗.
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Concluding Remarks

�Taking simply quotients of the canonical Dirac struc-
ture on T ∗G by G ends up with a reduced Dirac struc-
ture on g⊕ g∗ that depends points µ ∈ g∗.
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Concluding Remarks
�Taking simply quotients of the canonical Dirac struc-

ture on T ∗G by G ends up with a reduced Dirac struc-
ture on g⊕ g∗ that depends points µ ∈ g∗.

� Implicit Euler–Poincaré equations were shown in the
context of Euler–Poincaré–Dirac reduction.

�Dirac reduction for the case in which ∆G is given can be
incorporated into the Euler–Poincaré–Suslov reduction.

�Generalization to the case in which G acting to a con-
figuration space Q works ok, which results in the im-
plicit analogue of the Lagrange-Poincaré and Hamilton-
Poincaré equations (see,Cendra, Marsden, Pekarsky,
and Ratiu[2003]), but needs to be worked out.
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