Reduction of Dirac Structures,
Implicit Lagrangian Systems

and
Variational Principles

Hiroaki Yoshimura
Waseda University



Background

Review of Implicit Lagrangian Systems
Reduction of Variational Principles
Canonical Dirac Reduction

Euler—Poincaré-Dirac Reduction



An almost Dirac structure Dp on P
1s a subbundle

DpCTP® TP
such that Dp = D3, where, for each x € P,
D+(z) = {(uy, B,) € T,P x T*P|
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An almost Dirac structure Dp on P
1S a subbundle

DpCc TP TP
such that Dp = D7, where, for each x € P,
Dp(x) = {(ug, B:) € T,P x T P|
( (v, az), (Ug, Br) ) = au(uy) + Be(ve) =0,
for all (v, ) € Dp(x)}.
A Dirac structure is one that satisfies
(£ x,a0, X3) + (£x,a3, X1) + (£x,a1, Xo) =0,

for all pairs of vector fields and one-forms (X7, ay),
(X5, an), (X3, ag) that take values in Dp.
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Needless to say, “Dirac structures’ were named after

D1irac started off with Hamalton’s principle:

b
0 / L(q,q)dt =0.

Especially, for the case of degenerate Lagrangians

But, Dirac went to work on the Hamiltonian side by
introducing the associated Poisson brackets:

{fag}S — {fag}P — {f7 @Q}P Caﬂ{gpﬁag}f)a

where a symplectic submanifold S C P is defined as
S={x e P|p*x)=0}.
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A notion of tmplicit Hamaltonian systems was
developed by

(X, dH) c Dp.

Researches on the Lagrangian side has been left out
and there has been a gap between Dirac structures and
Lagrangian systems.

Recently, a notion of 2mplicit Lagrangian sys-
tems has been developed by

(X, @L) S DAQ-



Induced Dirac Structures

Let () be a configuration manifold. Given a distri-
bution Ag C T'() and a distribution on T7(¢) can be
defined by

Arg = (Tmg)™" (Ag) C TTHQ,

where g : T7Q) — () is the canonical projection.



Induced Dirac Structures

Let () be a configuration manifold. Given a distri-
bution Ag C T'() and a distribution on 77(¢) can be
defined by

Arg = (Tmq)™' (Ag) C TT"Q,
where mg : T7() — (@) is the canonical projection.

Then, an tnduced Dirac structure can be defined
by, for each z € T™(Q),

Dag(2)={(vz, a.) ETUT Q) X TZ(T7Q) | v: € Arg(2),
oz (w.) = Qa,(v2, w,) for all w. € Apg(2)}],

where {2 is the canonical two—form on 77¢) and €)a,, 18
the restriction of {2 to Ar«q.



Dirac Differential Operator

Let L : TQ) — R be a Lagrangian (possibly, degener-
ate) and AL : T'Q) — T*T(Q) be locally given by

oL OL
L = .
d (Q7 U? aq? av>




Dirac Differential Operator

Let L : TQ) — R be a Lagrangian (possibly, degener-
ate) and dL : T'Q) — T*T(Q) be locally given by

oL OL
L = .
d (Q7 U? aq) av>

Define a Dirac differential of L by
DL =rvgodL:TQ — T (T7Q),
where vg : T7T'Q) — T™T™(Q) 1s a natural diffeomorphsim.

In local, it reads

@L—( oL 0L )7

Q7 av7 8q7v
where p = 0L /0wv.




Implicit Lagrangian Systems

An tmplicit Lagrangian system can be defined as
a triple (L, Ag, X) that satisfies, for each (¢, v) € A,

(X (g, p), DL(q,v)) € Daylq,p)
where (q, p) = FL(q, v).



Implicit Lagrangian Systems

An tmplicit Lagrangian system can be defined as
a triple (L, Ag, X) that satisfies, for each (¢, v) € A,

(X (g, p), DL(q,v)) € Daylq,p)
where (q, p) = FL(q, v).

The local expression of implicit Lagrangian systems can
be given by

oL oL

p—a—QEA(Q), qg=1v € Ag), P=g



Examples: Nonholonomic Systems

Nonholonomic mechanical systems.

Constraint distribution : Ag C T'Q)



Examples: Electric Circuits

Holonomic systems with degenerate Lagrangians.

€L
7000 R ¢ 1 i
Ln
€C, €, €Cs
____ O cC, C3
TfCQ fcll fCSl
X .




Examples: The Case Ag =TQ)

The canonical Dirac Structure D on T7() may
be defined as

D = graph(Q¥) c TT*Q & T*T*Q,
D = graph(B*) c TT*Q & T*T*Q,
where O : TT*Q — T*T*Q and B* : T*T*Q — TT*Q.

or



Examples: The Case Ag =TQ)

The canonical Dirac Structure D on T7() may
be defined as

D = graph(ﬂb) CTT*Q) o T "TQ,
D = graph(B*) c TT*Q & T*T*Q,

where O : TT*Q — T*T*Q and B : T*T*Q — TT*Q.
The

or

(X, DL)e D
reads

oL 0L
p_ava U_CL p_aqv

which are tmplicit Fuler—Lagrange equations.
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Hamilton—Pontryagin Principle

The Hamailton—Pontryagin principle

1S given by
t9

0 [ {L(g(t),v(t)) + p(t) - (¢(t) — v(t))} dt = 0.

A
Keeping the endpoints of ¢(t) fixed,

bl . 0L OL
/tl{(q—v)c?p—l—(—p—l—a—q)5q—|—<—p—l—%>5v}dt—0

is satisfied for all 0g, 0v and d0p, one can directly obtain
the
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Consider
. especially for the stmplest case ()=G.

How can we reduce the canonical Dirac structure and
an tnduced Dirac structure on TG ¢

How can we develop reduction of the Hamzilton—Pontryagin
principle?

Can we develop an tmplicit analogue of Euler—Poincaré
and Lie—Poisson reductions ¢
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Developments in Reduction

There is a rich history on reduction; refer to
, Comments on the history,
theory, and applications of symplectic reduction.

Dirac reduction in the Poisson case was developed by

. consistent with the Poisson reduction
developed by

Reduction of Dirac structures and Hamiltonian sys-
tems with symmetry was also shown by

Reduction of implicit Hamiltonian systems was devel-
oped by

Singular reduction of implicit Hamiltonian systems was
developed by
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Lie—Poisson Reduction

The group action of a Lie group GG on 17 is by cotan-
gent lift of the left (or right) translation of G on itself
and the quotient space is naturally diffeomorphic to the
dual of the Lie algebra, namely,

(1"G)/G =g

with the = Lie—Poisson bracket
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Lie—Poisson Reduction

The group action of a Lie group GG on 17 is by cotan-
gent lift of the left (or right) translation of G on itself
and the quotient space is naturally diffeomorphic to the
dual of the Lie algebra, namely,

(1"G)/G =g

with the = Lie—Poisson bracket

L Of Oh]
{f7 h}ﬂ: — <:u7 _5,u7 5,LL_ > 7
where f, h € F(g*)

The Lie—Poisson equation can be obtained as

| = ——ad(;_h,u.




Euler—Poincaré Reduction




Euler—Poincaré Reduction

The Lagrangian analogue of the Lie—Poisson reduction
15 given by a reduced constrained variational
principle for [:g— R
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with variations of the form
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Euler—Poincaré Reduction

The Lagrangian analogue of the Lie—Poisson reduction
15 given by a reduced constrained variational
principle for [:g— R

5 / " 1Ew) dt = 0

]
with variations of the form

08 =1+ [v, 1),
where n(t) is a curve in g such that n(t;) = n(ts) = 0.

The Fuler—Poincaré equations are obtained as
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Lie -Poisson Variational Principle

See? : Vari-
ational principles for Lie-Poisson and Hamilton-Poincaré
equations, Moscow Mathematical Journal 3, 833-867.

Let H : TG — R be a left-invariant Hamiltonian.
Hamilton’s phase space principle is given by

5 / () - §(t) — H(g(t), p(t))) dt = 0.

t
where the function B(g, ¢, p) = p-g—H (g, p) is defined

on TG & T*G.

The group G acts on B by simultaneously left trans-
lating on each factor by the left-action and the tangent
and contangent lifts. Then, B is to be G—invariant.
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Lie -Poisson Variational Principle

Using A\ : T*G — G x g*and A\ : TG — G x g,
one can identity
TGET'"G=EGX (g g).
Define the trivialized Hamiltonian on G x g* by
H:=Ho\!
and define h : g* — R by the restriction of H to g*.

The tunction B on TGHT*G drops to quotients,
namely, the function b: g & g* — R given by

b(&, 1) = - & — hip),
where § =T L,n-gegand p="1 L, -p, € ¢g"



Lie -Poisson Variational Principle

Then, the Lie—Poisson variational principle is
oiven by

to
0 | {u(t)- &) —hu(t))} dt =0
t1
with variations of the form

6§ =1+ [Ua 77]7
where
1) = T,L,-0g(t)
1S a curve in g such that

n(t1) = n(tz) = 0.



Lie -Poisson Variational Principle

Taking variations of (&(t), u(t)) €g @ g*, it reads

& oh
/t1 {(§—5>5u - (— 1 adz,u)-n}dt—().

Then, we can obtain
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Taking variations of (&(t), u(t)) €g @ g*, it reads

& oh
/t1 {(§—5>5u - (— 1 adz,u)-n}dt—().

Then, we can obtain

Thus, it reads the Lie—Poisson equations on g*:
(L= ad%_h (.
L4
But, the variational principle suggests one should re-

card the proper space for the Lie—Poisson equations
not as simply g* but as the larger space g @ g*.



Reduction of Variational Principle

Let L : TG — R be a left invariant Lagrangian and

recall the Hamilton—Pontryagin principle is given by
to

0 [ 1L{g(t),v(t)) +p(t) - (g(t) —v(t))} dt = 0.

t1



Reduction of Variational Principle

Let L : TG — R be a left invariant Lagrangian and

recall the Hamilton—Pontryagin principle is given by
to

0 [ 1L{g(t),v(t)) +p(t) - (g(t) —v(t))} dt = 0.

]
The group G acts on the function

F(g,v,p) = L(g,v) +p- (g — v)
on I'G @ T*G by simultaneously lett translating such
that, for an element h € G,

h-(g,v,p) = (hg,TyLy-v, Ty, Ly - p).
Then, the
, since we assume that L is G—invariant.
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Reduction of Variational Principle

Using the diffeomorphism A : T'G — G X g, define the

and define | by

restriction of L to g.
The function F' on T'G & T*G given by

F(gvvvp) — L(Q?”) TP (g T U)
drops to the quotient, whichistobe f: g ® g* —

R given by
here ) =1n)+p-(§—n),

{=TyLy1-g, n=T,L,+-veg, and u=T,L,-pcg”.



Reduction of Variational Principle

Reduction of the Hamailton-Pontryagin prin-
ciple is given by

i | () + plt) - (E() — ()} dt =0



Reduction of Variational Principle

Reduction of the Hamailton-Pontryagin prin-
ciple is given by

; () + ult) - (€(6) — nD)} dt =0
with variixtions of the f(?rm

0&(t) = ¢(t) + [£(2), ¢ (1)),
where
C: — Tng_159
1s a curve in g such that

C(t1) = ((t2) = 0.



Reduction of Variational Principle

Taking variations yields

/j{(g—é—u>5n+5u-(§—n)

+(—p +adgp) - C} dt = 0,
which is satisfied for any on € g, ¢ € g and ou € g*.



Reduction of Variational Principle

Taking variations yields

/{(?—;— >577+5u°(§—77)

+(—p +adgp) - C} dt = 0,
which is satisfied for any on € g, ¢ € g and ou € g*.

Then,
can be given by

5l | )
=5 E=mn, p=adepy,



Reduction of Variational Principle

Taking variations yields

/:{@_717_ )577+5u-(£—n>

+(—p +adgp) - C} dt = 0,
which is satisfied for any on € g, ( € g and ou € g*.

Then,
can be given by

51 L
Nzga 52777 :u:adglua

which we call e2mplicit Euler—Poincaré equations
ongPdg.



The Canonical Forms on G x g*

Using A : T*G — G X g*, the canonical one-form @ is
locally represented by, for each (g, u) € G X g*,

0(g, 1) - (v, p) = W(TyLg-1v),
where (v, p) € T, )(G x g*) = T,G x g*.



The Canonical Forms on G x g*

Using A : T*G — G X g*, the canonical one-form @ is
locally represented by, for each (g, u) € G X g*,

0(g, 1) - (v, p) = p(TyLy-rv),
Where(,p)ET(gu)(Gxg) G><g

The canonical two-form w = —df on G X g* can be
locally denoted by, for each (g, u) € G x g*,

w(g, 1) ((v, p), (w,0))
= —p(TyLyw)+0(TyLyv)+pu([Ty Ly, TyLywl),

where (w,0) € T(, (G x g*) = T,G x g



The Canonical Dirac Structure

The canonical Dirac structure D on G X g* is
a subbundle whose fibers, for each (g, u) € G x g*,

D(g,,u) C T(g,u)(G X g*) X T(Z,M)(G X g*)
= (T,G x g") x (1,G x g)

are given such that D(g, u) = D(g, i).



The Canonical Dirac Structure

The canonical Dirac structure D on G X g* is
a subbundle whose fibers, for each (g, u) € G x g*,

D(g,,u) C T(g,u)(G X g*) X T(Z,M)(G X g*)
= (156G x g7) x (T,G x g)
are given such that D(g, u) = D(g, i).

the canonical Dirac
structure D is locally given by, for each (g, 1) € G x g,

D(g, ) =1((v,p),(B,m)) € (T,G x g°) x (T,;G X g) |

B(w) +o(n) = w(g, p)((v, p), (w,0))
for all (w,o0) € T,G x g*}.



Canonical Dirac Reduction

Using \ : T*G — G x g and \ : TG — G X g, we
employ the identification
DcCT(IG)e T (TG)
=TGxg) T (G xg)
=(Gxg)x[gxg)®(g xag)
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where V =g x gand V*=g" X g.
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Canonical Dirac Reduction

Using \ : T*G — G x g and )\ : TG — G x g, we
employ the identification
DcCT(IG)e T (TG)
=T(Gxg)eT(Gxg)

= (Gxg)xlgxg)®(g"xg)
(G xg")x VeV,

121l

where V =g x g-and V*=g¢g" X g.
By simply taking quotients by G, it reads

p/G < TTG) ag T(T*G)

=g x (Ve V).
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Canonical Dirac Reduction

Then, we can define a reduced Dirac structure
D[LG on V,=g®g", depending on p € g*, by

DY ={((&p),(v.n) €V x V|
v(()+o(n) = for all (¢,0) € V,,},

where § =T, L, w, (=T, L,ww € g, v=T L,5 € g,
and the reduced symplectic structure on V), is

Notice that the reduced Dirac structure DZG includes



Dirac Differential Operator

The differential of the Lagrangian L on G x g is
dL: G xg— (G xg)x (g°xg),

which 1s represented, in coordinates, by

i 0L . 0L
dL — (g,Tng1v,T6 Lg a—g,Te Lg %> .



Dirac Differential Operator

The differential of the Lagrangian L on G x g is
dL: G xg— (G xg)x (g°xg),

which 1s represented, in coordinates, by
_ .. oL __~ OL
dL = (g, Tng—l U, Te Lg a—g, CZ—Y6 Lg %> .
Then, the Dirac differential
DL =4podL:G xg— (G xg") x(g*xg)
18 locally denoted by

_ OL
@L — (g, , T:Lg a—g, > .



Reduction of Dirac Differential

The naive quotient d/“L : g — g x (g* x g*) is locally
given by, for n(=T,L,1v) € g,
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Reduction of Dirac Differential

The naive quotient d/“L : g — g x (g* x g*) is locally
given by, for n(=T,L,1v) € g,

d/CL = (77, > .

The quotient ®/CL : g — g* x (g* x g) is denoted by,
for each n (= T,L,~v) € g,

DL = (501,
o7

where [ : g — g* is given by, for each n € g,



Reduction of Dirac Differential

Define the reduction of dL : Gxg — (Gxg)x(g*xg*)
by the operator /¢l : g — g* @ g* such that it takes
the value

ol
d’¢1, = (o%> cg-ag



Reduction of Dirac Differential

Define the reduction of dL : Gxg — (Gxg)x(g*xg*)
by the operator /¢l : g — g* @ g* such that it takes
the value
0l
d’“l,=(0,—) g g
! ( ’577> 7o

Define the reduction of DL : G x g — (G x g*)
(g* x g) by the operator /Gl . g — g @ g such
that for each n € g, it takes the values

via the partial Legendre
transformation

D/, = (0,n) eVi=g Dy



The Partial Vector Field

Recall \ : T*G — G x g* is equivariant relative to the
cotangent lift of left translations on G and the
given by, for g,h € G and u € g*,



The Partial Vector Field

Recall \ : T*G — G x g* is equivariant relative to the
cotangent lift of left translations on G and the
given by, for g,h € G and u € g*,

Let X be a left invariant vector field on T*G and the
on G X g* is denoted by,
for g € G, u € g*,

X(gwu) — (Yu(g>7/“1/7ll’é) < TQG X T,ng*a
where Y, € X(G) which depends on p € g* is given by
Y.(g9) =g



The Partial Vector Field

By equivariance of A\, X is left invariant as
ANX =X,
and Y, € X(G) is left invariant, which reads
Yulg) = TeLgY,u(e),
where Y, (g) = ¢.



The Partial Vector Field

By equivariance of A, X is left invariant as
ANX =X,
and Y, € X(G) is left invariant, which reads
Yulg) = TeLgYy(e),
where Y, (g) = ¢.

The partial vector field X' is defined by the quo-
tient of X on G x g* such that it takes the value, at

the base point u € g*,
X0 = (¢0) €Vimgog”

where

E=T,L,1g.
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The reduction of (L, Aq = TG, X) is given by
a triple (I, g, X/¢) that satisfies, at each base point

n e g, e i
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together with the partial Legendre transform p = Fi(n).
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Euler-Poincare -Dirac Reduction

The reduction of (L, Aq = TG, X) is given by
a triple (I, g, X / @) that satisfies, at each base point

neg, e . .
Cﬁa@/wéf%

together with the partial Legendre transform pu = Fi(n).

Locally, 1t reads
which satisfies for all (¢,0) € V, =g ® g".
Thus, we obtain 57
E=mn, p=adp, p=_—,

§ on

which are tmplicit Fuler-Poincaré equations.



Implicit Lagrangian Systems on (¢

How about



Implicit Lagrangian Systems on (¢

How about

Recall that an tmplicit Lagrangian system on
GG is given by a triple (L, Ag, X)) that satisfies
(X, @L) S DAG-



Implicit Lagrangian Systems on (¢

How about

Recall that an tmplicit Lagrangian system on
GG is given by a triple (L, Ag, X)) that satisfies

(X, @L) S DAG-
From X =(g,p, g,p) and ®L=(g,0L/0v,—0L/dg,v),
1t locally reads

<_8_L u> + (v, @) = {a, g) — (P, w)

. with . Then, it follows



Implicit Lagrangian Systems on (¢

How about

Recall that an tmplicit Lagrangian system on
GG is given by a triple (L, Ag, X)) that satisfies

(X, @L) S DAG-
From X =(g,p, g,p) and ®L=(g,0L/0v,—0L/dg,v),
1t locally reads

<_8_L7u> + (v, @) = {a, g) — (P, w)

. with . Then, it follows

0L 0L
- ] = A ) — — & A°(q).
p=7- §=UE (g9), p 90 c A°(g)
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Dirac Reduction

Consider a constraint distribution Ag C T'G given by
Ag={(g.v) eTG |geU velAlg)}.
Then, define the distribution Agxg C T'(G X g*) by

Agxg={(g, 1, v,0) | g€ U, ve Alg)}.

The tnduced Dirac structure on GG xg*is defined
by, for each (g, u) € G x g*,

Daglg, 1t)={(v,p), (B,n) €E(T,G x g*)x(T,;G X g°) |
(v, p) € Agxg:(g, 1), and

Blw) +o(n) = waslg, 1) (v, p), (w, 7))
for all (w, o) € Agxg(g, 1)}
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Dirac Reduction

Let g* be a constraint subspace of g = T.G defined by
={{eg|LeAle)}

The reduction of the induced Dirac structure
Da,. on G x g* is given by taking quotients such that,
at each u € g*,

DX ()={((&p), (v,m) €V, x VI | (€, p)eg @ g,
and v(C) + a(n) = Wi (W)((&, p), (¢, 0))
for all ((,0) € gﬁ@g*},
/G

where w)”(p) is the restriction of the reduced sym-
plectic structure w/“(u) to g> ®g* CV,



Euler-Poincaré-Suslov Reduction

The reduction of (L,Aq, X) is given by a triple
(1, g, X/%) that satisfies, at each n € g*,
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The reduction of (L,Aq, X) is given by a triple
(1, g, X/%) that satisfies, at each n € g*,

Y, G
(X, D/ € Digg(w),
with the partial Legendre transform p = Fl(n) € g*.

In local coordinates,

o(& —n) + (—f+adgu, ¢) =0
for all (¢,n) € g> @ g*. Then, it follows




Euler-Poincaré-Suslov Reduction

The reduction of (L,Aq, X) is given by a triple
(1, g, X/%) that satisfies, at each n € g*,

(X[, D/%) € DiG(w)
with the partial Legendre transform p = Fl(n) € g*.

In local coordinates,

o(& —n) + (—f+adgu, ¢) =0
for all (¢,n) € g> @ g*. Then, it follows

ol | )
,u:%, E=mn€g, o —adgp € (g

A)o7

where (g=)° C g* is an annihilator of g~ C g.



Euler-Poincaré-Suslov Reduction

The set of equations

_al

h= E=neg®, f—adipe(g°),

is called as Fuler-Poincaré-Suslov FEquations.



Euler-Poincaré-Suslov Reduction

The set of equations

51 o .
h= E=neg®, f—adipe(g°),

is called as Fuler-Poincaré-Suslov FEquations.

Example (Euler-Poincaré-Suslov Problem on SO(3)).
The Euler-Poincaré-Suslov equations are to be given in
coordinates as

Pa = Lab wba Aa wa — 07 pb o gb]adpc wd — >\Ab7
where w = w'e; € g and A = Aye® € g*.



Concluding Remarks

Taking simply quotients of the canonical Dirac struc-
ture on TG by GG ends up with a reduced Dirac struc-
ture on g @ g* that depends points u € g~.



Concluding Remarks

Taking simply quotients of the canonical Dirac struc-
ture on TG by GG ends up with a reduced Dirac struc-
ture on g @ g* that depends points u € g~.

Implicit Euler—Poincaré equations were shown in the
context of Euler—Poincaré-Dirac reduction.



Concluding Remarks

Taking simply quotients of the canonical Dirac struc-
ture on TG by GG ends up with a reduced Dirac struc-
ture on g @ g* that depends points u € g~.

Implicit Euler—Poincaré equations were shown in the
context of Euler—Poincaré-Dirac reduction.

Dirac reduction for the case in which A« is given can be
incorporated into the Euler—Poincaré—Suslov reduction.



Concluding Remarks

Taking simply quotients of the canonical Dirac struc-
ture on T*G by GG ends up with a reduced Dirac struc-
ture on g P g* that depends points u € g~.

Implicit Euler—Poincaré equations were shown in the
context of Euler—Poincaré-Dirac reduction.

Dirac reduction for the case in which A is given can be
incorporated into the Euler—Poincaré—Suslov reduction.

(Generalization to the case in which G acting to a con-
figuration space () works ok, which results in the

. but needs to be worked out.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

