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THE CONVEXITY THEOREMS

(M,ω) a connected paracompact symplectic manifold.

G connected Lie group acting properly and canonically on (M,ω).

g the Lie algebra of G, g∗ its dual.

Assume that J : M → g∗ is an equivariant momentum map of the
action: dJξ = ω(ξM , ·), where ξM(m) = d

dt

∣∣∣
t=0

exp(tξ) ·m.

Guillemin-Kirwan-Sternberg: Let M and G be compact, T a
maximal torus of G, t its Lie algebra, t∗ its dual, and t∗+ the
positive Weyl chamber relative to a fixed ordering of the roots.
Then PG := J(M) ∩ t∗+ is a compact convex polytope, called the
G-momentum polytope. The fibers of J are connected.

For non-compact manifolds, the previous results no longer hold and
a counterexample was given by Prato (1994).
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Very important particular case: G = T .

Atiyah-Guillemin-Sternberg: J(M) is a convex compact polytope

equal to Conv
(
J

(
MT

))
, where MT := {m ∈M | t ·m = m,∀t ∈ T} is

the fixed point set of the T -action and Conv(S) denotes the convex

hull of the set S. The fibers of J are connected.

If M = O, a coadjoint orbit in g∗, then there is a unique µ ∈ t∗+ such

that µ ∈ O∩ t∗. Denote O = Oµ and let i : g ↪→ t. Let W := N(T )/T

be the Weyl group of G. Particular case:

Kostant Linear Convexity: i∗(Oµ) = Conv(W · µ): the projection

of the coadjoint orbit onto the Cartan algebra is the convex hull of

the corresponding Weyl group orbit Oµ ∩ t∗.

Let G be compact and T a maximal torus. What is the relationship

between the images of the momentum maps for the two actions?
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Let JG : M → g∗. Then JT = i∗ ◦JG : M → t∗, where i : t ↪→ g. Then

JT (M) = Conv (W · PG)

Proof JG equivariant implies JG(M) =
⋃
µ∈PGOµ, so by Kostant

JT (M) = i∗
 ⋃
µ∈PG

Oµ

 =
⋃

µ∈PG
i∗ (Oµ) =

⋃
µ∈PG

Conv(W · µ).

For µ ∈ PG we have W ·µ ⊂W ·PG =⇒ Conv(W ·µ) ⊂ Conv (W · PG),

so JT (M) =
⋃
µ∈PG Conv(W · µ) ⊂ Conv(W · PG).

Conversely, W ·PG =
⋃
µ∈PGW ·µ ⊂

⋃
µ∈PG Conv(W ·µ) = JT (M) and

hence

Conv(W · PG) ⊂ Conv (JT (M)) = JT (M)

since JT (M) is convex. �
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There are other convexity theorems. Here is a famous one. G

complex semisimple Lie group, GR the same Lie group thought

of as real, K maximal compact subgroup so its Lie algebra k is a

compact real form of the Lie algebra g of G. Then put p := ik,

P := exp p so g = k ⊕ p, G = KP are the Cartan decompositions

at infinitesimal and global level. Let T be a maximal torus in K,

so t is a maximal toral subalgebra in k and a := it ⊂ p is a maximal

Abelian subspace of p. h := a ⊕ t ⊂ g is a Cartan subalgebra and

let ∆ be the roots it determines. Define n := ⊕α>0gα, N := exp n,

and W := N(T )/T , the Weyl group of K. Then g = k⊕ a⊕ n and

GR = KAN are the Iwasawa decompositions at infinitesimal and

global level. K acts on P by conjugation and on p by the adjoint

action; exp : p→ P is a K-equivariant diffeomorphism.

b ∈ B := AN ←→ b∗b ∈ P

is a diffeomorphism, where g∗ := τ(g−1) and τ : GR → GR is the

Cartan involution. Its derivative τ : gR → gR has only eigenvalues

±1, the +1 eigenspace is k and the −1 eigenspace is p.
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Let ρa : g → a and ρA : G → A be the projections defined by the

Iwasawa decompositions. For a ∈ A let Oa be the K-orbit of a and

identify A with a.

Kostant Nonlinear Convexity: ρA(Oa) = Conv(W · a).

What does this really say? Let J = log ◦ρA ◦ exp : p → a. Note

T0J = ρa. Let η ∈ p and Oη the K-orbit in p. Then

J(Oη) = ρa(Oη) = W · η.

Example. G = SL(n,C), K = SU(n), P = {X ∈ SL(n,C) |
X = X∗, positive definite}, A = {X ∈ P | A diagonal}, N = {X ∈
SL(n,C) | X upper triangular with ones on the diagonal},

ρa(X) = diagonal of X, X ∈ p

but
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J(X) =
1

2

log∆1

(
e2X

)
,
log∆2

(
e2X

)
log∆1

(
e2X

), . . . , log∆n

(
e2X

)
log∆n−1

(
e2X

)
 .

Here ∆k(S) for a symmetric matrix S = [sij]i,j=1,...,n denotes the de-
terminant of the submatrix [sij]i,j=1,...,k. If X = diag(a1, . . . , an) ∈ a,
then OX is the set of Hermitian matrices with eigenvalues a1, . . . , an.

Symplectic interpretation (using Poisson-Lie group theory) was given
by Lu-Ratiu (1991) with a gap for real groups filled in by Sleewagen
(2001).

Another problem: What if a canonical action of G on (M,ω) does
not admit a momentum map? Is there absolutely no convexity
result associated to this action? Convexity of what?

There are two possible objects associated to any canonical action:
the optimal momentum map and the cylinder valued momen-
tum map. Both exist for any symplectic action.

Poisson 2006, Tokyo

7



CYLINDER VALUED
MOMENTUM MAPS

(M,ω) connected, paracompact. g acts canonically on M .

π : M × g∗ →M trivial principal (g∗,+)-bundle relative to the action

ν · (m,µ) := (m,µ− ν), with m ∈M and µ, ν ∈ g∗.

Define the flat connection one-form α ∈ Ω1(M × g∗; g∗) by

〈α(m,µ)(vm, ν), ξ〉 := (iξMω)(m)(vm)−〈ν, ξ〉, vm ∈ TmM, ξ ∈ g, µ, ν ∈ g∗.

For (z, µ) ∈ M × g∗, let (M × g∗)(z, µ) ⊂ M × g∗ be the holonomy

bundle through (z, µ): all points in M × g∗ that can be joined to

(z, µ) by a horizontal curve.
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H(z, µ) denotes the holonomy group of α with reference point

(z, µ): all g ∈ G determined by all the loops in M based at m via

horizontal lift. This is an Abelian zero dimensional Lie subgroup of

(g∗,+) by the flatness of α.

The Bundle Reduction Theorem guarantees that the principal

bundle ((M×g∗)(z, µ),M, π|(M×g∗)(z,µ),H(z, µ)) is a reduction of the

principal bundle (M×g∗,M, π, g∗) and that the connection one-form

α is reducible to a connection one-form on (M × g∗)(z, µ). It is

only here that paracompactness of M is used, since it is a technical

hypothesis in the Bundle Reduction Theorem.

Notation: (M̃,M, p̃,H) := ((M × g∗)(z, µ),M, π|(M×g∗)(z,µ),H(z, µ)).

Let K̃ : M̃ ⊂M × g∗ → g∗ be the projection into the g∗-factor.
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H closure of H in g∗. Since H is a closed subgroup of (g∗,+), the

quotient C := g∗/H is a cylinder, that is, it is isomorphic to the

Abelian Lie group Ra×Tb for some a, b ∈ N. Let πC : g∗ → g∗/H = C

be the projection. Define K : M → C to be the map that makes

the following diagram commutative:

M̃
K̃−→ g∗

p̃

y yπC
M

K−→ g∗/H.

In other words, K is defined by K(m) = πC(ν), where ν ∈ g∗ is

any element such that (m, ν) ∈ M̃ . This is a good definition be-

cause if we have two points (m, ν), (m, ν′) ∈ M̃ , this implies that

(m, ν), (m, ν′) ∈ p̃−1(m) and, as H is the structure group of the

principal fiber bundle p̃ : M̃ → M , there exists an element ρ ∈ H
such that ν′ = ν + ρ. Consequently, πC(ν) = πC(ν′).
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K : M → g∗/H =: C is a cylinder valued momentum map associ-

ated to the canonical g-action on (M,ω). It is a strict generalization

of the standard momentum map since the G-action has a standard

momentum map if and only if the holonomy group H is trivial. In

this case, the cylinder valued momentum map is a standard mo-

mentum map.

Notice that we refer to “a” and not to “the” cylinder valued mo-

mentum map since each choice of the holonomy bundle of the

connection α defines such a map. How does it depend on choices?

Let M̃1 and M̃2 be two holonomy bundles of (M × g∗,M, π, g∗).

• ∃τ ∈ g∗ such that M̃2 = Rτ(M̃1), where Rτ(m,µ) := (m,µ + τ),

for any (m,µ) ∈M × g∗.
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• Since (g∗,+) is Abelian all the holonomy groups based at any

point are the same and hence πC : g∗ → g∗/H does not depend on

the choice of M̃ . This is why we call H the Hamiltonian holonomy

of the G-action on (M,ω).

• πC is a group homomorphism.

Let p̃
M̃i

: M̃i →M , K̃
M̃i

: M̃i → g∗, and K
M̃i

: M → g∗ be the maps in

the diagram constructed using the holonomy bundles M̃i, i ∈ {1,2}.
Then K

M̃2
= K

M̃1
+ πC(τ).

Remark: So far, only the closedness of ω was used.

Remark: The Hamiltonian holonomy H is the image of the period

homomorphism Pω : π1(M, z)→ g∗ defined by

〈Pω([γ]), ξ〉 :=
∫
γ
iξMω, for any ξ ∈ g.
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Properties of K:

(i) K is a smooth map that satisfies Noether’s Theorem: ∀h ∈
C∞(M)g := {f ∈ C∞(M) | dh(ξM) = 0, ∀ξ ∈ g}, the flow Ft of Xh
satisfies the identity K ◦ Ft = K|Dom(Ft).

(ii) TmK(vm) = TµπC(ν), ∀m ∈ M, ∀vm ∈ TmM , where µ ∈ g∗ is any

element s.t. K(m) = πC(µ) and ν ∈ g∗ is uniquely determined by:

〈ν, ξ〉 = (iξMω)(m)(vm), ∀ξ ∈ g.

(iii) Reduction Lemma: ker(TmK) =
((

Lie(H)
)◦
·m

)ω
.

(iv) Bifurcation Lemma:

range (TmK) = TµπC
(
(gm)◦

)
,

where µ ∈ g∗ is any element such that K(m) = πC(µ).

K is not equivariant, in general. There is a whole theory how to

drop the coadjoint action to the cylinder g∗/H and associate to it a

cocycle to make it equivariant – has to do with central extensions.
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There is a good reduction theory associated to K. Free case:

The main result. Let (M,ω) be a connected paracompact sym-

plectic manifold and G a Lie group acting freely and properly on

it by symplectic diffeomorphisms. Let K : M → g∗/H be a cylinder

valued momentum map for this action. Then g∗/H carries a natu-

ral Poisson structure and there exists a smooth G-action on it with

respect to which K is equivariant and Poisson. Moreover:

(i) The Marsden-Weinstein reduced space M [µ] := K−1([µ])/G[µ],

[µ] ∈ g∗/H, has a natural Poisson structure inherited from the sym-

plectic structure (M,ω) that is, in general, degenerate. M [µ] will be

referred to as the Poisson reduced space.

(ii) The optimal reduced spaces can be naturally identified with the

symplectic leaves of M [µ].
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(iii) The reduced spaces obtained by foliation reduction equal the
orbit spaces M[µ] := K−1([µ])/N[µ], where N is a normal con-
nected Lie subgroup of G whose Lie algebra is the annihilator
n :=

(
Lie

(
H

))◦
⊂ g of Lie

(
H

)
⊂ g∗ in g. The manifolds M[µ]

will be referred to as the symplectic reduced spaces.

(iv)The quotient Lie group H[µ] := G[µ]/N[µ] acts canonically freely
and properly on M[µ] and the quotient Poisson manifold M[µ]/H[µ]

is Poisson diffeomorphic to M [µ].

All these reduced spaces are, in general, distinct. But they are equal
if there is a momentum map.

Singular version of this theorem: get cone spaces. Reason: there
is a Marle-Guillemin-Sternberg normal form theorem for K.

Question: Is there a convexity result of K since reduction works
so well?

Let’s return to the classical convexity theorem.
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The convexity theorem is intimately related to reduction. The po-

sition of µ ∈ J(M) determines by how much TzJ : TzM → g∗ fails to

be surjective, where z ∈ J−1(µ). The momentum polytope should

be regarded as some kind of a priori bifurcation diagram that is

already imposed on all G-symmetric Hamiltonian systems.

The proof of the convexity theorem was initially done by Morse the-

ory (for the function ‖J‖2.) It turns out that this method does not

lead to the most general convexity theorem. There is a convexity

theorem that has as corollary the convexity theorem of Poisson-Lie

group actions whose proof is done with other methods and no proof

of this result is known that can be carried out with Morse theory.

Conditions under which the T or G-momentum polytopes are convex

were given by Condevaux, Dazord, and Molino (1988) and later by

Hilgert, Neeb, and Plank (1994). These papers show that the proof

of the convexity of the image of the momentum map rests on the

following result:
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Lokal-Global-Prinzip: Let Ψ : X → V be a locally fiber con-

nected map from a connected locally connected Hausdorff topo-

logical space X to a finite dimensional vector space V , with local

convexity data (Cx)x∈X such that all convex cones Cx are closed in

V . Suppose that Ψ is a proper map. Then Ψ(X) is a closed locally

polyhedral convex subset of V , the fibers Ψ−1(v) are all connected,

and Ψ : X → Ψ(X) is an open mapping.

The Lokal-Global-Prinzip not applicable if Ψ−1(v) are either not

compact or Ψ is not closed; both conditions are necessary for Ψ to

be a proper map. This is one of the difficulties in the (direct) proof

of the general convexity theorem leading to the convexity theo-

rem for compact Poisson-Lie group actions on compact symplectic

manifolds.

Poisson 2006, Tokyo

17



Question: What are the essential features guaranteeing convexity

of the image of a map?

Answer: Open onto its image and having local convexity data.

The master statement underlying this is the following:

Let f : X → V be a continuous map from a connected Hausdorff

topological space X to a Banach space V that is open onto its

image and has local convexity data. Then the image f(X) is locally

convex. If, in addition, f(X) is closed in V then it is convex.

We shall combine this with a generalization of the Lokal-Global-

Prinzip to get various convexity theorems.
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Explanations

Convexity. Let V be a topological vector space.

A subset X ⊂ V is locally convex if each point x ∈ X has a
neighborhood Vx such that Vx ∩X is convex.

The connection between local convexity and convexity is given by:

Klee (1951): A closed connected and locally convex subset of a
topological vector space is convex.

This theorem is very useful when dealing with momentum maps,
because local convexity is always known - precise statement later.

The theorem of Klee is itself a generalization of a theorem of Ti-
etze (1928) and Nakajima (1928) which is the case for V finite
dimensional. This was used, precisely as we do, by Duistermaat
and Pelayo (2006) to completely classify symplectic toral actions
for which some (and hence all) principal orbits are coisotropic.
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Compactness. In the definition of a compact set we do not as-

sume that it is Hausdorff. Bourbaki would call this “quasi-compact”.

A continuous map f : X → Y , X,Y topological spaces and X Haus-

dorff, is proper if it is closed and f−1(y) compact in X, ∀y ∈ Y .

In the hypotheses above, if K ⊂ Y is compact then f−1(K) is

compact in X. The converse is true if Y is Hausdorff and is the

quotient of a locally compact space.

Useful lemma in dealing with convexity properties:

Vǎınštěın: If f : X → Y is a closed mapping from a metrizable space

X onto a metrizable space Y , then for every y ∈ Y the boundary

bd(f−1(y)) := f−1(y) ∩
(
X \ f−1(y)

)
is compact.
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Local Convexity Data. X connected, locally connected, Hausdorff

V topological vector space. A subset C ⊂ V is a cone with vertex
v0 if ∀λ ≥ 0, ∀v ∈ C, v 6= v0, we have (1−λ)v0+λv ∈ C. If C is also
convex then it is called a convex cone.

V locally convex topological vector space.

f : X → V has local convexity data if ∀x ∈ X and ∀Ux open
neighborhood of x, ∃Cx,f(x),Ux convex cone with vertex f(x) in V
such that

A f(Ux) ⊂ Cx,f(x),Ux is a neighborhood of the vertex f(x) in the
cone Cx,f(x),Ux

B f |Ux : Ux → Cx,f(x),Ux is an open map and for any neighborhood
U ′x of x, U ′x ⊂ Ux, the set f(U ′x)is a neighborhood of the vertex f(x)
in the convex cone Cx,f(x),Ux

Here Cx,f(x),Ux is endowed with the subspace topology inherited
from V .
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Remarks.

• If the cones Cx,f(x),Ux are closed in f(X) the second condition in

B is implied by the openness of f |Ux : Ux → Cx,f(x),Ux.

• Cx,f(x),Ux does not depend on Ux: if U ′x ⊂ Ux is another neighbor-

hood of x, then Cx,f(x),Ux = Cx,f(x),U ′x
. So we write Cx,f(x).

• Cx,f(x) depends only on the connected components of f−1(f(x)):

if y is in the same connected component of f−1(f(x)) as x, then

Cx,f(x) = Cy,f(y).

Our strategy to prove local convexity for the image of a map that

has local convexity data is to prove that it is open onto its image.

f : X → V continuous map with local convexity data. If f is open

onto its image then f(X) is a locally convex subset of V . Moreover,

if f(X) is closed in a convex subset of V then it is convex.
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This is the basic theorem that will be applied every time when we
prove convexity. It will be combined with the Lokal-Global-Prinzip.

• V is allowed to be infinite dimensional.

• Unlike the usual local convexity data condition, it is not assumed
that the cones Cx,f(x) are closed since this is not a reasonable
assumption in infinite dimensions.

• To prove convexity: find necessary and sufficient conditions for a
map that has local convexity data to be open onto its image.

• Montaldi and Tokieda (2003) proved that the openness of the
momentum map (relative to its image endowed with the subspace
topology) implies persistence of extremal relative equilibria under
every perturbation of the value of the momentum map, provided
the isotropy subgroup of this value is compact. So the openness
property of the momentum map onto its image has interesting
dynamical consequences.
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• Need a generalization of the Lokal-Global-Prinzip that only re-

quires the map to be closed and to have a normal topological space

as domain, instead of using the properness condition. This theorem

would enable us to

- extend a result of Prato (1994) by requiring the properness of

a single component of the momentum map in order to conclude

convexity and

- to drop the compactness hypothesis on the manifold in the con-

vexity result leading to the Poisson-Lie convexity theorem.

• Use this theorem to deal with infinite dimensional convexity prob-

lems. This is not so easy and remains an open problem. Reason?

Lack of a Marle-Guillemin-Sternberg normal form in the infinite di-

mensional setting which makes the local convexity data property

very difficult to check.
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Local Fiber Connectedness. f : X → Y continuous.

A ⊂ X satisfies the locally fiber connected condition (LFC) if A
does not intersect two different connected components of the fiber
f−1(f(x)), for all x ∈ A.

X connected, locally connected, Hausdorff, V locally convex topo-
logical vector space, and f : X → V continuous. f is locally fiber
connected if ∀x ∈ X, any open neighborhood of x contains an open
neighborhood Ux of x that satisfies (LFC).

Let X be a connected, locally connected, Hausdorff topological
space, V a locally convex topological vector space, and f : X → V

a continuous map that has local convexity data. Assume that f is
a closed map onto its image f(X) and that it has connected fibers.
Then f is open onto its image f(X) and f(X) is locally convex.
Moreover, if f(X) is closed (e.g. f proper) then it is convex.

The key technical object in proving this is the study of the space
Xf whose points are the connected components of the fibers of f .
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THE LOKAL-GLOBAL-PRINZIP
FINITE DIMENSIONAL CASE

Let f : X → V be a closed map with values in a finite dimensional

Euclidean vector space V and X a connected, locally connected,

first countable, and normal topological space. Assume that f has

local convexity data and is locally fiber connected. Then:

(i) All the fibers of f are connected.

(ii) f is open onto its image.

(iii) The image f(X) is a closed convex set.

The theorem remains true if V is replaced by a convex subset C ⊂ V .
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INFINITE DIMENSIONAL CASE

In the proof of the finite dimensional theorem, compactness of

the balls in V was essential. So one cannot blindly pass to infinite

dimensions. Need a second topology in which the balls are compact.

So assume that V = W ∗ for another Banach space W . By Alaoglu’s

Theorem the balls are weak∗ compact, which is what we need.

(V, ‖ · ‖) is the Banach space dual W ∗

(V,w∗) is V endowed with the weak∗ topology of W ∗.

Since the weak∗ topology is weaker than the norm topology we

have:

• f : X → (V, ‖ · ‖) continuous =⇒ f : X → (V,w∗) continuous

• f : X → (V,w∗) closed =⇒ f : X → (V, ‖ · ‖) closed
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(V, ‖ · ‖) Banach, V = W ∗, for W a Banach space. f : X → (V, ‖ · ‖)
continuous and f : X → (V,w∗) closed, where X is a connected,
locally connected, and normal topological space. Assume that f
has local convexity data and is locally fiber connected. Then:

(i) All the fibers of f are connected.

(ii) f : X → (V,w∗) is open onto its image.

(iii) The image f(X) ⊂ (V,w∗) is a closed convex set.

It follows that f : S → (V, ‖ · ‖) is open onto its image and that
f(X) is closed in (V, ‖ · ‖). The proof shows that on f(X) the norm
induced and weak∗ topologies coincide. This seems very strong,
but it is automatic for the case when W is reflexive. Then the
weak and weak∗ topologies coincide on V . Mazur’s theorem states
that the weak and norm closures of a convex set in a normed space
coincide.
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OPENNESS AND LOCAL CONVEXITY
FOR TORAL MOMENTUM MAPS

Let V be finite dimensional vector space.

A subset K ⊂ V is polyhedral if it is the intersection of a finite

family of closed halfspaces of V .

Consequently, a polyhedral subset of V is closed and convex.

A subset K ⊂ V is called locally polyhedral if ∀x ∈ K, ∃Px polytope

in V such that x ∈ int(Px) and K ∩ Px is a polytope.

The key result towards convexity is the Marle-Guillemin-Sternberg

normal form. The detailed statement below is exactly as it is used

in the context above to apply the general theorems on convexity.
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(M,ω) symplectic, JT : M → t∗ invariant momentum map of a T -
action. Let m ∈ M and T0 := (Tm)0 be the connected component
of the stabilizer Tm. Let T1 ⊂ T be a subtorus such that T = T0×T1.

(i) ∃ (V, ωV ) symplectic v. s., a T -invariant open nbhd U ⊂ M of
T ·m, and a symplectic covering of a T -invariant open subset U ′ of
T1 × t∗1 × V onto U under which the T -action on M is modeled by

(T0 × T1)× ((T1 × t∗1)× V ) → ((T1 × t∗1)× V )

((t0, t1), (t
′
1, β, v)) 7→ (t1t

′
1, β, π(t0)v),

where π : T0 → Sp(V ) is a symplectic representation.

(ii) ∃ complex structure I on V such that 〈v, w〉 := ωV (Iv, w) defines
a pos. def. scalar product on V . Then V = ⊕α∈PV Vα, where Vα :=
{v ∈ V | Y ·v = α(Y )Iv, for all Y ∈ t0} and PV := {α ∈ t∗0 | Vα 6= {0}}.
The corresponding T -momentum map Φ : T ∗(T1)× V → t∗1× t∗0 ' t∗

is given by

Φ

(t1, β),
∑
α∈PV

vα

 = Φ(1,0.0) +

β, 1
2

∑
α∈PV

||vα||2α

 .
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The Marle-Guillemin-Sternberg Normal Form provides the twisted
product (T0 × T1) ×T0

(t∗1 × V ) as a T -invariant local model for M .
This is equivariantly diffeomorphic to T1 × t∗1 × V via the map

(T0 × T1)×T0
(t∗1 × V ) −→ T1 × t∗1 × V

[(t1, t0), η, v] 7−→ (t1, η, t0 · v).

(M,ω) symplectic manifold, JT : M → t∗ invariant momentum map
of a T -action. Then there exist a neighborhood U of m and a
convex polyhedral cone CJ(m) ⊂ t∗ with vertex JT (m) such that:

(i) JT (U) ⊂ CJT (m) is an open neighborhood of JT (m) in CJT (m);

(ii) JT : U → CJT (m) is an open map;

(iii) If t0 is the Lie algebra of the stabilizer Tm of m, then CJT (m) =

JT (m) + t⊥0 + cone(PV );

(iv) J−1
T (JT (m)) ∩ U is connected for all m ∈ U .
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So momentum maps of globally Hamiltonian toral actions always
have local convexity data with closed cones and are locally fiber
connected. Consequences for (M,ω) paracompact connected:

1. Generalization of Atiyah-Guillemin-Sternberg:

Assume JT : M → t∗ is closed. Then JT (M) is a closed convex
locally polyhedral subset in t∗. The fibers of JT are connected and
JT is open onto its image.

2. Generalization of Prato:

(i) If there exists ξ ∈ t such that JξT := 〈JT , ξ〉 ∈ C∞(M) is proper,
then JT (M) is a closed convex locally polyhedral subset in t∗. More-
over, the fibers of JT are connected and JT is open onto its image.

(ii) If there exists an integral element ξ ∈ t such that JξT is a proper
function having a minimum as its unique critical value then JT (M)
is the convex hull of a finite number of affine rays in t∗ stemming
from the images of T -fixed points.
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3. If G acts properly on M then G ·m is regular if the dimension
of nearby obits coincides with the dimension of G ·m.

Let Mreg denote the union of all regular orbits. For every connected
component M0 of M the subset Mreg∩M0 is connected, open, and
dense in M0. Similarly, if N is a T -invariant connected submanifold,
then the set of regular points for the T -induced action on N equals
N ∩Mreg. Hence N ∩Mreg is open, dense, and connected in N .

A region in a topological space is a connected open set.

What topological conditions are needed that ensure that JT is open
onto its image?

Let JT : M → t∗ be the momentum map of a torus action which
has connected fibers. Then JT is open onto its image if and only
if CJT (M

reg) does not disconnect any region in JT (M). Moreover,
the image of the momentum map is locally convex and locally poly-
hedral.
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Example, Prato (1994): M := C2 \ (D1 × D1), where D1 is the

closed unit disc in C.

M is an open symplectic submanifold of C2 and T2 acts on it by

(eiθ1, eiθ2) · (z1, z2) := (eiθ1z1, e
iθ2z2) with invariant momentum map

JT2(z1, z2) = (|z1|2, |z2|2)/2. Its fibers are connected.

Denote by R+ := {x ∈ R | x ≥ 0}. Then

JT2(M) = R2
+ \ {(x, y) | x ≤ 1/2 and y ≤ 1/2}

which is not connected. But

C(JT2(Mreg)) = {(x,0) | x > 1/2} ∪ {(0, y) | y > 1/2}

which does not disconnect any region in JT2(M). Consequently,

according to the previous theorem, this momentum map is open

onto its image and has a locally convex image, in agreement with

the basic theorem. This can be seen directly looking at the image.
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Example, Karshon and Lerman (1997): M1 := T2 × U where U

is the subset of R2 obtained by removing the origin and the positive

x-axis. M1 is an open symplectic submanifold of T ∗(T2). The

restriction to M1 of the lifted action of T2 on its cotangent bundle

has as momentum map the projection onto U . Hence, the image of

this momentum map is R2 minus the origin and the positive x-axis.

Let M2 be the symplectic manifold C2 minus the points whose

first coordinate is nonzero. The momentum map for the T2 action

on M2 is given by (z, w) 7→ (|z|2, |w|2)/2 and the image is the set

{(x, y) ∈ R2 | x > 0, y ≥ 0}.

Gluing M1 and M2 along the pre-images of the positive quadrant

we obtain another globally Hamiltonian T2-space M with a mo-

mentum map JT2 with connected fibers whose image is R2 minus

the origin. C(JT2(Mreg)) is the positive x-axis which disconnects

regions in R2 minus the origin. The previous theorem implies that

this momentum map is not open onto its image.
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4. What happens if the fibers of JT are disconnected? There

are reasonable topological conditions that insure openness onto its

image, but for that we need a theorem in point set topology.

Definitions: A metric space is called a generalized continuum if it

is locally compact and connected. In a topological space a quasi-

component of a point is the intersection of all closed-and-open

sets that contain that point. A topological space is called totally

disconnected if the quasi-component of any point consists of the

point itself. A continuous map f : X → Y is called light if all fibers

f−1(y) are totally disconnected. A subset of a topological space is

non-dense if it contains no open subsets.

Extension of Openness, Whyburn (1964): Let X and Y be

locally connected generalized continua and let f : X → Y be an

onto light mapping which is open on X\f−1(F ), where F is a closed

non-dense set in Y which separates no region in Y and is such that

f−1(F ) is non-dense. Then f is open on X.
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If the fibers of JT are disconnected we still need a control on the

connected components of the fibers of JT .

JT : M → t∗ momentum map of a torus action on a connected sym-

plectic manifold (M,ω). JT satisfies the connected component

fiber condition (CCF) if JT (x) = JT (y) and Ex∩Mreg 6= ∅, implies

that Ey∩Mreg 6= ∅, where Ex and Ey are the connected components

of the fiber J−1
T (JT (x)) that contain x and y respectively.

MJT
is the quotient topological space whose points are the con-

nected components of the fibers of JT .

Suppose that MJT
is a Hausdorff space. Then JT is open onto its

image if and only if JT (M) is locally compact, CJT (M
reg) does not

disconnect any region in JT (M), and JT satisfies (CCF). Moreover,

under these hypotheses, the image of the momentum map is locally

convex and locally polyhedral.
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OPENNESS AND LOCAL CONVEXITY
FOR GENERAL MOMENTUM MAPS

JG : M → g∗ equivariant momentum map of a canonical G-action.

In general, even with G compact and JG proper, it does not follow

that JG is open onto its image. So how does one recover the

Guillemin-Kirwan-Sternberg convexity theorem?

Let πG : g∗ → g∗/G ≡ t∗+ be the projection map which is always

proper if G is compact. Define jG := πG ◦ JG : M → t∗+. The idea is

to use the general convexity theorems for jG. But for that we need

local convexity data. This is ensured by:

Sjamaar (1998): M connected Hamiltonian G-manifold. Then

∀x ∈ M , ∃! Cx ⊂ t∗+ closed polyhedral convex cone with vertex at

jG(x) such that for every sufficiently small G-invariant neighborhood

U of x the set jG(U) is an open neighborhood of jG(x) in Cx.
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What about local fiber connectedness of jG? Using Lerman’s sym-

plectic cut technique,

Knop (2002): jG is locally fiber connected.

Conclusion: jG is locally fiber connected and has local convexity

data.

j̃G := π ◦ jG : M/G→ t∗+, where π : M →M/G is the projection.

The G-equivariant momentum map JG : M → g∗ is G-open onto its

image whenever j̃G is open onto its image.

Apply the finite dimensional Lokal-Global-Prinzip to the map jG to

obtain a generalization of the Guillemin-Kriwan-Sternberg convexity

theorem.
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Let M paracompact connected Hamiltonian G-manifold, G compact

connected. If JG is closed then JG(M)∩t∗+ is a closed convex locally

polyhedral set. Moreover, JG is G-open onto its image and all its

fibers are connected.

So JG is G-open, but is not open in general. Montaldi-Tokieda have

given countexamples. Recall jG := πG ◦ JG : M → t∗+.

Suppose that JG has connected fibers. Then JG is G-open onto its

image if and only if C((πG ◦ JG)(Mreg)) does not disconnect any

region in JG(M) ∩ t∗+. Moreover, in this context, JG(M) ∩ t∗+ is a

locally convex and locally polyhedral set.

Suppose that (M/G)jG is Hausdorff. Then JG is G-open onto its

image if and only if JG(M) is locally compact, C((πG ◦ JG)(Mreg))

does not disconnect any region in JG(M) ∩ t∗+, and jG satisfies

(CCF). Moreover, in this context, the image JG(M)∩ t∗+ is a locally

convex and locally polyhedral set.
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CONVEXITY FOR POISSON ACTIONS

Poisson Lie Groups. A Poisson manifold (H,πH) is said to be

a Poisson Lie group if H is a Lie group and the multiplication

(h1, h2) 7→ h1h2 is a Poisson map from H × H, equipped with the

product Poisson structure, to H.

πH vanishes at e. One can then define the intrinsic derivative ε :

h → h ∧ h by ε(ξ) = (LV πH)(e), where V is any vector field on H

with V (e) = ξ ∈ h. The dual map ε∗ : h∗ ∧ h∗ → h∗ satisfies the

Jacobi identity, so h∗ is a Lie algebra as well. The corresponding

connected and simply connected Lie group Hd is called the dual

group of H. It has a unique Poisson structure πHd making it into a

Poisson Lie group such that the intrinsic derivative of πHd is the Lie

bracket on h. ε is a cocycle and it determines uniquely the Poisson

Lie structures on H and Hd.
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Lu-Weinstein Structure. K compact connected semisimple Lie

group. Since any compact Lie group K is the commuting product

(ZK)0Kss of the connected component of the identity (ZK)0 of the

center ZK and of a closed semisimple subgroup Kss, one can work

only on the semisimple part, because on the toral part the analysis

has been already done (the discrete part does not matter for the

momentum map).

Since K admits a complexification, think of it as the compact real

form of a connected complex semisimple Lie group G. Denote by GR

the real Lie group underlying G and let GR = KAN be its Iwasawa

decomposition. Denote by gR, k, a, and n the real Lie algebras of

GR,K,A, and N , respectively. Then gR = k ⊕ a ⊕ n is the Iwasawa

decomposition of gR. If t = ia then T = exp t is a maximal torus of

K. Define B := AN whose Lie algebra is b := a⊕ n.
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Let κ be the Killing form of g. Its imaginary part Imκ is a non-

degenerate invariant symmetric bilinear form on gR. Since Imκ(k, k) =

Im(b, b) = 0, the vector spaces k and b are dual to each other rel-

ative to 〈 , 〉 := Imκ. The Cartan decomposition GR = PK defines

the Cartan involution τ : GR → GR. Define g∗ := τ(g−1) for any

g ∈ G. The derivative of these maps at the identity will be denoted

by the same symbols. The map τ : gR → gR has eigenvalues ±1.

The +1 eigenspace is k and the −1 is denoted by p. Note that 〈 , 〉
identifies k∗ with p. The exponential map is a diffeomorphism from p

to P . Let a+ be the positive Weyl chamber in a ∼= t∗ corresponding

to the subgroup B.

Let ρk : g→ k, ρb : g→ b be the projections associated to g = k⊕ b.

The Poisson-Lie structures on K and B are defined at the identity

and then right extended to the whole group.
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The bivector fields πK and πB given by

πK(k)(T ∗kRk−1η1, T
∗
kRk−1η2) = −

〈
ρk(Adk−1 η1), ρb(Adk−1 η2)

〉
for η1, η2 ∈ b ∼= k∗, and

πB(b)(T ∗bRb−1ξ1, T
∗
bRb−1ξ2) =

〈
ρk(Adb−1 ξ1), ρb(Adb−1 ξ2)

〉
for ξ1, ξ2 ∈ k ∼= b∗, make K and B into dual Poisson Lie groups.

The Poisson tensor πK vanishes on T .

Classification. As is explained above, the Poisson tensor on K is

determined by a cocycle ε : k→ k∧ k. Let ε0 be the cocycle defining

the Lu-Weinstein Poisson tensor. We consistently identify k∗ with

p via the pairing Imκ. Let a⊥ ∩ p be the orthogonal complement,

with respect to the Killing form κ (not Imκ), of a in p.
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Levendorskǐı-Soibelman (1991): Up to Poisson isomorphism, the

Poisson-Lie structures on a simple compact Lie group K are given

by

ε = aε0 + u, a ∈ R, u ∈ t ∧ t.

Here we think of u as a constant map, sending k to an element

of k ∧ k by extending it to be zero on i(a⊥ ∩ p). These Poisson-Lie

structures are all non-isomorphic for distinct a and u.

Remark. When K is a product of simple factors, one would have

different aj and uj for each simple component.

Remark. When K acts symplectically, there is no preferred maxi-

mal torus. Nontrivial Poisson-Lie tensors, however, cannot even be

defined until a maximal torus and a positive Weyl chamber (=pos-

itive roots of g) are chosen. A nonzero u in the theorem evidently

requires a choice of maximal torus. A nonzero a does also: the

proposition defining the Lu-Weinstein structure involves a distin-

guished KAN factorization.
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To compute these Poisson-Lie structures, one uses Manin triples

and one can determine them explicitly, including the dual groups.

For the convexity theorem, all that matters is whether a and u

vsanish or not. Thus, there are just four cases of interest:

(1) a = 0, u = 0. This gives the Lie-Poisson structure on Kd = k∗.
(2) a = 1, u = 0. This is the Lu-Weinstein structure.

(3) a = 1, u 6= 0. This is a perturbation of (2).

(4) a = 0, u 6= 0. This is a perturbation of (1).

For each case there is diffeomorphism ψ : Kd → p. For (1) this is

just the usual identification of Kd = k∗ ∼= p. For (2) it is the map

sym : Kd = B → p given by b 7→ log(b∗b). There are similar explicit

formulas for cases (3) and (4).
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Poisson-Lie Momentum Maps. The Poisson-Lie group H acts

on a Poisson manifold (P, πP ) in a Poisson fashion. Identify h ∼=(
kd

)∗
= T ∗eK

d. So ∀ξ ∈ h defines a left-invariant one-form ξ` on Kd.

Lu (1990): J : P → Kd is a momentum mapping for the action

of K if

ξP = πP (·, J∗(ξ`)).

Poisson-Lie Convexity Theorem.

Flaschka-Ratiu (1995): Let K be a compact connected semisim-

ple Lie group, equipped with a Poisson-Lie structure. Let M be

a compact connected symplectic manifold, and suppose that there

is a Poisson action of K on M , with equivariant momentum map

J : M → Kd. Define j := ψ ◦ J : M → p. Then j(M) ∩ a+ is a

compact convex polytope.
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There are two proofs of this theorem.

• Direct original proof is based on a general convexity theorem all
of whose hypotheses hold for actions of compact Lie groups, with
any of the possible Poisson-Lie structures, on compact symplectic
manifolds.

• A proof by Alekseev that reduces the theorem to the classical
Guillemin-Kirwan-Sternberg theorem by modifying the symplectic
structure in terms of the Poisson-Lie structure on K such that the
resulting action becomes symplectic.

Open question: Is the same result true if one drops compactness
of M and replaces it with properness of J?

The existing proofs use in an essential way compactness of M and
no method is known how to replace this by properness of J. Us-
ing the general convexity theorems, it is now possible to modify
the general convexity theorem whose corollary is the Poisson-Lie
convexity theorem.
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The compact connected Lie group K acts on a paracompact con-

nected symplectic manifold (M,ω). A maximal torus T of K acts

on (M,ω) with invariant momentum map JT : M → t∗. Suppose

there exists a closed map P : M → p with the following properties:

(i) P is equivariant with respect to the adjoint action of K on p;

(ii) ∀x ∈M , TxP(TxM) = kann
x := {µ ∈ p | 〈µ, ξ〉 = 0, ∀ξ ∈ k};

(iii) ∀x ∈M , the kernel of TxP equals

(k · x)ω := {v ∈ TxM | ω(x)(v, ξM(x)) = 0, ∀ξ ∈ k};

(iv) the restriction of P to P−1(a+) is proportional to JT .

Then P(M) ∩ a+ is a closed convex set. If M is compact, the set

P(M) ∩ a+ is a compact convex polytope.
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METRIC CONVEXITY

Question: In view of the fact that so far everything was point
set topological, how much more can one generalize the convexity
theorems? Can one replace the target space with more general
spaces than locally convex topological vector spaces? Are such
generalizations interesting?

Anwer: The target can be taken to be a “path metric space”,
“length space”, “inner space” – terminology differs from author to
author – with some good properties. There are interesting examples
already in symplectic geometry. For symplectic actions that do
not admit momentum maps, there is always the cylinder valued
momentum map. Is there a convexity theorem for it? Strong
indications are that yes, since there is an analogue of the Marle-
Guillemin-Sternberg normal form (Ortega-Ratiu) which then gives
local convexity data in the metric sense. But one needs some very
general convexity theorem to prove such a result. This is possible
and will be shown below.
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In the definition of the metric space +∞ is an allowed value.

X connected normal first countable topological space and (Y, d)

complete locally compact geodesic metric space. Assume that f :

X → Y is a continuous closed map, locally open onto its image,

locally fiber connected, and has local convexity data. Then:

(i) f(X) ⊂ (Y, d) is a weakly convex subset of Y .

(ii) If, in addition, (Y, d) is uniquely geodesic (that is, any two

points can be joined by a unique geodesic) and d(y1, y2) <∞ for all

y1, y2 ∈ Y , then f(X) is a convex subset of (Y, d), f has connected

fibers, and it is open onto its image.

All terms need to be explained: geodesic metric space, map locally

open onto its image, local convexity data (because we defined it

so far only for maps with values in locally convex vector spaces),

convex and weakly convex set in a geodesic metric space.
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A continuous map f : X → Y is said to be locally open onto its

image if for any x ∈ X there exists an open neighborhood Ux of x

such that the restriction f |Ux : Ux → f(Ux) is an open map, where

f(Ux) has the topology induced by Y .

Let f : X → Y be a continuous map between two connected Haus-

dorff topological spaces. Let Xf be the topological quotient space

whose points are the connected components of the fibers of f .

πf : X → Xf is the projection and f̃ : Xf → Y is uniquely charac-

terized by f̃ ◦ πf = f . f̃ is continuous and if the fibers of f are

connected then it is also injective.

Benoist (1998): Suppose f : X → Y is a continuous map between

two topological spaces. If f is locally fiber connected and locally

open onto its image then πf is an open map.
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X normal first countable topological space and Y Hausdorff. f :
X → Y continuous, locally open onto its image, and locally fiber
connected. If f is a closed map, then

(i) the projection πf : X → Xf is also a closed map,

(ii) the quotient Xf is a Hausdorff topological space.

Length Spaces. (X, d) metric space.

A curve or a path in X is a continuous map c : I → X with I a
connected interval of R.

The length ld(c) of a curve c : [a, b]→ X induced by the metric d is

ld(c) := sup
∆n

n−1∑
i=0

d(c(ti), c(ti+1)),

where the supremum is taken over all possible partitions ∆n : a =
t0 ≤ t1 ≤ · · · ≤ tn = b of the interval [a, b] ⊂ R. So ld(c) ≥ 0 or +∞.
The curve c is said to be rectifiable if its length is finite.
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Properties of the length function

1. ld(c) ≥ d(c(a), d(c(b))), for any path c : [a, b]→ X.

2. If φ : [a′, b′] → [a, b] is an onto weakly monotonic map, then

ld(c) = ld(c ◦ φ).

3. Additivity: if c is the concatenation of two paths c1 and c2 then

ld(c) = ld(c1) + ld(c2).

4. If c is rectifiable of length l, then the function λ : [a, b] →
[0, l] defined by λ(t) = ld(c[a,t]) is a continuous weakly monotonic

function.

5. Reparametrization by arc length: if c and λ are as in as in the

previous point, then there is a unique path c̃ : [0, l]→ X such that

c̃ ◦ λ = c and ld(c̃[0,t]) = t.
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6. Lower semicontinuity: let (cn) be a sequence of paths [a, b]→ X

converging uniformly to a path c. If c rectifiable, then for every
ε > 0, exists an integer Nε such that

ld(c) ≤ ld(cn) + ε

whenever n > Nε.

The distance d is said to be a path metric, length metric, or an
inner metric if the distance between every pair of points x, y ∈ X
is equal to the infimum of the length of rectifiable curves joining
them. If there are no such curves then, by defintion, d(x, y) = ∞.
If d is a length metric then (X, d) is called a path metric space, a
length space, or an inner space.

Given (X, d) there always is a length metric d induced by d:

d(x, y) := inf
Rx,y

ld(γ),

where Rx,y := {all rectifiable curves connecting x and y}. If there
are no such curves then define d(x, y) = +∞.
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Properties of d: (X, d) metric space. (Bridson and Haefliger)

1. d is a metric.

2. d(x, y) ≥ d(x, y) for all x, y ∈ X.

3. If c : [a, b] → X is continuous with respect to topology induced
by d, then it is continuous with respect to the topology induced by
d. The converse is false, in general. The topology induced by the
metric d is coarser than the topology induced by the metric d.

4. If a map c : [a, b]→ X is a rectifiable curve in (X, d), then it is a
continuous and rectifiable curve in (X, d).

5.The length of a curve c : [a, b] → X in (X, d) is the same as its
length in (X, d).

6. d = d.

7. (X, d) is a length space if and only if d = d.
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Classical examples are Riemannian manifolds (M, g). If c : [a, b]→M

is a piecewise differentiable path, the Riemannian length is

lg(c) :=
∫ b

a

√
gij(t)ċ

i(t)ċj(t).

Let (M, g) be a connected Riemannian manifold. Given x, y ∈ M ,

let d(x, y) be the infimum of the Riemannian lengths of piecewise

continuously differentiable paths c : [0,1] → M such that c(0) = x

and c(1) = y. d is called the length metric. Then:

1. d is a metric on X.

2. The topology on X defined by this distance is the same as the

given manifold topology on X.

3. (X, d) is a length space.
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Geodesic Metric Spaces.

A curve c : [a, b] → (X, d) is called a shortest path if its length

is minimal among the curves with the same endpoints. Shortest

paths in length spaces are also called distance minimizers.

(X, d) length space. A curve c : I ⊂ R → X is called geodesic if

∀t ∈ I, ∃J subinterval containing a neighborhood of t in I such that

c|J is a shortest path. In other words, a geodesic is a curve which

is locally a distance minimizer. A length space (X, d) is called a

geodesic metric space if for any two points x, y ∈ X there exist a

shortest path between x and y.

Clearly in a length space a shortest path is a geodesic. The exten-

sion of the Hopf-Rinow theorem from Riemannian geometry to the

case of length metric spaces was done by Cohn-Vossen.
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Hopf-Rinow-Cohn-Vossen: For a locally compact length space

(X, d), the following assertions are equivalent:

(i) X is complete,

(ii) every closed metric ball in X is compact.

If one of the above assertions is true then for any two points x, y ∈ X
there exist a shortest path connecting them. In other words, (X, d)

is a geodesic metric space.

If we endow the Riemannian manifold with its length metric we

obtain:

Every complete, connected, Riemannian manifold is a geodesic met-

ric space.
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Metric Convexity.

A subset C in a metric space (X, d) is said to be convex if the

restriction of d to C is a finite length metric.

(X, d) geodesic metric space. Then a subset C ∈ X is convex if and

only if for any two points x, y ∈ C there exists a rectifiable shortest

path γ connecting x and y which is entirely contained in C.

(X, d) geodesic metric space. A subset C ∈ X is weakly convex

if for any two points x, y ∈ C there exists a geodesic connecting x

and y which is entirely contained in C.

Note that weak convexity does not require that the geodesic be the

shortest one.
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Maps with Local Convexity Data.

Let X be a connected Hausdorff space and (Y, d) a length space.

A continuous mapping f : X → Y is said to have local convexity

data if for each x ∈ X and every sufficiently small neighborhood Ux

of x the set f(Ux) is a convex subset of Y .

The main technical tool in the proof of the convexity theorem is

the space Xf .

On Xf we define the function d̃ : Xf ×Xf → [0,∞] in the following

way: for [x] and [y] in Xf let d̃([x], [y]) be the infimum of all the

lengths ld(f̃ ◦ γ) where γ is a continuous curve in Xf that connects

[x] and [y]. Recall f̃ : Xf → Y is the quotient map of f : X → Y .

The length ld is computed with respect to the distance d on Y .

From the definition it follows that d(f̃([x]), f̃([y])) ≤ d̃([x], [y]).
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Standing hypotheses: X connected, normal, first countable topo-

logical space. f : X → Y continuous, closed map, locally open onto

its image, and locally fiber connected.

• (Y, d) metric space. Then d̃ : Xf ×Xf → [0,∞] is a metric on Xf .

• If, in addition, f has local convexity data, then (Xf , d̃) is a length

space and the topology induced by d̃ coincides with the quotient

topology of Xf .

• If, in addition, (Y, d) is a complete, locally compact, length space

(a geodesic metric space), then (Xf , d̃) is a complete, locally com-

pact length space (a geodesic metric space).

To prove this one uses Vǎınštěın’s theorem.
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