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Introduction and notations

(M,π) Poisson manifolds: π ∈ Γ(Λ2TM) Poisson bivector field,

{ f , g } := π(df,dg).

π] : T ∗M → TM :

π](α)(β) = π(α, β) α, β ∈ Ω1(M).
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Deformation quantization. . .

. . . means finding an associative product ? on C∞(M)[[ε]] s.t.:
f ? g = fg +

∑∞
n=0 ε

nBn(f, g),

1 ? f = f ? 1 = f ,

{ f , g } = B1(f, g)−B1(g, f).
Theorem 1 (Kontsevich). Every Poisson manifold has a deformation
quantization.

Remark 1. For other Poisson algebras there is no existence result in general. We
will have to consider such a case.

Remark 2. Kontsevich’s result is a corollary of the formality theorem. It may also
be obtained from the Poisson sigma model.
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Reduction

If (M,ω) is a symplectic manifold and C a submanifold:

Define T⊥C :=
⋃

x∈C(TxM)⊥ ⊂ TCM .

D := T⊥C ∩ TC a subbundle of TC =⇒ integrable distribution on C
(presymplectic submanifold).

C := C/D a manifold =⇒ it inherits a symplectic structure.

Special case: T⊥C ⊂ TC (coisotropic).

Again not so special:
Lemma 2. Given C presymplectic submanifold of M , ∃C ′ ⊂M s.t. 1) C ′

symplectic submanifold and 2) C coisotropic in C ′.
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Now let (M,π) be a Poisson manifold and C a submanifold.

Let N∗C be the conormal bundle of C:

0 → N∗C → T ∗CM → T ∗C → 0

dual to
0 → TC → TCM → NC → 0

NC normal bundle.
Definition 1. C coisotropic if D := π](N∗C) ⊂ TC.

Then D is a (singular) integrable distribution on C.

If C := C/D is a manifold, then it inherits a Poisson structure.
Remark 3. (M,ω) symplectic, π = ω−1: π](N∗C) = T⊥C.
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Other examples

Example 1.M is coisotropic in M for every Poisson structure.

Example 2. π ≡ 0. Any submanifold is coisotropic.

Example 3.M,N Poisson manifolds, Φ a map M → N .

Graph(Φ) coisotropic in M ×N ⇐⇒ Φ is a Poisson map.

Example 4. g a Lie algebra, M = g∗ with Kirillov–Kostant Poisson structure (i.e.,
{X , Y } := [X , Y ], X,Y ∈ g ⊂ C∞(M)).

Let h be a subspace of g and h0 its annihilator.

C = h0 is coisotropic in g∗ iff h is a Lie subalgebra.

More generally, C = h0 + λ is coisotropic for h Lie subalgebra and λ a character of
h (i.e., λ([X , Y ]) = 0 ∀X,Y ∈ h).
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Algebraic description

Let A be a Poisson algebra. An ideal I in A as a commutative algebra is called a
coisotrope if it also is a Lie subalgebra. Then A/I is an I-module.
Lemma 3. If I is the vanishing ideal of a closed submanifold C of a Poisson
manifold M and A = C∞(M), then C is coisotropic iff I is a coisotrope.
Moreover, C∞(C) = (A/I)I. If C is not a manifold, take it as a definition.

In Dirac’s terminology: first-class constraints.

Let N(I) := {a ∈ A : {a, I} ⊂ I} (normalizer). Then

N(I) is a Poisson subalgebra. I is a Poisson ideal in N(I). N(I)/I is isomorphic
to (A/I)I as a commutative algebra.

So one may induce a Poisson structure on (A/I)I. Is there a deformation
quantization of it?
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Coordinate description

Let {xI} be adapted local coordinates of M . That is, locally C is given by
xI = 0, I > k = dimC.

Notation: i, j, . . . for I ≤ k and µ, ν, . . . for I > k. So C is given by xµ = 0.

C coisotropic iff πµν|C = 0.

f ∈ C∞(C) descends to C iff πµi∂if = 0.

Poisson bracket on C: { f , g }C := πij∂if∂jg, f, g ∈ C∞(C) invariant.
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Strongly regular submanifolds

A good generalization of the notion of presymplectic submanifold is a submanifold
C of M such that rank(TC + π]N∗C) is constant (strongly regular submanifold
[Calvo–Falceto]).
Remark 4. If M is symplectic, then strongly regular = symplectic.

It turns out that K := (π])−1TC ∩N∗C is a subbundle (actually a subalgebroid
of T ∗M) and π](K) integrable characteristic distribution.

Again, coisotropicity is not so special:
Theorem 4 (Calvo–Falceto, C-Zambon). C strongly regular in M =⇒ ∃C ′ ⊂M
Poisson–Dirac submanifold which contains C as a coisotropic submanifold.

C ′ Poisson–Dirac: for every symplectic leaf O of M , C ′ ∩ O symplectic in O. C ′

inherits a Poisson structure with these intersections as its symplectic leaves.
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The Poisson sigma model [Schaller–Strobl, Ikeda]. . .

. . . is a 2D topological field theory with target a Poisson manifold (M,π) which,
among other things, produces Kontsevich’s star product [C–Felder].

S(X, η) :=
∫

Σ

〈 η , dX 〉+
1
2

〈
η , π](X)η

〉
,

where

Σ is a 2-manifold

X is a map Σ →M and η ∈ Γ(T ∗Σ⊗X∗T ∗M); in other words (X, η) is a
bundle map TΣ → T ∗M .

Regard dX as a section of T ∗Σ⊗X∗TM and π](X) of X∗Hom(T ∗M,TM).

〈 , 〉 is pairing of TM and T ∗M .
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Boundary conditions (“branes”)

Variational principle:

δS =

Z
Σ

〈 δη , dX 〉+〈 η , dδX 〉+· · · =

Z
Σ

(〈 δη , dX 〉+〈 dη , δX 〉)−
Z

∂Σ

〈 η , δX 〉+· · ·

To eliminate the boundary contribution, we have either to fix the variation of X
and or set η to 0. More precisely: Fix C ⊂M and require

X(∂Σ) ⊂ C, ι∗∂Ση ∈ Γ(T ∗∂Σ⊗X∗N∗C).

Notation: MC := { pairs (X, η) satisfying these boundary conditions}.

What kind of C may be chosen?
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Hamiltonian approach

Let Σ = I × R. Write η = λdt+ ζ, with I = [0, 1] and t ∈ R with λ a path in
Γ(I,X∗T ∗M) and ζ a path in Γ(I, T ∗I ⊗X∗T ∗M).

Let PM = Map(I,M) 3 X. We think of Γ(I, T ∗I ⊗X∗T ∗M) as its cotangent
fiber.

So (X, ζ) ∈ T ∗PM with canonical symplectic structure.

λ is a Lagrange multiplier imposing: dX + π](X)ζ = 0.

Let C be the space of solutions. And CC := {(X, ζ) ∈ C : X(0) ∈ C}. Then

1. CC coisotropic in T ∗PM iff C coisotropic in M [C–Felder].

2. CC presymplectic in T ∗PM iff C strongly regular in M [Calvo–Falceto].
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Lagrangian approach

Thus, compatibility with symmetries =⇒ C strongly regular [Calvo–Falceto].
Remark 5. Rescale π to πε := επ. Then ∀ε, C still satisfies the strong regularity
condition. Actually, Kε := (π]

ε)
−1TC ∩N∗C has the same rank ∀ε 6= 0.

For ε = 0, C is even coisotropic and K0 = N∗C.

If we want to study the PSM perturbatively, we want the symmetries to vary
smoothly with ε→ 0. One may see that this is the case iff C is coisotropic
[C–Felder].

Considering coisotropic submanifolds is anyway no loss of generality:

[Calvo–Falceto]: Let C ′ be Poisson–Dirac in M containing C as a coisotropic
submanifold. Then PSM on M with boundary conditions on C is equivalent to
that on C ′ with the same boundary conditions.
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Perturbative expansion of the PSM

Let Σ be the disk. Let C be a coisotropic submanifold of M .

Given f ∈ C∞(C) and u ∈ ∂Σ, let Of,u := f(X(u)).

Fix ∞ in ∂Σ. For u < v ∈ ∂Σ \ {∞} and x ∈ C, define

(f ? g)(x) :=
∫

(X,η)∈MC:X(∞)=x

e
i
~SOf,uOg,v.

where the functional integral is defined in perturbation theory around the critical
point X ≡ x, η ≡ 0.
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For C = M :

The result does not depend on u and v.

It defines a star product for the given Poisson structure with ε = i~.

This is actually Kontsevich’s star product.

For C 6= M , one expects to get a star product for the given Poisson structure on
C∞(C) with ε = i~.This actually not the case in general.

Problem 1: There exists a potential anomaly (in H2
δ (N∗C) — Lie algebroid

cohomology) which prevents this from working.

Problem 2: In the absence of anomaly, one gets an associative algebra on
quantum invariant elements of C∞(C)[[ε]]. The condition of quantum invariance
is a deformation of the classical invariance: πµi∂if + · · · = 0. If H1

δ = 0, then
C∞(C)[[ε]]inv ' (C∞(C)inv)[[ε]].
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Many branes

It is possible to cut the boundary of the disk Σ into two pieces and associate to
each of them a different coisotropic submanifold C1, C2.

If the anomalies vanish, this produces a bimodule structure on C∞(C1 ∩ C2)[[ε]]
for the deformation quantizations of C1 and C2.

Putting three different coisotropic submanifolds on three different components of
the boundary yields morphisms of bimodules.

What happens with more than three boundary conditions? Not clear. Actually, the
topology changes and some propagators can no longer be closed forms.
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Comments

Quantization of coisotropic submanifolds can also be achieved by the BVF
method. The present method seems to be more systematic.

The construction of bimodule structure is something new. In particular if applied
to graphs, it yields a quantization of Poisson maps.

The construction of morphisms of bimodules may also be interesting. A dream is
to use this procedure to get quantum groups by deformation quantization of
Poisson–Lie groups.

The method has also interesting applications to Lie theory (work in progress with
C. Torossian).
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Graded manifold interpretation

The case with one brane can nicely be reinterpreted using graded manifolds.

The PSM with target a graded manifold has a duality corresponding roughly
speaking to the exchange of X and η. This yields equivalent PSMs with “dual”
targets M1 ↔M2.

With boundary: (M1, C1) ↔ (M2, C2). It is possible to get C2 = M2! (Technical
tool: Legendre mapping by Tulczyjew, Mackenzie–Xu, Roytenberg.)

The result is actually more general:

C coisotropic implies N∗C Lie algebroid. On Γ(ΛNC) there is an algebroid
differential but also a flat L∞-structure [Oh–Park]. Quantization yields a (possibly
non flat) A∞-structure on Γ(ΛNC)[[ε]].

With many branes: A∞-bimodules, A∞-morphisms of bimodules
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The correct definition of the Poisson sigma model (including ghosts and
antighosts) is:

S(X̃, η̃) :=
∫

Σ

〈
η̃ , dX̃

〉
+

1
2

〈
η̃ , π](X̃)η̃

〉
,

with (X̃, η̃) ∈ Map(T [1]Σ, T ∗[1]M). This fiber over Map(T [1]Σ,M) 3 X̃. We
denote by η̃ the element of the fiber.

The quadratice term =
∫
Σ

〈
η̃ , dX̃

〉
is invariant under exchanging X̃ ↔ η̃.

Actually, it is invariant also under exchanging only some components.

Consequence: The PSM with target M is equivalent to the PSM for a different
target M ′ corresponding to the above exchange. If C labels boundary conditions
in M , we will get some C ′ labelling the corresponding boundary conditions in M ′.
It is is possible to choose M ′ so that C ′ = M ′!
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More on the quantization of a reduced space

Deformation quantization of Poisson manifolds is actually a corollary of
Kontsevich’s formality theorem.

To a coisotropic submanifold one may associate a graded manifold and get
deformation quantization from the formality theorem of graded manifolds.

Summary:

1. L∞ algebras and L∞ morphisms

2. MC elements

3. Formality theorem for graded manifolds
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L∞

Let V be a graded vector space and SV its symmetric algebra, but regarded as a
coalgebra. An L∞-structure on V [−1] consists of a coderivation D of degree 1 on
SV s.t. [D , D ] = 0.

Coder(SV ) ' Hom(SV, V ), so D actually consists of multilinear operations
Ln : SnV → V satisfying quadratic relations. The L∞-algebra is called flat if
L0 = 0. In this case L1 is a differential for L2 and HL1 is a GLA.
Example 5. If g is a DGLA, then it is a flat L∞-algebra with L2 =bracket and
L1 =differential, Ln = 0 n 6= 1, 2.

An L∞-morphism between two L∞-algebras V [−1] and W [−1] is a coalgebra map
SV → SW compatible with the coderivations.

Observe that such a map is determined by its projections Un : SnV →W . We
write U : V [−1] W [−1]. If they are flat and U0 = 0, then U1 is a chain map.
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MC

A MC element in an L∞-algebra g is an element A ∈ g1 satisfying

∑
n

1
n!
Ln(A, . . . , A) = 0.

Example 6. If g is a DGLA, then MC simply means dA+ 1
2[A , A ] = 0.

If U : g h is an L∞-morphism and A is MC in g then

B :=
∑

n

1
n!
Un(A, . . . , A)

is MC in h. But the series should converge.
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Use formal power series!

An L∞-structure on g extends to an L∞-structure on εg[[ε]].

An L∞-morphism U : g h determines an L∞-morphism U : εg[[ε]] εh[[ε]].

If A is MC in g and g is a GLA, then εA is MC in εg[[ε]].

Then

B :=
∑

n

εn

n!
Un(A, . . . , A)

is MC in εh[[ε]].
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Kontsevich’s formality theorem

Let M be a smooth manifold. Let V(M) := Γ(ΛTM) be the GLA of multivector
fields (with Schouten–Nijenhuis bracket). Let D(M) be the DGLA of
multidifferential operators on M :

φ ◦ ψ :=
∑

i

±φ(a1, . . . , ai, ψ(ai+1, . . . , ai+l), ai+l+1, . . . ),

[φ , ψ ] := φ ◦ ψ ± ψ ◦ φ,
dφ := [µ , φ ], µ multiplication.

Theorem 5 (Kontsevich). There is an L∞-q.i. U : V(M) D(M).

π MC in V(M) ⇔ π Poisson structure.

B MC in εD(M)[[ε]] ⇔ µ+B star product.
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Kontsevich’s formality theorem extends to graded manifolds (i.e., supermanifolds
with Z-grading on coordinates. For us, this grading matches with parity.)
[C-Felder]

Because of the grading a MC element π in V(M) is not necessarily a bivector
field. Actually

π = π0 + π1 + π2 + · · · ,
π0 a function of degree 2, π1 a vector field of degree 1, π2 a bivector field of
degree zero, . . . .

Let λ0 := π0, λ1(f) := [π1 , f ], λ2(f, g) = [ [π2 , f ] , g ],. . . .

By a result of T. Voronov these derived brackets define an L∞-structure on
C∞(M) iff π is MC.

B is MC in εD(M)[[ε]] ⇔ µ+B is an A∞-structure on C∞(M)[[ε]]. [C–Felder,
Lyakhovic–Sharapov]
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A∞ is “like” L∞ without graded commutativity.

In particular, if the degree-0 operation vanishes, the degree-one operation is a
differential and the cohomology is an associative algebra.

Problem: π0 = 0 does not imply µ+B flat.

One may see that H2
λ1

= {0} is a sufficient condition for µ+B to be equivalent
to a flat one.

If this is the case, H0
B1

is an associative algebra “quantizing” a Poisson subalgebra

of H0
λ1

.
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Legendre mapping

Let E →M be a graded vector bundle. We consider it as a graded manifold with
C∞(E) := Γ(ŜE∗).
Theorem 6 (Roytenberg, after Mackenzie-Xu, Tulczyjew). T ∗[l]E and T ∗[l]E∗[l]
are antisymplectomorphic ∀l.

For a graded vector space: T ∗[l]V = V ⊕ V ∗[l] while T ∗[l]V ∗[l] = V ∗[l]⊕ V .

Notation. V(E) = GLA of multivector fields.

V(E) = C∞(T ∗[1]E). So V(E) and V(E∗[1]) are antiisomorphic.
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Application

Let C ⊂M . Let NC be the normal bundle. Let N [0]C be the graded manifold
with functions Γ(ŜN∗C). Upon choosing an embedding of NC into M , we may
regard N [0]C as a formal neighborhood of C.

The Poisson bivector field on M then yields a Poisson bivector field π′ on N [0]C.

The Legendre mapping maps π′ to a MC element in N∗[1]C. This defines an
L∞-structure on Γ(ΛNC).

Flat iff C coisotropic. In this case, λ1 is the Lie algebroid differential [Oh–Park].

Finally, U yields an A∞-structure on Γ(ΛNC)[[ε]].

If H2
λ1

= {0}, we may make it flat. It turns out that H0
B1

= A[[ε]] where A is a

Poisson subalgebra of H0
λ1

= C∞(C).
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Studying the long exact sequence associated to

0 → Γ(ΛNC)[[ε]] ε→ Γ(ΛNC)[[ε]] → Γ(ΛNC) → 0,

one may easily see that H1
λ1

= {0} implies A = C∞(C).


